Please use this identifier to cite or link to this item:
https://hdl.handle.net/10321/5406
Title: | The effect of a two-fluid atmosphere on relativistic stars | Authors: | Govender, Gabriel Brassel, Byron P. Maharaj, Sunil D. |
Keywords: | gr-qc;gr-qc;0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics;0206 Quantum Physics;Nuclear & Particles Physics;5101 Astronomical sciences;5102 Atomic, molecular and optical physics;5107 Particle and high energy physics | Issue Date: | 11-Jul-2015 | Publisher: | Springer Science and Business Media LLC | Source: | Govender, G., Brassel, B.P. and Maharaj, S.D. 2015. The effect of a two-fluid atmosphere on relativistic stars. European Physical Journal C. 75(7): 1-13. doi:10.1140/epjc/s10052-015-3548-9 | Journal: | European Physical Journal C; Vol. 75, Issue 7 | Abstract: | We model the physical behaviour at the surface of a relativistic radiating star in the strong gravity limit. The spacetime in the interior is taken to be spherically symmetrical and shear-free. The heat conduction in the interior of the star is governed by the geodesic motion of fluid particles and a nonvanishing radially directed heat flux. The local atmosphere in the exterior region is a two-component system consisting of standard pressureless (null) radiation and an additional null fluid with nonzero pressure and constant energy density. We analyse the generalised junction condition for the matter and gravitational variables on the stellar surface and generate an exact solution. We investigate the effect of the exterior energy density on the temporal evolution of the radiating fluid pressure, luminosty, gravitational redshift and mass flow at the boundary of the star. The influence of the density on the rate of gravitational collapse is also probed and the strong, dominant and weak energy conditions are also tested. We show that the presence of the additional null fluid has a significant effect on the dynamical evolution of the star. |
Description: | 3 |
URI: | https://hdl.handle.net/10321/5406 | ISSN: | 1434-6044 1434-6052 (Online) |
DOI: | 10.1140/epjc/s10052-015-3548-9 |
Appears in Collections: | Research Publications (Applied Sciences) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
EPJ C Copyright Clearance.docx | 255.69 kB | Microsoft Word XML | View/Open | |
Govender_Brassel_Maharaj_2015.pdf | 889.77 kB | Adobe PDF | View/Open |
Page view(s)
35
checked on Oct 7, 2024
Download(s)
15
checked on Oct 7, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.