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Abstract  
Galvanising lines consist of load/loading stations and a series of processing tanks that are gen-
erally energy-intensive. Each raw workpart needs to go through a number of processing stages 
sequentially. Job sizes and processing time vary from part to part, hence the need to derive an 
optimal schedule to minimise total processing time in a batch. The problem of minimizing the 
makespan on parallel processing machines using different scheduling algorithms is studied in 
this paper. A set of 50 independent tasks were scheduled on parallel processors in order to 
minimize schedule length using Integer Linear Programming, Shortest Processing Time, Long-
est Processing Time, and Greedy Genetic algorithms. The experimental results demonstrated 
that our Greedy Genetic algorithm outperformed other algorithms on minimizing makespan on 
parallel processing machines.    
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Introduction  
Industries play a vital role in the economic development of any nation, and scheduling process 
may influence productivity of these industries. Production scheduling is commonly viewed as 
one of the most important issues in the planning and operation of manufacturing system [1]. 
Scheduling is generally defined as the allocation of resources to perform tasks over some spec-
ified time. It is a decision making process that is executed regularly in many manufacturing and 
services organisations. Performance criteria such as manufacturing lead times, machine utiliza-
tion, meeting due dates, inventory costs, quality of products, and customer satisfaction, are all 
dependent on efficiency in scheduling jobs in a system [2]. Therefore, it is imperative that or-
ganisations develop effective scheduling methodologies that ensure that the desired objectives 
are achieved. The case study galvaniser has been facing challenges with regard to scheduling 
ungalvanised raw workparts, characterised by using disorganised approaches to load 4 parallel 
lines, which led to missed delivery dates and excessive idle times and energy consumption. The 
problem of minimizing the makespan on parallel processing machines using different schedul-
ing algorithms is studied in this paper. 
 
 
 
Literature Review 
Scheduling is about assigning products and processes to available production equipment and 
time is key in scheduling since decision has to be made at what time the product is processed 



 

 

 

 

[3]. Sequencing also complements scheduling since it actually leads to optimization where de-
cision on the order to be taken is made, based on the algorithm designed for the optimisation 
considering various constraints such as cost, energy consumption and other parameters. 
Verdejo et al. [4] solved a production sequencing problem of a continuous galvanizing using 
an algorithm based on the Tabu Search, primarily through grouping and sequencing. They suc-
cessively divided an unfinished cold coils pool into groups of coils (production campaigns) 
mainly according to their due dates and their required galvanizing types within stated campaign 
sizes. The continuous galvanising line would process the coils of a production campaign con-
tinuously one after another with each new campaign requiring major set-up changes of the line. 
The sequence in which the coils were to be processed was then determined after ascertaining 
the coil composition of a campaign and this phase is a complex exercise taking consideration 
of a myriad of constraints.  
Weinert et al. [5] posited that scheduling would influence the energy consumption behaviour 
of the whole system, and by integrating energy efficiency criteria into scheduling, a reduction 
of energy costs is to be expected. A requirement for the integration of energy efficiency bench-
marks in planning undertakings is a comprehensive prediction of the energy consumption which 
should be executed at machine level. 
Liu et al. [6] applied Non-dominant Sorting Genetic Algorithm (NDSGA) to develop a model 
with the objective of minimising total non-processing electricity and consumption as well as 
the total weighted tardiness for a job shop scheduling problem.  NDSGA performance was then 
tested on an extended version of Fisher and Thompson job shop that integrated the electrical 
consumption profiles for the equipment. The result demonstrated that the total non-processing 
electrical energy consumption in the job shop was decreasing considerably, however at the det-
riment of its performance on the total weighted tardiness objective up to a certain level. On the 
other hand, Fernandez et al. [7] utilised ant colony optimization to schedule a galvanizing line. 
Given a combinatorial non-deterministic polynomial-time hard (NP-hard) problem, it was crit-
ical to develop an intelligent algorithm for scheduling able to optimisation by translating the 
scheduling rules and prevailing operational criteria into technical constraints and cost functions, 
which guaranteed a satisfactory solution within a reasonably short computation time. 
Zhang et al. [8] designed and applied a self-adaptive differential evolution (DE) algorithm to 
solve production scheduling concerned with energy consumption optimization for process in-
dustry by introducing self-adaptive parameter mechanism into basic DE algorithm.  The simu-
lation results from the algorithm demonstrated that the designed self-adaptive DE algorithm 
had gains of reduced solution time and faster operation, coupled with reduced energy consump-
tion. 
Pugazhenthi et al. [9] analysed the flow shop scheduling with machines arranged in series and 
jobs processed in the same order. A novel BAT heuristic for achieving minimal makespan by 
reaching the lower bound through a reverse engineering method was proposed for the flow shop 
problems. The heuristic was applied with Genetic Algorithm (GA) in a MATLAB environment. 
The results were compared with traditional heuristics and it was found that the GA applied BAT 
heuristic yielded better results.  However, multi-objective studies for more complex scheduling 
problems with additional features such as parallel machines and setup time are uncommon and 
new algorithms for such problems are desirable in practice [10]. 
Multi-objective flow shop scheduling with sequence dependent setup time can be regarded as 
NP hard since it is characterised by greater complexity toward optimality in a reasonable time. 
Mohammadi et al. [11] discussed the application of Robust Genetic Algorithm to solve a flow-
shop scheduling problem. Garen [12] presented a multi-objective GA for job-shop scheduling 



