Please use this identifier to cite or link to this item: https://hdl.handle.net/10321/2658
Title: Mitigation of carbon dioxide from synthetic flue gas using indigenous microalgae
Authors: Bhola, Virthie Kemraj 
Issue Date: 2017
Abstract: 
Fossil carbon dioxide emissions can be biologically fixed which could lead to the development of technologies that are both economically and environmentally friendly. Carbon dioxide, which is the basis for the formation of complex sugars by green plants and microalgae through photosynthesis, has been shown to significantly increase the growth rates of certain microalgal species. Microalgae possess a greater capacity to fix CO2 compared to terrestrial plants. Selection of appropriate microalgal strains is based on the CO2 fixation and tolerance capability, both of which are a function of biomass productivity. Microalgal biomass could thus represent a natural sink for carbon. Furthermore, such systems could minimise capital and operating costs, complexity, and energy required to transport CO2 to other places.

Prior to the development of an effective CO2 mitigation process, an essential step should be to identify the most CO2-tolerant indigenous strains. The first phase of this study therefore focused on the isolation, identification and screening of carboxyphilic microalgal strains (indigenous to the KwaZulu-Natal province in South Africa). In order to identify a high carbon-sequestering microalgal strain, the physiological effect of different concentrations of carbon sources on microalgae growth was investigated. Five indigenous strains (I-1, I-2, I-3, I-4 and I-5) and a reference strain (I-0: Coccolithus pelagicus 913/3) were subjected to CO2 concentrations of 0.03
- 15% and NaHCO3 of 0.05 - 2 g/1. The logistic model was applied for data fitting, as well as for estimation of the maximum growth rate (µmax) and the biomass carrying capacity (Bmax). Amongst the five indigenous strains, I-3 was similar to the reference strain with regards to biomass production values. The Bmax of I-3 significantly increased from 0.214 to 0.828 g/l when the CO2 concentration was increased from 0.03 to 15% (r = 0.955, p = 0.012). Additionally, the Bmax of I-3 increased with increasing NaHCO3 concentrations (r = 0.885, p = 0.046) and was recorded at
0.153 g/l (at 0.05 g/l) and 0.774 g/l (at 2 g/l). Relative electron transport rate (rETR) and maximum quantum yield (Fv/Fm) were also applied to assess the impact of elevated carbon sources on the microalgal cells at the physiological level. Isolate I-3 displayed the highest rETR confirming its tolerance to higher quantities of carbon. Additionally, the decline in Fv/Fm with increasing carbon was similar for strains I-3 and the reference strain (I-0). Based on partial 28S ribosomal DNA gene sequencing, strain I-3 was found to be homologous to the ribosomal genes of Chlorella sp.

The influence of abiotic parameters (light intensity and light:dark cycles) and varying nutrient concentrations on the growth of the highly CO2 tolerant Chlorella sp. was thereafter investigated. It was found that an increase in light intensity from 40 to 175 umol m2 s-1 resulted in an enhancement of Bmax from 0.594 to 1.762 g/l, respectively (r = 0.9921, p = 0.0079). Furthermore, the highest Bmax of 2.514 g/l was detected at a light:dark cycle of 16:8. Media components were optimised using fractional factorial experiments which eventually culminated in a central composite optimisation experiment. An eight-factor resolution IV fractional factorial had a biomass production of 2.99 g/l. The largest positive responses (favourable effects on biomass production) were observed for individual factors X2 (NaNO3), X3 (NaH2PO4) and X6 (Fe-EDTA). Thereafter, a three-factor (NaNO3, NaH2PO4 and Fe-EDTA) central composite experimental design predicted a maximum biomass production of 3.051 g/l, which was 134.65% higher when compared to cultivation using the original ASW medium (1.290 g/l).



A pilot scale flat panel photobioreactor was designed and constructed to demonstrate the process viability of utilising a synthetic flue gas mixture for the growth of microalgae. The novelty of this aspect of the study lies in the fact that a very high CO2 concentration (30%) formed part of the synthetic flue gas mixture. Overall, results demonstrated that the Chlorella sp. was able to grow well in a closed flat panel reactor under conditions of flue gas aeration. Biomass yield, however, was greatly dependent on culture conditions and the mode of flue gas supply. In comparison to the other batch runs, run B yielded the highest biomass value (3.415 g/l) and CO2 uptake rate (0.7971 g/day). During this run, not only was the Chlorella strain grown under optimised nutrient and environmental conditions, but the culture was also intermittently exposed to the flue gas mixture. Results from this study demonstrate that flue gas from industrial sources could be directly introduced to the indigenous Chlorella strain to potentially produce algal biomass while efficiently capturing and utilising CO2 from the flue gas.
Description: 
Submitted in fulfillment of the requirements for the degree of Doctor of Philosophy: Biotechnology, Durban University of Technology, Durban, South Africa, 2017.
URI: http://hdl.handle.net/10321/2658
DOI: https://doi.org/10.51415/10321/2658
Appears in Collections:Theses and dissertations (Applied Sciences)

Files in This Item:
File Description SizeFormat
BHOLA_VK_2017.pdf4.9 MBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

582
checked on Dec 22, 2024

Download(s) 50

604
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.