Please use this identifier to cite or link to this item: https://hdl.handle.net/10321/1477
DC FieldValueLanguage
dc.contributor.authorCharalambous, K.-
dc.contributor.authorLeach, P. G. L.-
dc.date.accessioned2016-04-29T06:43:47Z-
dc.date.available2016-04-29T06:43:47Z-
dc.date.issued2015-05-01-
dc.identifier.citationCharalambous, K. and Leach, P. G. L. 2015. Algebraic structures of generalised symmetries of n th-order scalar ordinary differential equations of maximal lie point symmetry. Applied Mathematics & Information Sciences, 9(3) pp. 1175-1180.en_US
dc.identifier.issn2325-0399-
dc.identifier.urihttp://hdl.handle.net/10321/1477-
dc.description.abstractWe compute for the representative scalar ordinary differential equation of maximal point symmetry the generalised symmetries of order-one and two. We examine the Lie Brackets for the generalised symmetries and see that closure does not occur for generalised symmetries of order-two. Consequently all generalised symmetries up to the maximum order possible must be admitted.en_US
dc.format.extent6 pen_US
dc.language.isoenen_US
dc.publisherNatural Sciences Publishingen_US
dc.relation.ispartofApplied mathematics & information sciences (Online)-
dc.subjectGeneralised symmetriesen_US
dc.subjectnth-order scalar ODEsen_US
dc.subjectalgebraic structuresen_US
dc.subjectLie Brackets MSC 2010 Numbers: 34A30en_US
dc.subject34C14en_US
dc.titleAlgebraic structures of generalised symmetries of n th-order scalar ordinary differential equations of maximal lie point symmetryen_US
dc.typeArticleen_US
dc.publisher.urihttp://www.naturalspublishing.com/files/published/37fi6h88z747n7.pdfen_US
dc.dut-rims.pubnumDUT-004928en_US
item.grantfulltextopen-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.languageiso639-1en-
Appears in Collections:Research Publications (Applied Sciences)
Files in This Item:
File Description SizeFormat
Charalambous_AMIS_9_3_2015.pdf227.83 kBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

527
checked on Dec 22, 2024

Download(s)

195
checked on Dec 22, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.