Please use this identifier to cite or link to this item: https://hdl.handle.net/10321/5121
Title: Enhancing the mechanical properties of hydrogels with vinyl-functionalized nanocrystalline cellulose as a green crosslinker
Authors: Islam, Hasanul Banna Muhammad Zukaul 
Krishna, Suresh Babu Naidu
Bin Imran, Abu 
Keywords: Hydrogel;Biodegradable;Stretchable;Nanocomposite;Crosslinker;100703 Nanobiotechnology;1112 Oncology and Carcinogenesis;Nanoscience & Nanotechnology
Issue Date: 10-Dec-2023
Publisher: IOP Publishing
Source: Islam, H.B.M.Z., Krishna, S.B.N. and Bin Imran, A. 2023. Enhancing the mechanical properties of hydrogels with vinyl-functionalized nanocrystalline cellulose as a green crosslinker. Nanotechnology. 34(50): 505706-505706. doi:10.1088/1361-6528/acf93b
Journal: Nanotechnology; Vol. 34, Issue 50 
Abstract: 
Hydrogels have gained significant attention in scientific communities for their versatile applications, but several challenges need to be addressed to exploit their potential fully. Conventional hydrogels suffer from poor mechanical strength, limiting their use in many applications. Moreover, the crosslinking agents used to produce them are often toxic, carcinogenic, and not bio-friendly. This study presents a novel approach to overcome these limitations by using bio-friendly modified nanocrystalline cellulose as a crosslinker to prepare highly stretchable and tough thermosensitive hydrogels. The surface of nanocrystalline cellulose was modified with 3-methacryloxypropyltrimethoxysilane (MPTS) to obtain modified nanocrystalline cellulose (M-NCC) crosslinker and used during free radical polymerization of thermosensitiveN-isopropyl acrylamide (NIPA) monomer to synthesize NIPA/M-NCC hydrogel. The resulting nanocomposite hydrogels exhibit superior mechanical, thermal, and temperature-responsive swelling properties compared to conventional hydrogels prepared with traditional bi-functionalN,N'-methylene bis (acrylamide) (MBA) as a crosslinker. The elongation at break, tensile strength, and toughness of the NIPA/M-NCC hydrogels significantly increase and Young's modulus decrease than conventional hydrogel. The designed M-NCC crosslinker could be utilized to improve the mechanical strength of any polymeric elastomer or hydrogel systems produced through chain polymerization.
URI: https://hdl.handle.net/10321/5121
ISSN: 0957-4484
1361-6528 (Online)
DOI: 10.1088/1361-6528/acf93b
Appears in Collections:Research Publications (Applied Sciences)

Files in This Item:
File Description SizeFormat
Islam_Krishna_Imran_2023.pdfArticle2.13 MBAdobe PDFView/Open
Nanotechnology Copyright Clearance.docxCopyright clearance138.3 kBMicrosoft Word XMLView/Open
Show full item record

Page view(s)

130
checked on Dec 13, 2024

Download(s)

72
checked on Dec 13, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.