 

 

 

 

with a novel representation that enabled the use of simple recombination operators and the sim-
ulation results demostrated that the proposed approach was able to generate a set of solutions 
close to the Pareto-optimal front. 
Saeidi et al. [13] proposed a novel mathematical linear programming model for scheduling the 
jobs in a parallel environment to minimize completion time and total machine cost. On the other 
hand, a novel mathematical model to minimize energy consumption costs for scheduling a sin-
gle machine was proposed and GA was used to generate the optimal solution [14]. Madivada 
et al. [15] also proposed a new meta-heuristic solution approach for multi-objective job shop 
scheduling problems. The concept of fuzzy dominance was employed for performance evalua-
tion of solutions in a multi-objective scenario and the results obtained from the study de-
mostrated that the proposed algorithm can be used as a new alternative technique for scheduling 
complex multi-objective job shop problems.   
 
Methodology  
Data was collected for daily production quantities, customer due dates, and time studies were 
conducted to ascertain the duration of the pretreatment and galvanizing process. Fig.1 shows 
the steps for steel pre-treatment in hot dip galvanising. 
 

 
Fig.1 Steps for steel pre-treatment in hot dip galvanising 

The case-in-point galvanising plant is characterised by the following problem variables: 
 Number of processing lines = 4 
 Average number of jobs per day = 50 
 Average productive working hours per day = 6 
 Total processing time from setup + pre-treatment + galvanising + transfer time 

The adopted approach considered n jobs Ji(i = 1,... , n) with processing times pi (i = 1,... , n) to 
be processed on m identical parallel processors M1,... , Mm. Integer Linear Programming, Short-
est Processing Time Algorithm, and Longest Processing Time algorithms were executed for a 
set of 50 independent jobs for assignment to 4 parallel process lines in order to minimize 
makespan. Section 4.1, 4.2 and 4.3 will show the results from executing these algorithms. 
 
Data was also collected for 100 jobs that were to be executed on four process lines. The term 
makespan refers to the cumulative time to complete all the jobs on all process lines. It is the 
time taken from scheduling the first raw steel workpart until the completion of the last raw steel 
workpart. The objective function of the problem Greedy Genetic Algorithm (GGA) is to find a 
valid schedule that yields the minimum makespan. 
Table 1 and Table 2 represent two chromosomes that have 4 processors and 3 jobs placed on 
each of the processors. The time taken by the processor which runs the longest denotes the total 



 

 

 

 

makespan for the entire chromosome since all the machines are running in parallel. The algo-
rithm then creates similar chromosomes and the makespan for each chromosome is computed. 
Once the makespans for all the chromosomes are computed, the least makespan amongst the 
chromosomes would return the best makespan for the generation while the average of all the 
chromosomes’ makespan returns the average for that particular generation.  
 

Table 1 Chromosome 1 
Processor 1 Processor 2 Processor 3 Processor 4 
J3 J6 J10 J7 J17 J28 J4 J9 J20 J1 J16 J34 

 
Table 2 Chromosome 2 

Processor 1 Processor 2 Processor 3 Processor 4 
J2 J5 J11 J12 J18 J32 J24 J39 J44 J4 J21 J37 

 
Tournament selection was then conducted to filter out chromosomes which had better 
makespan values (in this case lesser makespan value) after the makespan computation for the 
different chromosomes. These chromosomes were then selected to undergo crossover and mu-
tation. A tournament size of two was considered for the GGA ad these two chromosomes were 
randomly selected from the population and their makespan values were compared, and the chro-
mosome with a lesser makespan value was deemed the winner. After the parents were selected, 
crossover was applied to them. 
A one-point crossover was adopted, whereby after constructing the parent pool, two chromo-
somes were chosen at random and a crossover point was selected randomly as indicated by the 
arrow in Table 3. From the crossover point, as shown in Table 4, the two parent chromosomes 
were interchanged to produce two new off-springs, and if there are any duplicates after crosso-
ver, they will be randomly replaced by unplaced jobs. 
 
Table 3 Chromosome encoding before crossover 

Processor 1 Processor 2 Processor 3 Processor 4 
J3 J6 J10 J7 J17 J28 J4 J9 J20 J1 J16 J34 

J2 J5 J11 J12 J18 J32 J24 J39 J44 J4 J21 J37 
 

Table 4 Chromosome encoding after crossover 
Processor 1 Processor 2 Processor 3 Processor 4 
J3 J6 J10 J7 J17 J28 J24 J39 J44 J4 J21 J37 

J2 J5 J11 J12 J18 J32 J4 J9 J20 J1 J16 J34 

 
Two offspring are produced for the new generation and the makespan for each processor and 
chromosome is computed again. A crossover rate of 0.4 was used. 
 
The mutation step was then executed after crossover, mutation operators are usually applied 
with small probability to stimulate small local disturbance of the individuals, giving more im-
pact on individuals as opposed to crossover operators which transmit genetic information from 
parents to offsprings, with less impact on individuals. Mutation is a secondary operator which 
assures that the chances of searching a particular subspace of the problem space is never zero 
by inhibit the possibility of converging to a local optimum, rather than the global optimum [16]. 
Mutation can be performed in different ways such as flip bit, boundary, non-uniform, uniform, 
and Gaussian. A gene (job) was randomly selected from each chromosome and flipped the job 
placement among the chromosome. For instance, in Table 5, job J20 in Chromosome 1 and job 



 

 

 

 

J32 in Chromosome 2 were randomly chosen and their positions were flipped in these two 
chromosomes. 

Table 5 Chromosome encoding during mutation 
Processor 1 Processor 2 Processor 3 Processor 4 
J3 J6 J10 J7 J17 J28 J4 J9 J20 J1 J16 J34 

J2 J5 J11 J12 J18 J32 J24 J39 J44 J4 J21 J37 

 
If there are duplicate jobs being placed on two processors, this duplication is removed by ran-
domly selecting one of the duplicates and substituting it by an unplaced job. Mutation during 
evolution occurs according to a user-definable mutation probability and a mutation rate in the 
range 0.02-0.20 was used. 
 
The process of recombination, mutation, decoding the individual strings, evaluation of the ob-
jective functions, and assigning of fitness values to chromosomes continues through subsequent 
generations. As a result, good individuals are preserved and mated with one another while the 
less fit individuals decease, leading to an increase in the average performance of individuals in 
a population. The genetic algorithm was terminated after 150 generations. 
 
Results  
The results were derived by using a user-friendly TORSCHE (Time Optimisation, Resources, 
SCHEduling) Scheduling Toolbox for MATLAB. The TORSCHE toolbox is designed for re-
searches in operations research or industrial engineering and it focuses on scheduling, with 
particular attention to graphs and graph algorithms due to their large interconnection with 
scheduling theory. A scheduling problem for parallel machines is characterised by allocation 
of jobs to machines and then generating a sequence of the jobs on a machine. A minimal 
makespan represents a balanced load on the processing machines. 
 
A: Integer Linear Programming Algorithm  
Integer Linear Programming Algorithm solves the makespan problem, where a set of independ-
ent jobs were assigned to parallel identical processors in order to minimize schedule length. 
Pre-emption is not allowed and the algorithm finds optimal schedule using Integer Linear Pro-
gramming (ILP). The algorithm usage is outlined as follows: 

1, if job j is scheduled as the kth to last job on processor i 
The objective function is to minimize  ∑ ∑ ∑   ……     Eq. 1 
Subject to: 
∑ ∑ 1  j = 1,………….n 
∑ 1   i = 1,………….m and k = 1,………….n 

∈ 0,1                  i = 1,………….m , k = 1,………….n and j = 1,………….n 
Where pij is processing time of job j on machine i 

TORSCHE command TS = algpcmax (T, problem, processors) was executed for the above 
algorithm and the resulting schedule is displayed in Fig.2. 
 



 

 

 

 

 
Fig.2 Optimal schedule using Integer Linear Programming 

 
B: Shortest Processing Time  
Shortest Processing Time (SPT) Algorithm was also used to solve the makespan problem, and 
the tasks are arranged in non-decreasing order of processing time pj before aplying List Sched-
uling algorithm. According to the SPT-rule, jobs are ordered according to non-increasing pro-
cessing requirements, and schedule each successive job preemptively to minimise its comple-
tion time. The procedure is to schedule job n on the fastest processor M1 until it is completed at 
time t1 = pn/s1. Thereafter schedule job n − 1 first on processor M2 for t1 time units and then on 
processor M1 from time t1 to time t2 ≥ t1 until it is completed. Job n − 2 is scheduled on M3 for 
t1 time units, on M2 for t2 - t1 time units, and on processor M1 from time t2 to time t3 ≥ t2 until it 
is completed, and so forth. The SPT algorithm is as follows: 

1. a := 0; 
2. WHILE p1 > 0 DO 
BEGIN 
3.  Find the largest index i with pi > 0; 
4.  ∆t := pi/s1; 
5.  For γ := i DOWN TO k := max {1, i - m + 1} DO BEGIN 
6.  Schedule job γ on M1+i− γ during [a, a + ∆t]; 
7.  pγ := pγ − ∆t · s1+i−γ 

END 
8. a := a + ∆t 
END 

TORSCHE command TS = sptcmax (T, problem, processors) was executed for the above algo-
rithm and the resulting schedule is displayed in Fig.3. 

 

 
Fig.3 Optimal schedule using Shortest Processing Time 



 

 

 

 

C: Longest Processing Time  
Longest Processing Time (LPT) Algorithm was also used makespan problem, and the jobs were 
arranged in non-increasing order of processing time pj after which List Scheduling algorithm 
was applied. With List Scheduling (LS) algorithm, jobs are taken from a pre-specified list and 
whenever a processor becomes idle, the first available job on the list is scheduled and subse-
quently removed from the list. TORSCHE command RS   =   listsch (T, problem, processors, 
’LPT’) was executed and the resulting schedule is displayed in Fig.4. 

 
Fig.4 Optimal schedule using Longest Processing Time 

 
D: Greedy Genetic Algorithm  
We then developed a Greedy Genetic Algorithm to minimize the makespan of placing 50 jobs 
on 4 galvanising processing lines. A sum of 100 jobs were randomly placed on the 4 processing 
lines in the form of a chromosome and generated 50 chromosomes. The makespan for each 
chromosome was then calculated and we selected the best chromosomes using tournament se-
lection. Thereafter, crossover and mutation were performed, with specific parameters and re-
placed the newly generated chromosomes with the previous ones in the population. The process 
was replicated for 150 generations. This procedure can be summarised as follows: 

PROCEDURE cGA. 
Determine a population size popsize. 
Begin 
t := 0; 
initialize P(t); 
evaluate P(t); 
while (not termination-condition) 
t := t + 1; 
select P(t) from P(t − 1); 
crossover P(t); 
mutate P(t); 
evaluate P(t); 
end while 
end begin 
End 

The GGA search for a one-way based on the base point and that way it would the ability of 
global optimization and increase speed, and speed up the generation of good population. In 
addition, the genetic algorithm in the early evolution of population was conducted to ensure an 



 

 

 

 

overall search and avoiding premature convergence. The following points summarise the GGA; 
Z is the solution it builds. 

Compute job densities; 
Sort the jobs by their value densities; 
Z ← ∅; 
Weight ← 0; 
For the job in sorted order 
i ← next job; 
if ( weight + wi ≤ C ) 
Z = Z ∪ {i}; 
Weight ← weight + wi; 
Evaluate and report Z; 

A series of 10 experiments was conducted and average values of the outcome were taken each 
time. The results for GGA demostrated that although the value of the resulting makespan was 
varying from one experiment to the other, when balancing the makespan with the running time, 
the optimal combination of parameter values was a crossover rate of 0.4, a mutation rate of 0.2, 
from a population size of 50. The resulting schedule is displayed in Fig.5. 

 
Fig.5 Optimal schedule using Longest Processing Time 

 
Discussion  
The scheduling problem discussed in this study is an assignment problem of assigning galva-
nising jobs to the galvanising lines in such a manner that minimises the makespan and enhances 
the performance of a production system. The results shown in Table 6 demonstrated that GGA 
outperformed other algorithms on minimizing makespan on parallel processing machines while 
Shortest Processing Time algorithm performed the worst. 
 

Table 6 Summary of algorithms’ makespan 

No Algorithm Makespan 

1 Integer Linear Programming 180 

2 Shortest Processing Time 192 

3 Longest Processing Time 182 

4 Greedy Genetic Algorithm 176 

 
 
 



 

 

 

 

Conclusion   
 

The objective considered in this study is minimization of makespan using Integer Linear Pro-
gramming, Shortest Processing Time, Longest Processing Time, and Greedy Genetic algo-
rithms. This paper solved parallel line job shop scheduling problem and the experimental results 
demonstrated that the Greedy Genetic algorithm outperformed other algorithms on minimizing 
makespan on parallel processing machines.    
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