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Various kinds of Bose-Einstein condensates are considered, which evolve without any geometric
constraints or external trap potentials including gravitational. For studies of their collective oscil-
lations and stability, including the metastability and macroscopic tunneling phenomena, both the
variational approach and the Vakhitov-Kolokolov criterion are employed; calculations are done for
condensates of an arbitrary spatial dimension. It is determined that that the trapless condensate
described by the logarithmic wave equation is essentially stable, regardless of its dimensionality,
while the trapless condensates described by wave equations of a polynomial type with respect to the
wavefunction, such as the Gross-Pitaevskii (cubic), cubic-quintic, and so on, are at best metastable.
This means that trapless “polynomial” condensates are unstable against spontaneous delocalization
caused by fluctuations of their width, density and energy, leading to a finite lifetime.

PACS numbers: 03.75.Kk, 67.10.Ba, 67.85.De

1. INTRODUCTION

Studies of collective excitations inside Bose-Einstein
condensates (BEC) and their stability are an impor-
tant direction of research, which has direct connections
to both experimental studies and technological applica-
tions. Historically, most of the research done was primar-
ily focused on cold gases in which two-body interactions
are predominant; therefore they can be described by the
Gross-Pitaevskii equation (GPE) which is cubic with re-
spect to a condensate’s wavefunction and thus also known
as the cubic Schrödinger equation. Naturally, confining
those gases requires some kind of external (trapping) po-
tential, such as a harmonic one. Stability studies of those
systems are based on a formalism developed by Zakharov
and collaborators [1–4], extended for cases where a trap
is included [5–11]. It was demonstrated that trap poten-
tials facilitate stability of the GPE BEC by suppressing
the collapse process, which is still inevitable if the num-
ber of atoms exceeds a certain critical limit. Moreover,
when studying the collapse processes in diluted conden-
sates, one should bear in mind that, once the density of a
condensate rises above a certain threshold, the two-body
approximation can become too crude, as will be discussed
below in more detail.

Notwithstanding the phenomenological success of the
Gross-Pitaevskii approximation for some systems, it soon
became apparent that there are condensates for which
three-body interactions play an important role (e.g.,
when density rises or when the two-body interaction gets
switched off by tuning external fields) [12–18]. In par-
ticular, adding a three-body interaction can consider-
ably increase the BEC’s stability region [16]. Another
example of where multi-body (three and more) interac-
tions become very important for forming bound states of
bosons at low temperatures is the Efimov state, which
has been experimentally observed [19–23]. It seems also
that multi-body interactions are inevitable for explain-
ing recent experimental data [24], which are currently re-
ceiving a disputable interpretation. Moreover, the mere

notion of a general Bose-Einstein condensate itself pre-
sumes, strictly speaking, that correlations are simulta-
neously established between all the particles which form
a condensate, not just between a pair of them. It is
thus natural to go beyond the two-, three-, or even few-
body, interactions’ approximations, and consider wave
equations’ terms containing all powers of a condensate
wavefunction. In turn, this leads to an appearance of
transcendental functions in wave equations.

In the works [25–28], a new quantum Bose liquid was
proposed, which is described by a nonlinear quantum
wave equation of a logarithmic kind, previously intro-
duced on different grounds by Rosen and Bialynicki-
Birula and Mycielski [29–33]. Currently, applications
of this equation, both in its Euclidean and Lorentz-
symmetric versions, can be found in nonlinear scalar
field theory [29, 30], extensions of quantum mechanics
[31], physics of particles in presence of nontrivial vacuum
[26, 34–38], microscopical theory of superfluidity of he-
lium II [28], optics and transport or diffusion phenomena
[39–41], nuclear physics [42, 43], and theory of dissipa-
tive systems and quantum information [44–49]. More-
over, applications of logarithmic wave equations can be
also found in classical and quantum gravity [25, 26, 50],
where one can utilize the fluid/gravity correspondence
between nonrelativistic inviscid fluids (such as superflu-
ids) and pseudo-Riemannian manifolds [51–55].

While some of the above results are still a subject for
future experimental verification, one practical applica-
tion of a logarithmic fluid model is immediately apparent.
In Ref. [27], the fluid was shown to be a proper super-
fluid, i.e., a quantum Bose liquid which simultaneously
possesses the following two properties: its spectrum of
excitations has a Landau’s “roton” form, which guaran-
tees that dissipation is suppressed at microscopic level,
and its macroscopic (averaged) equation of state has, in
the leading approximation at least, an ideal-fluid form
(a ratio of density to pressure is constant), which guar-
antees the perfectly elastic collisions. More specifically,
in Ref. [28], the fluid was used to construct a fully an-
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alytical theory of a superfluid component of helium II,
which has a very good agreement with an experiment:
with only one essential (non-scale) parameter to fit, this
model could theoretically explain the main three prop-
erties of helium II – “roton” spectrum, structure factor,
and speed of sound – with high accuracy.
Altogether, in Refs. [27, 28, 56], it has been shown that

