Please use this identifier to cite or link to this item: https://hdl.handle.net/10321/5651
Title: Development, validation and implementation of a sustainable, nutrition-sensitive agriculture toolkit to address food and nutrition insecurity in Lesotho
Authors: Mothepu, Lisebo 
Keywords: Global food prices;Poverty;Rural areas
Issue Date: Sep-2024
Abstract: 
Background: Global food prices continue to increase because of natural and humaninduced disasterssuch as climate change and war. As a result, poverty remainsrelatively high
globally, especially in lower-middle-income countries such as Lesotho. Poverty in Lesotho is
rated at 49.7% with a staggering 24% of the population experiencing extreme poverty, and it
is mostly prevalent in rural areas. Out of the population of over 2 million, approximately
half of the populace survives below the poverty-line, and 58, 000 people continue to
experience food insecurity. Lesotho ranks at 121st out of 125 countries with sufficient data to
calculate 2023 GHI scores. Thehigherthe rank theworse the hungerindex. The Global Hunger Index
recorded Lesotho’s hunger score at 32.4. This is categorised as alarming on the scale
ranging from low to extremely alarming. Lesotho has been grappling with chronic food
insecurity, with 61% of the population affected living in rural areas and 39% affected living in
urban areas due to climate challenges such as heavy rains. In summary, severe food
insecurity, decrease agriculture production, poverty, poor nutritional status, and HIV/AIDS
decrease the quality of life in Lesotho.
Aim: The main aim of the research study was to develop, validate, and implement, a
sustainable nutrition-sensitive agriculture toolkit with two programs: sustainable agriculture
and sustainable nutrition-sensitive agriculture. The toolkit was developed for rural
small-scale female family farmers to provide for household consumption and local
small-scale commerce. The study further aimed to introduce and educate female
farmers in agri-business and agro- processing through the use of Greenhouse tunnels
underpinned by sustainable agriculture, sustainable local community food systems,
and sustainable nutrition-sensitive agriculture to address food and nutrition insecurity
and attempt to decrease hunger at the community, household, and individual levels. Methodology: The sample size was n=126 females participants residing in rural
households in the district of Mohale’s Hoek, Lesotho. The sample population age ranged
from 20 to over 60 years. In this randomised control trial (RCT), a combination of
quantitative and qualitative methods were used. The quantitative data was used to
determine the interaction between socio-economic conditions, nutritional variety,
nutritional competence, food consumption patterns, food security status, and agricultural
practices. The qualitative data collection used was an observational research method under
naturalistic and controlled observation. This approach involved manipulating and
controlling the experimental and intervention research variables to determine cause and
effect relationships. The control group participants were from Maqoala n=63, and the
intervention group participants were from Mpharane n=63.
The toolkit was developed using relevant literature for addressing poverty, hunger, food
insecurity and nutrition insecurity. In addition, the toolkit was also developed using the
results obtained from the study through the administered questionnaires: sociodemographic, household hunger scale and household food insecurity access scale, nutrition
knowledge and anthropometry measurements for nutritional assessment, food
frequency, 24-hour food recall, agricultural and knowledge practices, preparation, and
preservation practices. The toolkit comprised of two programs: sustainable agriculture
and sustainable nutrition-sensitive agriculture. The toolkit was validated through the
Delphi method. The intervention was run for two years, to target three planting and
harvesting seasons in both the control and experimental villages. Both the experimental and control group were allocated Greenhouse
tunnels with irrigation systems, temperature control systems, storage facilities and food
preparation facilities. The inputs given to each group included the allocation of inputs was
seedsthat were certified by the government of Lesotho:round cabbage,spinach (Swiss chard),
green beans (snap beans), red beetroot, carrots (Nantes), red bell pepper, tomato (stupice),
butternut squash, potato (Vivaldi), and brown onion. The experimental group was given the
researcher’s training manual together with the participants training manual. The
experimental group was further trained using the manual. The control group, Maqoala, was
given the training manuals, without any training.
Results: Results indicated that all female participants (n=126) headed the households and
were caregivers who resided with other people in the households. The majority of the
households (61.9%) had one room, 16.7% had two rooms, and 11.9 % had three rooms with no
electricity or running water in the houses. Notably, all participants were unemployed, and
experienced anxiety over running out of food before having money to buy more. Almost 44%
of the participants often had a shortage of money to buy food, and 45.2% of the participants
sometimes had a shortage. The average monthly spending on food for 25.4% of the
households was R201 to R300, whilst 36.5% of the households on average spent a between
R301 to R400 on food each month. All the participants reported having a change in food intake
due to decreased accessibility.
Moreover, all the participants indicated that they consumed less food than required and had
to cut the size of the food served to children because there was not enough food available.
An estimate 89.7% of the participants skipped meals because there was not enough food to
eat. The nutrient analysis from the 24-hour food recall indicated dietary inadequacy in energy,
protein, calcium, and vitamins A, B6, B12, C, and E. When assessing the dietary diversity, the
participants consumed more cereals and starchy foods, as reflected by the high carbohydrate
Dietary Reference Intakes (DRIs). The Body Mass Index (BMI) of 4.7% of the participants from
Maqoala was in the underweight BMI range compared to 3.1% of participants from
Mpharane. The outcomes could also be influenced by a lack of nutrition knowledge as the
average knowledge was 52.0%, ranging from 38 to 69% in both Mpharane and Maqoala.The results highlighted high levels of hunger, food insecurity and nutrition insecurity among
the participants. The results supported the development, validation, and implementation of
the toolkit through the Delphi method. Firstly, the toolkit focused on sustainable agriculture,
planting vegetables, selling vegetables to generate money to buy seeds for the subsequent
planting phases, and consumption and preservation of vegetables for households in the
control and experimental groups.
The intervention results indicated that Mpharane (experiment group) participants in phase 1,
harvested 468 cabbage heads, sold 278 heads, and preserved 189 heads for household
consumption. In phase 2, the number of cabbages increased to 612 heads; the participants
sold 422 heads and preserved 189 heads for household consumption. In phase 3, 675 cabbage
heads were harvested, 485 heads were sold, and 189 were preserved for household
consumption. Mpharane had an increase of 144 heads of cabbage from phase 1, 468 heads
of cabbage, to phase 2, 612 heads of cabbage, and in phase 3 (675 heads of cabbage), the
increase was very low, with 63 heads of cabbage between phase 2 to phase 3.
Maqoala (control group) participants did not sell any of the fresh produce they harvested.
Instead, they shared the harvested fresh produce with each other. In phase 1, 567 cabbage
heads were harvested, and 567 heads were shared among the n=63 participants for
household consumption. In phase 2, the number of cabbage heads harvested increased to
627 heads and all 627 heads were shared among the participantsfor household consumption.
In phase 3, 414 cabbage heads were harvested, and 414 heads were shared among the n=63
participants for household consumption. Maqoala produced a total of 1608 heads of cabbage
between phases 1, 2 and 3, and Mpharane produced a total of 1755 heads of cabbage
between phases 1, 2 and 3, 147 heads of cabbage more than Maqoala.
The participants from experimental group harvested 519 bundles of spinach in Phase 1. In
Phase 2, 834 bundles were harvested, 329 bundles in Phase 1, 644 bundles in Phase 2 were
sold, and 189 bundles were preserved for household consumption. The participants harvested
1238 bundles of spinach in phase 3, and 1048 bundles were sold, whilst 189 were preserved
for household consumption. The participants in Maqoala harvested 857 bundles of spinach
and used all 857 bundles for household consumption. The experimental group had a vast increase in the bundles of spinach produced in phase 3, with 1238 bundles of spinach
compared to phase 1, with 468 bundles, whilst phase 2, produced 612 bundles. The total of
the bundles of spinach produced by the experimental group was 2591 bundles between
phases 1, 2, and 3, whilst the control group produced 2196 bundles of spinach between
phases 1, 2, and 3. The experimental group produced 396 bundles more than the control
group. The toolkit introduced and educated the experimental group on agriculture
practices, nutrition, and developing market products. At the baseline immediately after the
lesson, the participants were assessed and scored 54% in lesson 1, 66% in lesson 2 and 80%
in lesson 3. At the endline, the participants were not taught again but were expected to
remember the previous lessons and practices they had done during the intervention. There
was a decrease in the participants'scores atthe endline. The participantsscored 43% in lesson
1, 32% in lesson 2 and 65% in lesson 3.
Conclusion: The findings indicated that poverty contributes to hunger, food and nutrition
insecurity, and triple burden of malnutrition: undernutrition and overnutrition, and
micronutrient deficiency in Lesotho. Food and nutrition insecurity can be addressed by
integrating sustainable agriculture and sustainable nutrition-sensitive agriculture. Agriculture
holds significant potential as it can contribute to addressing the primary causes of nutritionrelated problems, enhance worldwide food accessibility and availability and improve family
food security, nutritional value, salary, and female empowerment. For these reasons, a
sustainable nutrition-sensitive agriculture toolkit for small-scale female farmers with agribusiness and agro-processing components was developed from the Lesotho data and shown
to improve household vegetable production and consumption. Agrifood systems contribute
to high employment of females worldwide. Agrifood systems also contribute more to the
livelihoods of females compared to males, mainly in developing countries. Enriching females
and ending genderinequality under agrifood systems can improve the lives of the females and
their homes, decrease starvation, increase earnings and strengthen resilience.
Description: 
Dissertation submitted in fulfillment of the requirements of the degree of: Doctor of Applied Science in Food and Nutrition, Durban University of Technology, Durban, South Africa, 2023.
URI: https://hdl.handle.net/10321/5651
DOI: https://doi.org/10.51415/10321/5651
Appears in Collections:Theses and dissertations (Applied Sciences)

Files in This Item:
File Description SizeFormat
Mothepu_L_2023.pdf15.31 MBAdobe PDFView/Open
Show full item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.