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Abstract

Several properties of bound states in potential V (x) = g2 exp(|x|) are studied. Firstly, with the

emphasis on the reliability of our arbitrary-precision construction, wave functions are considered

in the two alternative (viz., asymptotically decreasing or regular) exact Bessel-function forms

which obey the asymptotic or matching conditions, respectively. The merits of the resulting

complementary transcendental secular equation approaches are compared and their applicability

is discussed.
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1 Introduction

One-dimensional bound-state Schrödinger equation

− d2

dx2
ψn(x) + V (x)ψn(x) = En ψn(x) , ψn(x) ∈ L2(R) , n = 0, 1, . . . (1)

with the centrally symmetric confining potential

V (x) = g2 exp(|x|) , x ∈ (−∞,∞) (2)

(cf. Fig. 1) does not seem to have attracted attention of the authors of textbooks on quantum

mechanics. In the context of quantum phenomenology, such a neglect is certainly undeserved since

the asymptotic growth of the potential may be perceived as positioned somewhere in between

quadratic harmonic-oscillator V (HO)(x) = (ω x)2 with equidistant, vibration-type spectrum of

energies En = (2n + 1)ω, n = 0, 1, . . . and its equally popular infinite-power square-well partner

V (SW )(x) = (ω x)∞ leading to the quadratic growth ofEn = π2(n+1)2ω2/4, n = 0, 1, . . . resembling

the rotational energy bands [1].

V(x)

x
0

1

2

3

4

5

6

7

–4 –2 0 2 4

Figure 1: The shape of potential (2) at small g2 = 1/4 (thick, almost smooth-looking curve),

medium g2 = 1 (medium curve) and larger g2 = 4 (thin curve, sharply spiked shape).

The neglect of model (2) seems equally undeserved from the purely formal point of view

because the related Schrödinger equation is extremely elementary and exactly solvable in terms of

the modified Bessel functions matched in the origin [2, 3]. The low popularity of the conceptual

as well as practical use of the bound-state families as described by Eqs. (1) and (2) may be given

several tentative explanations. We shall return to this point later, in section 4 below. Now, let us

only mention the feature of non-analyticity of the potential in the origin. Indeed, the analyticity

along the whole real line is precisely what makes harmonic oscillators so popular, say, as toy

models in quantum field theory [4] as well as in rigorous functional analysis [5, 6].

2



In what follows we intend to re-attract attention to the non-analytic model (1) + (2) and

to describe and discuss a few basic properties of its exact solutions at some length, therefore.

Let us also add that in a historical perspective our present interest in a deeper study of the

“missing link” (2) connecting V (HO)(x) with V (SW )(x) found its origin in the methodical aspects

of quantum gravity and, in particular, in the related Smilga’s comment [7] on the dynamics of

the so called Pais-Uhlenbeck toy-model oscillator. Indeed, in the latter model the dynamics is

mimicked using a pair of potentials V (HO)(x) with different ωs (cf. Eqs. Nr. 5 and 6 in loc. cit.).

In our most recent paper [8] we tried to test some of the Smilga’s conclusions using an alternative,

Pais-Uhlenbeck-like model in which the dynamics was generated by square-wells V (SW )(x) with

different ωs (cf. Eqs. Nr. 1 and 2 in loc. cit.). Unfortunately, the results of the comparison proved

too model-dependent. In other words, the square-well simulation of the Pais-Uhlenbeck-related

effects were, from the point of view of the original problem of quantum gravity, next to useless.

Thus, the study of the present model (2) can be perceived as offering a new hope and having a

rather deep motivation, especially due to its exact solvability.

2 Mathematical aspects of the model

2.1 Exact solvability

On the Wolfram’s webpage [2] one easily finds that differential Eq. (1) + (2) re-written in the

form

− y′′(x) + a exp(bx) y(x) = c y(x) (3)

has general solution

y(x) = k1e
π
√
c/bΓ(1− 2i

√
c/b)I−2i

√
c/b

(

2
√
a ebx/b

)

+

+k2e
−π

√
c/bΓ(1 + 2i

√
c/b)I2i√c/b

(

2
√
a ebx/b

)

where In(z) denotes the modified Bessel function of the first kind and where Γ(x) is the gamma

function.