the logarithmic condensate has features that are drasti-
cally different from those of the Gross-Pitaevskii conden-
sate. In this paper, we continue this line of research: we
study the stability properties of the logarithmic BEC in
free space related to its collective excitations (in Ref. [56]
these were considered for the BEC in a harmonic trap).
Our paper is organized as follows. In Sec. 2, we dis-

cuss different notions of stability and set definitions for
subsequent sections. In Sec. 3, we present the basics of
a theory of logarithmic BEC in absence of any trap po-
tentials and geometrical constraints. In Sec. 4, an anal-
ysis of collective oscillations and stability is performed,
using both the variational approach and the Vakhitov-
Kolokolov (VK) criterion. In Sec. 5, a comparison be-
tween collective oscillations and stability for the logarith-
mic BEC and “polynomial” condensates with few-body
interactions (including the two- and three-body ones) is
done. Concluding remarks and discussions are provided
in Sec. 6.

2. STABILITY ANALYSIS OF QUANTUM
LIQUIDS AND GASES

As a starting point, we emphasize that our stability
studies should not be confused with a conventional sta-
bility analysis of optical solitons and other objects whose
evolution is also governed by nonlinear wave equations
[57–62]. The underlying physics of quantum molecular
gases and liquids is very different from that of optical
fibers and other electromagnetic (EM) materials. For in-
stance, for optical solitons, the wave equation solution is
originally a deterministic function related to a strength
of EM wave field and governed by Maxwell equations
(although some dissipative effects for EM waves in me-
dia can be described using quantum statistics [63, 64]),
whereas for quantum condensates it is a priori a proper
wavefunction which has a quantum-mechanical proba-
bilistic interpretation. The latter leads to the occurrence
of many kinds of quantum effects in condensates, includ-
ing the macroscopic tunneling phenomenon, which will
be further discussed below. These effects obviously affect
the stability properties of quantum liquids and gases, a
factor which often causes stability methods and results
to differ from those for other classes of physical objects.
In a theory of quantum liquids and gases including

Bose-Einstein condensates, there are a few kinds of sta-
bility, each with its own definitions and criteria. The
reason for this variety lies in the complex nature of Bose-
Einstein condensation: condensates are not only nonlin-
ear phenomena described by solutions of nonlinear wave

equations (e.g. the Gross-Pitaevskii one); but also essen-
tially quantum systems whose states can be eigenstates
of wave equations, superpositions of eigenstates, or even
statistical ensembles of eigenstates (i.e., mixed states).
Their quantum nature implies that condensates not only
follow continuous evolution of eigenstates governed by
wave equations but can also experience spontaneous tran-
sitions between these eigenstates, due to the inevitable
presence of quantum fluctuations.
The most common types of stability analysis are the

linear and orbital stability of a given solution, such as
the Vakhitov-Kolokolov criterion [65], which formalism
comes from a classical theory of stability of nonlinear
systems. According to this approach, one takes a fixed
solution of a wave equation and studies its linearized re-
sponse to small perturbations. From the viewpoint of
a quantum theory, this solution describes a state with
a definite value of energy which is kept fixed during a
perturbation. Therefore, the VK-type stability analy-
sis is essentially classic (although some modifications are
probably possible): for instance, it does not take into ac-
count effects from possible quantum transitions between
levels. In the quantum realm, these transitions can hap-
pen, e.g., if a state corresponding to a given solution is
not a ground one: for instance, a solution which is stable
from a classical point of view, may be unstable against
spontaneous transitions if it corresponds to an excited
state.
The other stability approach, variational, which was

initially proposed for studies of optical solitons [59, 60],
does not initiate from the fixed solution of a system.
Instead, similar to a Ritz optimization procedure, one
starts with trial functions and searches for a configura-
tion which minimizes a field-theoretical action of the con-
densate (related to an average energy), then one studies
linear oscillations near such minimum. If such oscilla-
tions do not blow up with time, then a system stays near
the above-mentioned minimum, therefore it is stable. By
its construction, this method does not ab initio fix an
energy level, therefore it can detect instability against
quantum transitions between different states which can
occur spontaneously.
In what follows, we will be using these two notions of

stability, where possible: by stability and metastability
analysis of condensates we will understand the variational
method taking into account quantum effects, while the
linear and orbital stability approach of a given state will
be implemented using the Vakhitov-Kolokolov criterion.

