Repository logo
 

A computational methodology to select the optimal material combination in laminated composite pressure vessels

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

A methodology to select the best material combination and optimally design laminated composite pres-sure vessels is described. The objective of the optimization is to maximize the critical internal pressure subject to cost constraints. Exact elasticity solutions are obtained using the stress function approach, where the stresses are determined taking into account the closed ends of the cylindrical shell. The approach used here allows us to analyze accurately multilayered pressure vessels with an arbitrary number of orthotropic layers of any thickness and a combination of different materials. The design optimization of the pressure vessel is accomplished using the Big Bang–Big Crunch algorithm,subject to the Tsai-Hill failure criterion.

Description

Citation

Tabakov, P.Y. and Walker, M. 2012. A Computational Methodology to Select the Optimal Material Combination in Laminated Composite Pressure Vessels. In D. Biolek, K. Volkov and K. Ng (Eds.), Advances in circuits, systems, automation and mechanics (pp. 131-136). Montreux: WSEAS.

DOI