Repository logo
 

An optimized support vector machine for lung cancer classification system

Abstract

Introduction Lung cancer is one of the main causes of the rising death rate among the expanding population. For patients with lung cancer to have a higher chance of survival and fewer deaths, early categorization is essential. The goal of this research is to enhance machine learning to increase the precision and quality of lung cancer classification.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>The dataset was obtained from an open-source database and was utilized for testing and training. The suggested system used a CT scan picture as its input image, and it underwent a variety of image processing operations, including segmentation, contrast enhancement, and feature extraction.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>The training process produces a chameleon swarm-based supportvector machine that can identify between benign, malignant, and normal nodules.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>The performance of the system is evaluated in terms of false-positive rate (FPR), sensitivity, specificity, recognition time and recognition accuracy.</jats:p></jats:sec>

Description

Citation

Oyediran, M.O. et al. 2024. An optimized support vector machine for lung cancer classification system. Frontiers in Oncology. 14: 1-8. doi:10.3389/fonc.2024.1408199

DOI

10.3389/fonc.2024.1408199