3. TRAPLESS LOGARITHMIC BEC: BASICS

Let us consider a system of quantum Bose particles,
with a fixed mean number N , which evolves in a D-
dimensional Euclidean space, in the absence of any ex-
ternal potentials including gravity. We assume that
the kinetic energy of the particles is sufficiently low
for the Bose-Einstein condensate to form. If interpar-
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ticle interactions are sufficiently large (which can hap-
pen, e.g., at large densities), the dynamics of such BEC
can be described by the logarithmic Schrödinger equation
(LogSE):

i~∂tΨ =

[

− ~
2

2m
∆D − b ln(aD|Ψ|2)

]

Ψ. (1)

where Ψ = Ψ(~r, t) is the condensate wavefunction nor-
malized to the particle number N ,

〈Ψ|Ψ〉 ≡
∫

|Ψ|2dD~r = N, (2)

and ∆D = ~∇D · ~∇D is the D-dimensional Laplacian. The
parameter b measures the strength of a nonlinear interac-
tion, a is a parameter of dimensionality length required
to make the argument of the logarithm dimensionless,
and m is a particle’s mass.
Equation (1) can also be derived, as an Euler-Lagrange

equation, from a field-theoretical action, where the La-
grangian density is given by

L =
i~

2
(Ψ∂tΨ

∗ −Ψ∗∂tΨ) +
~
2

2m
|~∇Ψ|2 + V (|Ψ|2), (3)

where the field-theoretical potential density (not to be
confused with the external trap potential) is defined as

V (n) = −b n
[

ln (naD)− 1
]

, (4)

for n = |Ψ|2. For positive values of b, this potential opens
down and has local non-zero maxima at next = 1/aD, see
Fig. 1. In spite of the fact that it is not bounded from
below as a function of

√
n = |Ψ|, no particle density di-

vergences arise since the condensate wavefunction cannot
take arbitrarily large values, due to the constraint (2), as
discussed in Ref. [28].
From Fig. 1, one can easily see that the field-

theoretical potential of a logarithmic BEC changes its
sign when its particle density crosses a certain value,
n0 = e/aD = enext. This switching between attrac-
tion and repulsion depending on a size can be used for
explaining recent experimental data [24], which indicate
the presence of some localization mechanism even for low-
density condensates. Indeed, below we will demonstrate
that this feature manifests itself in the condensate’s sta-
bility against both collapse and unbounded expansion.
In principle, one could perform a Taylor series ex-

pansion of the non-linear part ln(aD|Ψ|2) around some
point, and obtain in the lowest order the Gross-Pitaevskii
equation, in the next-to-lowest order – the cubic-quintic
Schrödinger equation (CQSE), and in higher orders – the
higher-degree polynomial terms. All these terms describe
interactions of a finite amount of particles at any given
instant of time. Therefore, one might assume that the
properties of the logarithmic model would be similar to
those models, at least qualitatively, and the polynomial
models’ properties would be able to reproduce all fea-
tures of the logarithmic model by considering sufficiently

0.0 0.5 1.0 1.5

-1.0

-0.5

0.0

0.5

1.0

n

FIG. 1: Field-theoretical potential density (4) of the loga-

rithmic BEC (in units b/aD) versus |Ψ| (in units a−D/2). Due
to the normalization constraint (2), this plot must be viewed
as effectively having been placed inside a well with an infinite
wall starting at n > ncut, ncut being some finite number.

many terms in the series expansion. However, this turns
out to be incorrect: by restricting to any finite number
of terms in series, one drastically alters the main prop-
erties of a corresponding condensate model, as we will
see in the next sections. Therefore, a nonperturbative
treatment is essential when dealing with the “transcen-
dental” condensates in general and the logarithmic ones
in particular.
Furthermore, the system (1) has two natural scales of

length, two of time, and two of mass:

L =

{

|a|, ~
√

m|b|

}

, T =

{

~

|b| ,
ma2

~

}

, M =

{

m,
~
2

a2|b|

}

,

(5)
which can be used to obtain dimensionless quantities.
Assuming a, b > 0 and

~r ′ = ~r/ℓ, t′ = t/τ, ψ = aD/2Ψ, (6)

where

ℓ = ~/
√
mb, τ = ~/b, (7)

we can write Eq. (1) in a dimensionless form. From Eqs.
(1) and (2) we obtain, respectively:

i∂t′ψ +
1

2
∆′

Dψ + ln(|ψ|2)ψ = 0, (8)

and

〈ψ|ψ〉′ ≡
∫

|ψ|2dD~r ′ = N(a/ℓ)D ≡ N̄ , (9)

where N̄ will be called the reduced number of particles.
Furthermore, the action that generates Eq. (8) can be

written in a dimensionless form as

S[ψ, ψ∗] =

∫

L′dt′dD~r′ =

∫

L′dt′, (10)
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where the dimensionless Lagrangian density is given by

L′ =
i

2
(ψ∂t′ψ

∗−ψ∗∂t′ψ)+
1

2
|~∇′

Dψ|2−|ψ|2(ln(|ψ|2)−1) ,

(11)
and the dimensionless chemical potential µ′ = µ/b is
given as an eigenvalue of a stationary version of Eq. (8),

∆′
Dφ+ (µ′ + 4 ln |φ|)φ = 0, (12)

where ψ(~r ′, t′) = exp[−i(µ′t′/2)]φ(~r ′).

