Please use this identifier to cite or link to this item:
Title: Rossby waves in an azimuthal wind
Authors: McKenzie, J. F. 
Webb, G. M. 
Keywords: Rossby waves;Azimuthal wind;Fourier-Floquet
Issue Date: 24-Nov-2014
Publisher: Taylor and Francis
Source: McKenzie, J.F. and Webb, G.M. 2014. Rossby waves in an azimuthal wind. Geophysical & Astrophysical Fluid Dynamics. 109(1) : 21-38.
Journal: Geophysical and astrophysical fluid dynamics (Online) 
Rossby waves in an azimuthal wind are analyzed using an eigen-function expansion. Solutions of the wave equation for the stream-function ψ for Rossby waves are obtained in which ψ depends on (r,φ,t) where r is the cylindrical radius, φ is the azimuthal angle measured in the β plane relative to the Easterly direction, (the β-plane is locally horizontal to the Earth’s surface in which the x-axis points East, and the y-axis points North). The radial eigenfunctions in the β-plane are Bessel functions of order n and argument kr,where k is a characteristic wave number and have the form anJn(kr) in which the an satisfy recurrence relations involving an+1, an,andan−1. The recurrence relations for the an have solutions in terms of Bessel functions of order n − ω/Ω where ω is the frequency of the wave and Ω is the angular velocity of the wind and argument a = β/(kΩ). By summing the Bessel function series, the complete solution for ψ reduces to a single Bessel function of the first kind of order ω/Ω. The argument of the Bessel function is a complicated expression depending on r, φ, a, and kr. These solutions of the Rossby wave equation can be interpreted as being due to wave-wave interactions in a locally rotating wind about the local vertical direction. The physical characteristics of the rotating wind Rossby waves are investigated in the long and short wavelength limits; in the limit as the azimuthal wind velocity Vw → 0; and in the zero frequency limit ω → 0 in which one obtains a stationary spatial pattern for the waves. The vorticity structure of the waves are investigated. Time dependent solutions with ω = 0 are also investigated.
ISSN: 0309-1929
Appears in Collections:Research Publications (Applied Sciences)

Files in This Item:
File Description SizeFormat
mckenzie_webb_2015_geo___astrophy_fluid_dynamics.pdf674.17 kBAdobe PDFThumbnail
Show full item record

Page view(s)

checked on Jul 16, 2024


checked on Jul 16, 2024

Google ScholarTM




Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.