It is well (and for a long time, [9]) known that the existence of the latter closed-form solutions

renders the construction of the states which are generated by the present confining interaction

(2) non-numerical (or semi-numerical at worst, cf. [3]). What is much less often acknowledged

is that the special-function solvability of the problem opens also the way towards various forms

of its innovative deformations. Let us recall here just two illustrative examples. In the first one

one can require a complete survival of the quantum stability of the system in question (i.e., of the

strict reality of the energy spectrum) even after the real potential gets replaced by its suitable
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complexified form. In Ref. [10], for example, the authors achieved such a goal via an elementary

replacement b→ i b in Eq. (3) (cf. loc. cit. for more details).

In the role of the second illustrative example of the change of horizons based on the analytic

continuation techniques we may recall the change of parameters (a, b) → (−a,−b) in Eq. (3) which

is of interest in molecular physics. In such an alternative dynamical regime one studies, typically,

the resonances (i.e., complex eigenvalues) which are generated by a “realistic”, asymptotically

vanishing real potential with a repulsive core in the origin (cf., e.g., Ref. [11] and references

therein).

In what follows our attention will remain restricted to the most straightforward bound-state

interpretation (1) + (2) of the exponential interaction and of the Bessel’s form of differential

Eq. (3).

2.2 Consistency of the non-analyticity at x = 0

In the spirit of our recent brief comment [12] on ordinary differential Schrödinger equations let us

first remind the readers that the existence of the single and isolated point of non-analyticity of

any given potential V (x) in the origin may be given a very natural interpretation in the context of

the theory of quantum graphs. In this language, any one-dimensional Schrödinger equation may

be identified with a quantum graph with one vertex and two edges. In practice this means that

the equation is split into a pair of half-line differential equations

− d2

ds2
ψ(left)(s, E) + g2e−s ψ(left)(s, E) = E ψ(left)(s, E) , s ∈ (−∞, 0) , (4)

− d2

dr2
ψ(right)(r, E) + g2er ψ(right)(r, E) = E ψ(right)(r, E) , r ∈ (0,∞) (5)

such that the logarithmic derivatives of the two respective halves of the wave function are properly

matched in the origin,

ψ(left)(0, E) = ψ(right)(0, E) , ψ′
(left)(0, E) = ψ′

(right)(0, E) . (6)

Such a split of ψn(x) into two halves reflects the spatial symmetry of the interaction, V (x) = V (−x)
so that we are allowed to restrict attention, say, just to the right half-axis (so we may drop the

subscript “right” as redundant), distinguishing just between the conventionally normalized even-

parity bound states such that

ψ(even)(0, E) = 1 , ψ′
(even)(0, E) = 0 , E = En , n = 0, 2, 4, . . . (7)

and the odd-parity bound states such that

ψ(odd)(0, E) = 0 , ψ′
(odd)(0, E) = 1 , E = En , n = 1, 3, 5, . . . . (8)
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Let us add that the left-right split of the problem may be also perceived as a one-dimensional

parallel to the partial-wave expansion of the wave functions in three dimensions. In such a per-

spective one of Eqs. (4) or (5) plays the role of an analogue of the radial Schrödinger equation.

Similarly, the operator of parity P may be perceived as a one-dimensional counterpart of the

rotational symmetry of the three-dimensional central V (~x) = V (|~x|).
In the same spirit, the three-dimensional quantum number of angular momentum ℓ = 0, 1, . . .

degenerates here to the two values of the parity quantum number ±1. Thus, we may conclude

that the non-analyticity of our present potential (2) in the origin finds its analogue in the optional

central singularities exhibited, e.g., by the Coulombic attraction V (|~x|) ∼ −1/|~x| or by the more

singular repulsive cores (e.g., V (|~x|) ∼ |~x|−6 [13]) in three dimensions.

2.3 Asymptotically decreasing solutions and the exact energies

Via the change of independent variable r → y = exp(r/2) one transforms the radial-like differential

Eq. (5) (living, at positive energies E > 0, on the half-line of coordinates r = |x| ∈ (0,∞)) into

another differential equation which is solvable in terms of Hankel functions (alias Bessel functions

of the third kind – see their definition in [14]).