4. TRAPLESS LOGARITHMIC BEC:
STABILITY

Let us consider a spherically symmetric configuration
of freely moving logarithmic BEC in a D-dimensional
Euclidean space. For example, in a case D = 3 this
symmetry is the most natural one that can arise in ab-
sence of any trapping potentials including gravity. Note
that, although a logarithmic BEC in a harmonic trap
was considered in Ref. [56], those results cannot be di-
rectly applied to a trapless case – because in a zero trap
frequency limit, the parametrization used becomes sin-
gular. Thus, for a trapless BEC, we have to start our
calculations anew.
In this section, we will be omitting primes, assuming

instead that length is measured in units ℓ, time - in units
τ , energy - in units b, and so on. For the stability anal-
ysis of the logarithmic condensate we will employ the
following two approaches.

4.1. Variational approach

In order to analyze the dynamics of logarithmic con-
densate, it is convenient to follow a variational approach
[5, 6, 8, 66–68]. We will seek the solutions of Eq. (8)
using the trial functions

ψ(r, t) = A exp[− r2

2ξ2
+ iβr2 + iα] , (13)

where A = A(t) is the amplitude, ξ = ξ(t) is the width,
α = α(t) is the linear phase of the condensate, and
β = β(t) is the chirp parameter [66]; these functions be-
come de facto the collective degrees of freedom of the
condensate. The integral over the whole space can be
transformed into

∫

dD~r =















2πD/2

Γ(D/2)

∞
∫

0

drrD−1 if D > 1,

∞
∫

−∞

dr if D = 1,
(14)

where Γ(x) is the Euler Gamma function. Therefore, the
(reduced) number of particles (9) can be computed as

N̄ = πD/2A2ξD = const, (15)

whereas the averaged Lagrangian can be derived, using
Eqs. (10), (11), (13) and (14), as

L = πD/2A2ξD
[

1+
D

2
+
D

4ξ2
+
D

2
ξ2
(

β̇ + 2β2
)

+α̇−lnA2
]

,

(16)
where dot represents a time derivative. By analyzing the
corresponding Euler-Lagrange equations, ∂L

∂q − d
dt

∂L
∂q̇ = 0,

where q = {A(t), ξ(t), α(t), β(t)}, we obtain, after some
rearrangement,

α̇+
D + 2

2

[

1 + ξ2
(

β̇ + 2β2
)]

+
D − 2

4ξ2
= lnA2,(17)

α̇+
D

2

[

1 + ξ2
(

β̇ + 2β2
)

+
1

2ξ2

]

= lnA2, (18)

ξ̇ − 2ξβ = 0, (19)

together with Eq. (15). Furthermore, these equations
can be rewritten in the form

A2 =
N̄

πD/2ξD
, (20)

α = α0 + ln

(

N̄

πD/2

)

t− D

2

∫
(

ln ξ2 +
1

ξ2

)

dt, (21)

β =
ξ̇

2ξ
, (22)

and

ξ̈ +
2

ξ
− 1

ξ3
= 0, (23)

where α0 is an integration constant. The equations re-
veal that the evolution equation for width ξ is a core
equation of the system’s dynamics, and also that the
amplitude and linear phase of the condensate are gen-
erally D-dependent, whereas the width and chirp do not
depend on the dimensionality of the condensate.
Furthermore, for the wavefunction (13), using Eqs.

(20)-(23), one can derive that

〈

r2
〉

=
1

2
Dξ2, (24)

〈

p2
〉

=
1

2
~
2D

(

ξ̇2 +
1

ξ2

)

, (25)

〈E〉 =
1

2
~D

[

1

2
ξ̇2 +

1

2ξ2
+ ln

(

πξ2

N̄2/D

)

+ 1

]

=
1

2~

〈

p2
〉

+
1

2
~D

[

ln

(

2π
〈

r2
〉

DN̄1+2/D

)

+ 1

]

, (26)

where the averages are computed using the formula

〈O〉 =















2πD/2

Γ(D/2) N̄

∞
∫

0

ψ∗(Ôψ) rD−1dr if D > 1,

1
N̄

∞
∫

−∞

ψ∗(Ôψ)dr if D = 1,
(27)
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where Ô being a given operator. One can see that ξ is
proportional to the mean-square radius of condensate,
therefore Eq. (23) can be viewed as an equation of the
motion of a unit-mass fictitious particle moving in a pos-
itive ξ direction

ξ̈ = − 1

D

d

dξ
U(ξ), (28)

where

U(ξ) = D

(

1

2ξ2
+ ln ξ2

)

(29)

is an effective potential, and

E =
1

2
ξ̇2 + U(ξ) (30)

is a fictitious particle’s energy. In terms of this mechan-
ical analogy, the interpretation of Eq. (23) is as follows.
The term proportional to ξ−3 is related to the dispersive
effect caused by a spatial gradient term in Eq. (3), while
the term proportional to ξ−1 comes from the nonlinear
logarithmic term. The system’s dynamics is thus deter-
mined by competition between these terms: at small ξ’s
the gradient term dominates, and at large ξ’s the loga-
rithmic one does. From the asymptotics of Eq. (29), one
can deduce that the logarithmic term should prevent the
condensate from unbounded spreading (ξ → ∞), whereas
the gradient and logarithmic terms together should pre-
vent the condensate from collapse (ξ → 0).

0 1 2 3 4

0

2

4

6

8

ξ

FIG. 2: Effective potential (29) versus ξ, evaluated at D = 3.

The potential (29) has a simple form, as shown in Fig.
2. It has a single global minimum and diverges at both
small and large ξ’s, which means that the only allowed
motion of the system is an oscillation around this min-
imum. The fixed-point width of the condensate can be
calculated from the condition

dU(ξ)

dξ

∣

∣

∣

∣

ξ=ξ0

= 0, (31)

which yields

ξ0 = 1/
√
2. (32)

Expanding Eq. (23) around this fixed pint, we obtain the
dynamical equation of the width

ξ = ξ0 +A0 sin(ωrt+ φ0) . (33)

where ωr is a frequency of collective oscillations:

ωr =

√

1

D

d2U(ξ)

d2ξ

∣

∣

∣

∣

ξ=ξ0

=
1

ξ20

√

3− 2ξ20 , (34)

and A0 and φ0 are real-valued integration constants. The
frequency ωr can be used to analyze the stability of the
condensate: the solution (32) is stable only if frequencies
of collective modes are real-valued. In our case, using
Eq. (32), one obtains

ωr = 2
√
2, (35)

which indicates that our solution is indeed stable, with-
out any critical points.

4.2. Vakhitov-Kolokolov stability

Another criterion for stability is the Vakhitov-
Kolokolov one [65], which in our case reads [66]:

∂N

∂µ
< 0, (36)

assuming our notation conventions for this section.
In order to determine the chemical potential, let us

find the ground state of our system (an importance of
studying the ground state’s stability is discussed in Sec.
2 above). One can derive that an exact ground-state
solution of Eq. (12) is given by a Gaussian:

φ0(r) = ±
√

N̄ (2/π)
D/4

exp (−r2), (37)

while Eq. (12) reduces to an algebraic equation for the
eigenvalue µ. Solving it, we obtain

µ0 = ln
(

N̄2
c /N̄

2
)

= ln
(

N2
c /N

2
)

, (38)

where we denoted the critical value

N̄c = Nc(a/ℓ)
D = (πe2/2)D/2, (39)

which corresponds to the number of particles at which the
chemical potential changes its sign. Using these formulae,
we obtain

∂N

∂µ0
= −1

2
N < 0, (40)

which means that the trapless logarithmic condensate is
also VK-stable. Moreover, its formation is energetically
favorable for N > Nc.
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To summarize, both approaches have shown us that
the trapless D-dimensional logarithmic BEC is stable,
even in absence of any trapping potentials, which makes
it unique among all other known condensates which re-
quire external potentials for stability (cf. Sec. 5). These
results confirm an earlier idea [28] that the logarithmic
condensate behaves more like a liquid than a gas - for
instance, in the absence of any forces including grav-
ity, it should form a Gaussian droplet which stability
was demonstrated in Ref. [27] and recently confirmed by
means of an orbital stability approach [69]. The stability
of such a droplet is ensured not by surface tension but
by quantum nonlinear effects in its bulk.

5. TRAPLESS BEC WITH FEW-BODY
INTERACTIONS

For the sake of comparison with a logarithmic case, let
us study trapless BEC with few-body interactions that
evolves in the D-dimensional Euclidean space which is
free of any external potentials including gravity. We be-
gin by considering an isotropic BEC with both two- and
three-body interactions. The formalism of Refs. [66–
68], where the D-dimensional condensate with two- and
three-body interactions was considered in a harmonic
trap, will be used in this section. However, those results
alone cannot be directly applied to a completely trap-
less case – because in a zero trap frequency limit, some
parameters used become singular. Thus, for a trapless
BEC, one should start derivations anew, similar to what
was done for a 3D case [70–72].
The wave equation for the condensate with two- and

three-body interactions at zero temperature takes a form
of the cubic-quintic Schrödinger equation:

i~
∂

∂t
Ψ =

[

− ~
2

2m
∆D +

λ2
2
|Ψ|2 + λ3

2
|Ψ|4

]

Ψ, (41)

where the condensate wavefunction is normalized as in
Eq. (2), λ2 and λ3 are real coupling constants (we do
not consider dissipative effects here). The corresponding
Lagrangian density is given by a formula analogous to
Eq. (3) where the field-theoretical potential density is
defined as

V (n) =
1

2

3
∑

k=2

λk
k
nk =

λ2
4
n2 +

λ3
3!
n3, (42)

for n = |Ψ|2.
Furthermore, because (effectively) one- and two-

dimensional condensates are impossible to contain with-
out some kind of trapping potential or geometric con-
straint (which is de facto a trapping potential too), we
can restrict ourselves to the case

D > 2, (43)

while the lower-dimensional cases can be considered by
analogy. Then the system (41) has three natural scales

of length, three of time, and two of mass:

L =

{

(

m|λ2|
~2

)
1

D−2

,

(

m|λ3|
~2

)
1

2(D−1)

,

( |λ3|
|λ2|

)
1
D

}

,

T =

{

(

mDλ22
~D+2

)

1
D−2

,

(

mD|λ3|
~D+1

)

1
D−1

, ~
|λ3|
λ22

}

, (44)

M =







m, ~2

(

|λ3|D−2

λ
2(D−1)
2

)
1
D







,

which can be used to obtain dimensionless quantities.
Assuming λ2 6= 0 and introducing the notations

ℓ2 =

(

m|λ2|
~2

)
1

D−2

, τ2 =

(

mDλ22
~D+2

)

1
D−2

, (45)

ℓ3 =

( |λ3|
|λ2|

)
1
D

, τ3 = ~
|λ3|
λ22

, (46)

and

~r ′ = ~r/ℓ2, t
′ = t/τ2, ψ = ℓ

D/2
3 Ψ, (47)

we can write Eq. (41) in a dimensionless form:

i∂t′ψ = −1

2
∆′

Dψ +
λ

2

(

s2|ψ|2 + s3|ψ|4
)

ψ, (48)

where λ = τ2/τ3, and sk = sgn(λk) = λk/|λk|. Besides,
the normalization condition reads

〈ψ|ψ〉′ ≡
∫

|ψ|2dD~r ′ = N(ℓ3/ℓ2)
D ≡ Ñ , (49)

where Ñ is the reduced number of particles of the CQSE
condensate. Since λ is non-negative by construction,
signs sk define the type of corresponding k-body interac-
tion: repulsive (plus) or attractive (minus).
In this section, we do not consider the linear or orbital

criteria of stability: even though nontrivial solutions of
Eq. (48) do exist, they correspond to excited states of
the CQSE system, therefore they will be unstable against
spontaneous quantum transitions, as discussed in Sec.
2. Those transitions will eventually bring the system to
its ground state – which is a trivial one, ψ0 = 0. In
what follows, we study only the variational stability of
the system, for which one does not need to know any
solution of Eq. (48).
From now on, we omit primes assuming that in this

section, a length is measured in units ℓ2, time - in units
τ2, energy - in units ~/τ2, and so on. Using the formalism
of Sec. 4.1, including the notations for the trial function
(13), we can write the averaged Lagrangian in the form

L = πD/2A2ξD

[

D

4ξ2
+
D

2
ξ2
(

β̇ + 2β2
)

+ α̇

+
λ

2

(

s2A
2

21+D/2
+

s3A
4

31+D/2

)

]

, (50)
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where the dot denotes a time derivative. By analyzing
the corresponding Euler-Lagrange equations, we obtain

β̇ =
λÑ

4ξ2

(

s2
(2π)D/2ξD

+
4s3Ñ

πD31+D/2ξ2D

)

+
1

2ξ4
− 2β2, (51)

ξ̇ = 2ξβ, (52)

and

Ñ = πD/2A2ξD = const, (53)

assuming the definition (49). From these equations one
can easily derive the width equation and fictitious parti-
cle’s effective potential:

ξ̈ =
1

ξ3
+

s2P

ξD+1
+

s3Q

ξ2D+1
, (54)

U(ξ) =
D

2ξ2
+
s2P

ξD
+

s3Q

2ξ2D
, (55)

where we have introduced the dimensionless magnitudes
of two- and three-body interactions:

P =
λÑ

2(2π)D/2
, Q =

2λÑ2

31+D/2πD
=

21+D/2ÑP

3(3π)D/2
=

21+DP 2

31+D/2λ
,

and the fictitious particle’s energy E is given by a general
formula (30).
Since we consider a case D > 2, the potential U(ξ) has

the following asymptotics:

ξ → 0 : U(ξ) →
{

s3Q/(2ξ
2D) if Q 6= 0,

s2P/ξ
D if Q = 0,

(56)

ξ → +∞ : U(ξ) → 0, (57)

which indicates that it always diverges in the ξ-origin but
vanishes at spatial infinity, cf. Fig. 3. This means that,
depending on values P , Q and sk, either U(ξ) has no
fixed points at 0 < ξ < ∞, or those points are extrema,
hence a finite value of energy E always exists at which
the fictitious particle eventually escapes to ξ-infinity or
hits the origin ξ = 0.
In physical terms, this means that the trapless CQSE

condensate can be, in the best case scenario, metastable:
even if it is stable against the collapse (ξ → 0) it is un-
stable against delocalization (“spreading”). The latter
can be dynamic if the effective potential (55) has no lo-
cal minima at 0 < ξ < ∞, cf. Figs. 3a, 3c or 3d, or
spontaneous if the potential has at least one minimum at
0 < ξ <∞, cf. the solid or dashed curve in Fig. 3b.
Within the frameworks of the variational approach,

spontaneous delocalization occurs due to fluctuations of
a condensate’s width ξ(t), which are inevitable in the
quantum realm. It can be effectively described as macro-
scopic tunneling of a fictitious particle towards ξ infin-
ity through a finite potential barrier, ∆U = U(ξmax) −

0.0 0.5 1.0 1.5 2.0 2�� 3.0
-5

-4

-3

-2

-1

0

ξ

(a) s2 = −1, s3 = −1

0.0 0.5 1.0 1.5 2.0 ��� 3.0

0

1

2

3

4

ξ

(b) s2 = −1, s3 = 1

0.0 0.5 1.0 1.5 2.0 ��� 3.0

0

5

10

15

20

ξ

(c) s2 = 1, s3 = −1

0.0 0.5 1.0 1.5 2.0 �	
 3.0

0

1

2

3

4

5

ξ

(d) s2 = 1, s3 = 1

FIG. 3: Effective potential (55) versus ξ, evaluated at D = 3,
P = 1, and different values of Q: 0.05 (solid curves), 0.07
(dashed curves), 0.1 (dash-dotted curves), 0.5 (dotted curves)
and 1 (dash-double-dotted curves). The upper (lower) row
of panels corresponds to an attractive (repulsive) two-body
interaction, while the left (right) column corresponds to an
attractive (repulsive) three-body interaction.

U(ξmin), where 0 < {ξmax, ξmin} < ∞ are the local ex-
trema’s points for the potential U(ξ) [6]. Note that this
process should not be confused with the quantum tun-
neling of trapped Bose-Einstein condensates through a
trap potential located in the configuration space ~r: here
we work in terms of a collective degree of freedom ξ(t)
and a number of particles N is conserved. It should also
be noted that energy E of a fictitious particle in ξ space
is not the same as energy of a condensate in the config-
uration space.
The transmission coefficient at a given energy E can

be easily computed in a semiclassical approximation as

T (E) = exp (−2K23), (58)

where

Kjk ≡
ξk
∫

ξj

√

2(U(ξ)− E) dξ, (59)

and ξ2 and ξ3 are classical turning points in a region un-
der the barrier, ξ2 < ξmax < ξ3. The lifetime τξ of the
condensate which undergoes spontaneous delocalization
can be easily computed in a semiclassical approximation.
Assuming that the tunneling probability through the bar-
rier ∆U is small and therefore

K23 ≫ 1, (60)
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we obtain

τξ ≈ 2

T (E)

(

∂J12
∂E

)

E=En

, (61)

where the value En is a real-valued solution of the eigen-
value equation

J12 − π(n+ 1/2) = 0, (62)

n being an integer, and

Jjk ≡
ξk
∫

ξj

√

2(E − U(ξ)) dξ, (63)

and ξ1 and ξ2 are classical turning points in the adjacent
well on the left-hand side from the barrier, ξ1 < ξmin <
ξ2 < ξmax < ξ3. Similarly, one can derive the character-
istics of macroscopic tunneling towards the ξ origin, if it
is allowed by the effective potential’s form.
As a result, the trapless CQSE condensate always has

a finite lifetime (except in those cases when a potential
U(ξ) has a global minimum at a finite positive ξ, with at
least one negative energy E level, cf. a solid curve in Fig.
3b, and energy fluctuations are somehow suppressed): it
tends to either occupy all the available volume (hence
get depleted) or collapse to a state with a delta-singular
density profile. In other words, it is unstable against ei-
ther unrestricted expansion (hence dilution) or collapse,
depending on values P , Q and attraction/repulsion in-
dicators sk. Such a metastability can be easily seen in
reality: models like (41) are known to be applicable for
gaseous condensates, therefore, some kind of trapping po-
tential or geometrical constraint would be necessary for
their “eternal” stability, otherwise the system quickly de-
pletes with time. As for the collapse process, in practice
it stops at a length scale for which condensed atoms can
no longer be regarded as point-like Bose particles, or the
few-body approximation becomes no longer applicable.
Now let us consider a trapless BEC with arbitrary

few-body interactions. Most of above-mentioned fea-
tures remain valid – since in a minimally-coupled U(1)-
symmetric case, such a condensate would be described by
some kind of polynomially nonlinear Schrödinger equa-
tion,

i~
∂

∂t
Ψ =

[

− ~
2

2m
∆D +

1

2

N
∑

k=2

λk|Ψ|2(k−1)

]

Ψ, (64)

the few-body analogue of Eqs. (54) and (55) would be,
respectively:

ξ̈ =
1

ξ3
+

1

ξ

N
∑

k=2

Ik
ξ(k−1)D

, (65)

U(ξ) =
D

2ξ2
+

N
∑

k=2

Ik
(k − 1)ξ(k−1)D

, (66)

where the coefficient Ik = Ik(λk) is a function of a k-
body interaction strength parameter, 2 6 N < ∞ is a
maximum amount of particles that can interact simulta-
neously, and the fictitious particle’s energy E is given by
a general formula (30). The asymptotic properties of Eq.
(66),

ξ → 0 : U(ξ) → IN
(N − 1)ξ(N−1)D

, (67)

ξ → +∞ : U(ξ) → 0, (68)

are qualitatively similar to Eqs. (56) and (57). As shown
above, this implies, at least, the suppression of stabil-
ity against unbounded expansion caused by spontaneous
delocalization, due to the presence of the width’s fluc-
tuations. This means that the trapless few-body con-
densates described by “polynomial” models are at best
metastable, with a finite lifetime determined by Eq. (61),
except in some cases when the effective potential (66) has
a global minimum at 0 < ξ <∞, with at least one nega-
tive level of energy E , which can stabilize the system (in
absence of energy fluctuations).

6. CONCLUSION

In the present work, the stability of a trapless conden-
sate described by the logarithmic Schrödinger equation
was studied and compared with a case of a trapless BEC
with few-body interactions, described by wave equations
with polynomial nonlinearity, such as GPE or CQSE.
By arguing that one can always expand transcenden-

tal functions, such as logarithm, into Taylor series, one
might expect that the properties of the logarithmic model
would be similar to the few-body models, at least quali-
tatively, and that the few-body models’ properties could
reproduce all the features of the logarithmic model by
considering sufficiently many terms in the series expan-
sion. However, we showed that these assumptions are
incorrect, in general: by restricting oneself to any finite
number of terms in series, one drastically changes the
main properties of a corresponding condensate model.
In other words, a nonperturbative treatment is essential
when dealing with the “transcendental” condensates in
general and the logarithmic ones in particular.
The Gaussian variational approach and Vakhitov-

Kolokolov criterion were used to determine the dynamics
and stability of the logarithmic condensate, in D dimen-
sions. Using natural symmetry assumptions, we derived
the collective oscillations frequency and the mean-square
radius of the condensate. Further, it was demonstrated
that the trapless logarithmic condensate is always stable
– essentially, because logarithmic nonlinearity prevents it
from both the collapse and unbounded expansion (hence
dilution).
One notices that, according to Eqs. (28)-(32), trapless

logarithmic Bose-Einstein condensate is attractive if its
width is above a certain length scale, approximately ξ0ℓ,
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and repulsive if it is below. Therefore, it can be used
for modeling bosenova-type phenomena when the Bose-
Einstein condensate shrinks to a size smaller than the
minimum resolution limit of a detector, and then rapidly
expands.
Finally, stability studies of trapless condensates with

few-body interactions, described by polynomially nonlin-
ear wave equations, demonstrated that such condensates
are unstable against unbounded expansion or collapse,
unless one applies an external potential or geometric con-
straint to them. The crucial indicator here is the shape of
their effective potential U(ξ) which governs the dynam-
ics of collective oscillations in terms of the width ξ(t), a
collective degree of freedom of a condensate. It is gener-
ally shown that: (i) if this potential has neither confining
shape nor local minima then the condensate is dynami-
cally unstable against delocalization, (ii) if this potential
does not have a confining shape (e.g., it vanishes at infin-
ity) but has at least one local minima then the conden-
sate is metastable, i.e., unstable against the spontaneous
delocalization, and thus has a finite lifetime (except in
some special cases discussed below).
By comparing these features to the logarithmic case

(for which the effective potential does have an absolute
minimum and confining shape, cf. Fig. 2), one can
deduce that “transcendental” condensates, such as the
logarithmic one, can be used for describing stable quan-
tum liquids (which was indeed shown in the work [28]),
while “polynomial” ones are a priori more suitable for
describing low-density quantum matter, such as diluted

cold gases (although, even there their applicability might
have limits, as indicated by experiments [24]). Besides, a
special class of trapless “polynomial” condensates exists,
for which the effective potential U(ξ) vanishes at infinity,
has a global minimum at a finite positive ξ, and allows
at least one negative level of effective energy E . In this
case, the condensate would be stable in absence of energy
fluctuations (regardless of the presence of width fluctua-
tions), but even a small increase of energy can excite the
system into a metastable state with a nonzero probability
of delocalization. Such models can be used for describing
those condensates, which stay localized, similarly to liq-
uids, in absence of energy fluctuations, but expand like
gases otherwise.
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