Please use this identifier to cite or link to this item: https://hdl.handle.net/10321/5438
Title: An inertial iterative method for solving split monotone inclusion problems in Hilbert spaces
Authors: Mebawondu, Akindele Adebayo 
Sunday, Akunna Sunsan 
Narain, Ojen Kumar 
Maharaj, Adhir 
Keywords: Hilbert Spaces;0102 Applied Mathematics;0103 Numerical and Computational Mathematics;4901 Applied mathematics;Iterative method;Split monotone inclusion problem;Hilbert space;Lipschitz
Issue Date: 2024
Publisher: American Institute of Mathematical Sciences (AIMS)
Source: Mebawondu, A.A. et al. 2024. An inertial iterative method for solving split monotone inclusion problems in Hilbert spaces. Numerical Algebra, Control and Optimization: 1-19. doi:10.3934/naco.2024039
Journal: Numerical Algebra, Control and Optimization 
Abstract: 
The purpose of this work is to introduce and study a new type of
a relaxed extrapolation iterative method for approximating the solution of a
split monotone inclusion problem in the framework of Hilbert spaces. More so,
we establish a strong convergence theorem of the proposed iterative method
under the assumption that the set-valued operator is maximal monotone and
the single-valued operator is Lipschitz continuous monotone which is weaker
assumption unlike other methods in which the single-valued is inverse strongly
monotone. We emphasize that the value of the Lipschitz constant is not re-
quired for the iterative technique to be implemented, and during computation,
the Lipschitz continuity was not used. Lastly, we present an application and
also some numerical experiments to show the e ciency and the applicability
of our proposed iterative method.
URI: https://hdl.handle.net/10321/5438
ISSN: 2155-3289
2155-3297 (Online)
DOI: 10.3934/naco.2024039
Appears in Collections:Research Publications (Applied Sciences)

Files in This Item:
File Description SizeFormat
NACO Copyright Clearance.docx147.87 kBMicrosoft Word XMLView/Open
Mebawondu_Maharaj et al_2020.pdf449.17 kBAdobe PDFView/Open
Show full item record

Page view(s)

70
checked on Dec 13, 2024

Download(s)

30
checked on Dec 13, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.