Repository logo

An optimized support vector machine for lung cancer classification system

dc.contributor.authorOyediran, Mayowa O.en_US
dc.contributor.authorOjo, Olufemi S.en_US
dc.contributor.authorRaji, Ibrahim A.en_US
dc.contributor.authorAdeniyi, Abidemi Emmanuelen_US
dc.contributor.authorAroba, Oluwasegun Juliusen_US
dc.date.accessioned2025-03-02T16:42:50Z
dc.date.available2025-03-02T16:42:50Z
dc.date.issued2024-12-23
dc.date.updated2025-02-26T13:53:17Z
dc.description.abstractIntroduction Lung cancer is one of the main causes of the rising death rate among the expanding population. For patients with lung cancer to have a higher chance of survival and fewer deaths, early categorization is essential. The goal of this research is to enhance machine learning to increase the precision and quality of lung cancer classification.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>The dataset was obtained from an open-source database and was utilized for testing and training. The suggested system used a CT scan picture as its input image, and it underwent a variety of image processing operations, including segmentation, contrast enhancement, and feature extraction.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>The training process produces a chameleon swarm-based supportvector machine that can identify between benign, malignant, and normal nodules.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>The performance of the system is evaluated in terms of false-positive rate (FPR), sensitivity, specificity, recognition time and recognition accuracy.</jats:p></jats:sec>en_US
dc.format.extent8 pen_US
dc.identifier.citationOyediran, M.O. et al. 2024. An optimized support vector machine for lung cancer classification system. Frontiers in Oncology. 14: 1-8. doi:10.3389/fonc.2024.1408199en_US
dc.identifier.doi10.3389/fonc.2024.1408199
dc.identifier.issn2234-943X (Online)
dc.identifier.urihttps://hdl.handle.net/10321/5822
dc.language.isoenen_US
dc.publisherFrontiers Media SAen_US
dc.publisher.urihttps://doi.org/10.3389/fonc.2024.1408199en_US
dc.relation.ispartofFrontiers in Oncology; Vol. 14en_US
dc.subject1112 Oncology and Carcinogenesisen_US
dc.subject3202 Clinical sciencesen_US
dc.subject3211 Oncology and carcinogenesisen_US
dc.subjectChameleon swarm algorithm (CSA)en_US
dc.subjectLung canceren_US
dc.subjectSupport vector machineen_US
dc.subjectOptimization techniquesen_US
dc.subjectMachine learningen_US
dc.titleAn optimized support vector machine for lung cancer classification systemen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Oyediran et al_2024.pdf
Size:
1.07 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Frontiers in oncology Copyright clearance.docx
Size:
256.1 KB
Format:
Microsoft Word XML
Description: