Repository logo

Kinks in the relativistic model with logarithmic nonlinearity

dc.contributor.authorBelendryasova, E.en_US
dc.contributor.authorGani, V. A.en_US
dc.contributor.authorZloshchastiev, K. G.en_US
dc.date.accessioned2025-03-02T17:40:07Z
dc.date.available2025-03-02T17:40:07Z
dc.date.issued2020-11-01
dc.date.updated2025-02-27T08:25:23Z
dc.description.abstractAbstract We study the properties of a relativistic model with logarithmic nonlinearity. We show that such model allows two types of solutions: topologically trivial (gaussons) and topologically non-trivial (kinks), depending on a sign of the nonlinear coupling. We focus primarily on the kinks' case and study their scattering properties. For the kink-antikink scattering, we have found a critical value of the initial velocity, which separates two different scenarios of scattering. For the initial velocities below this critical value, the kinks form a bound state, which then decays slowly. If the initial velocities are above the critical value, the kinks collide, bounce and eventually escape to infinities. During this process, the higher initial velocity is, the greater is the elasticity of the collision. We also study excitation spectrum of the kink solution.</jats:p>en_US
dc.format.extent4 pen_US
dc.identifier.citationBelendryasova, E., Gani, V.A. and Zloshchastiev, K.G. 2020. Kinks in the relativistic model with logarithmic nonlinearity. Journal of Physics: Conference Series. 1390(1): 1-4. doi:10.1088/1742-6596/1390/1/012082en_US
dc.identifier.doi10.1088/1742-6596/1390/1/012082
dc.identifier.issn1742-6588
dc.identifier.issn1742-6596 (Online)
dc.identifier.urihttps://hdl.handle.net/10321/5824
dc.language.isoenen_US
dc.publisherIOP Publishingen_US
dc.publisher.urihttps://doi.org/10.1088/1742-6596/1390/1/012082en_US
dc.relation.ispartofJournal of Physics: Conference Series; Vol. 1390, Issue 1en_US
dc.subjecthep-then_US
dc.subjectmath-phen_US
dc.subjectnlin.PSen_US
dc.subject0202 Atomic, Molecular, Nuclear, Particle and Plasma Physicsen_US
dc.subject0204 Condensed Matter Physicsen_US
dc.subject0299 Other Physical Sciencesen_US
dc.subject51 Physical sciencesen_US
dc.titleKinks in the relativistic model with logarithmic nonlinearityen_US
dc.typeArticleen_US
dcterms.dateAccepted2019-10-24

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Belandryasova_Gani_Zloshchastiev_2020.pdf
Size:
111.23 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Journ of Physics Conf Series Copyright Clearance.docx
Size:
254.12 KB
Format:
Microsoft Word XML
Description: