Please use this identifier to cite or link to this item:

`http://hdl.handle.net/10321/1225`

Title: | Rossby waves in an azimuthal wind |

Authors: | McKenzie, J. F. Webb, G. M. |

Keywords: | Rossby waves;Azimuthal wind;Fourier-Floquet |

Issue Date: | 24-Nov-2014 |

Publisher: | Taylor and Francis |

Source: | McKenzie, J.F. and Webb, G.M. 2014. Rossby waves in an azimuthal wind. Geophysical & Astrophysical Fluid Dynamics. 109(1) : 21-38. |

Abstract: | Rossby waves in an azimuthal wind are analyzed using an eigen-function expansion. Solutions of the wave equation for the stream-function ψ for Rossby waves are obtained in which ψ depends on (r,φ,t) where r is the cylindrical radius, φ is the azimuthal angle measured in the β plane relative to the Easterly direction, (the β-plane is locally horizontal to the Earth’s surface in which the x-axis points East, and the y-axis points North). The radial eigenfunctions in the β-plane are Bessel functions of order n and argument kr,where k is a characteristic wave number and have the form anJn(kr) in which the an satisfy recurrence relations involving an+1, an,andan−1. The recurrence relations for the an have solutions in terms of Bessel functions of order n − ω/Ω where ω is the frequency of the wave and Ω is the angular velocity of the wind and argument a = β/(kΩ). By summing the Bessel function series, the complete solution for ψ reduces to a single Bessel function of the ﬁrst kind of order ω/Ω. The argument of the Bessel function is a complicated expression depending on r, φ, a, and kr. These solutions of the Rossby wave equation can be interpreted as being due to wave-wave interactions in a locally rotating wind about the local vertical direction. The physical characteristics of the rotating wind Rossby waves are investigated in the long and short wavelength limits; in the limit as the azimuthal wind velocity Vw → 0; and in the zero frequency limit ω → 0 in which one obtains a stationary spatial pattern for the waves. The vorticity structure of the waves are investigated. Time dependent solutions with ω = 0 are also investigated. |

URI: | http://hdl.handle.net/10321/1225 |

ISSN: | 0309-1929 1029-0419 |

Appears in Collections: | Research Publications (Applied Sciences) |

###### Files in This Item:

File | Description | Size | Format | |
---|---|---|---|---|

mckenzie_webb_2015_geo___astrophy_fluid_dynamics.pdf | 674.17 kB | Adobe PDF | View/Open |

#### Page view(s)

159
checked on Aug 18, 2018

#### Download(s)

132
checked on Aug 18, 2018

#### Google Scholar^{TM}

Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.