At an arbitrary trial energy E = k2 this yields all of the admissible general solutions of Eq. (5)

in the compact, exact and explicit special-function form

ψ(general)(r, k
2) = C1H

(1)
ν (z) + C2H

(2)
ν (z) , z = 2iger/2 , ν = 2ik . (9)

Once we require, in the bound-state context, the asympotically decreasing behavior of these

solutions we may consult formulae 10.2.5 and 10.2.6 in Ref. [14] and conclude that we must put

C2 = 0. The resulting, asymptotically correct solutions have the compact and final first-Hankel-

function form

ψ(asymptotically decreasing)(r, k
2) ∼ H

(1)
2ik

(

2iger/2
)

. (10)

Naturally, this solution varies with the trial-energy variable E = k2 but the value of this variable

must be fixed via the transcendental secular equations (7) (even-parity bound-state energies) or

(8) (odd-parity bound-state energies), i.e., via the respective transcendental-equation constraint

at r = 0, viz.,
d

dg
H

(1)
2ik (2ig) = 0 , n = 0, 2, 4, . . . (11)

or

H
(1)
2ik (2ig) = 0 , n = 1, 3, 5, . . . . (12)
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These equations must be solved numerically of course. The former, slightly more complicated one

may be still given the two alternative but equivalent simplified forms, viz.,

H
(1)
2ik−1 (2ig)−

g

k
H

(1)
2ik (2ig) = 0 , n = 0, 2, 4, . . . (13)

or

H
(1)
2ik−1 (2ig)−H

(1)
2ik+1 (2ig) = 0 , n = 0, 2, 4, . . . . (14)

Both of these simplifications follow from formula 10. 6. 1 in [14]. The construction is complete.

3 Physical aspects of the model

Although the detailed and exhaustive analysis of the precision of the numerical determination of

the bound-state energies E = k2 via secular equations (11) - (14) lies far beyond the scope of the

present letter, several features of these equations deserve an explicit commentary.

x

–0.4
–0.2

0
0.2
0.4

–3 –2 –1 0 1 2 3

∆

Figure 2: The short-range smallness of difference between harmonic oscillator and exponential

potential (2) (∆ = 0.5 · x2 + 0.2− g2 · exp |x| with g2 = 1/4).

3.1 The loss of precision in the domain of very small couplings g

From our illustrative Fig. 1 (and, in particular, from its complement Fig. 2) one could deduce that

in the dynamical regime of very small couplings g the shape of our potential (2) is not too different

from the shape of harmonic oscillator, within the range of the low-lying spectrum at least. Hence,

the exponential-well spectrum could also, in some sense, resemble the spectrum of the harmonic

oscillator. Naturally, this does not imply that its search must necessarily be also numerically well

behaved. A word of warning may be found, e.g., in Ref. [11] in which it has been argued that in

the numerical practice and, in particular, in the case of exponential potentials it is often useful
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to test the precision of the numerical root-searching results using an alternative algorithm (in

particular, in loc. cit. the authors recommended the use of the so called Riccati-Padé method).
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Figure 3: The sample of the shape of the asymptotically decreasing solution (10) at the small

couplings g (its intersections with the horizontal plane define the physical energies En = k2n(g) as

functions of g at n = 1, 3, 5, . . .).

Via an explicit numerical test paying attention just to the simplest secular Eq. (12) in the

odd-parity case, a definite encouragement of our present optimism was provided by the picture

showing the smooth parameter-dependence of the asymptotically decreasing solutions (see Fig. 3).

Moreover, the real-function nature of the picture illustrates that there exists a suitable ad hoc

normalization which keeps our asymptotically decreasing function of variables g and k real.
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Figure 4: The numerically determined odd-parity zeros k = kn(g), n = 1, 3, 5, . . . of the

asymptotically-decreasing-solution secular equation (12).

The latter two observations (plus their parallels in the even-parity case) explain the straightfor-

ward nature of the algorithms of the numerical search for the bound-state roots of the exponential-

well secular equations. For this reason we were able to extend the computations based on the
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asymptotically-decreasing-solution algorithms beyond the small-coupling domain. The results are

sampled in Fig. 4.

3.2 Regular solutions and the both-sided estimates of the energies

A more detailed inspection of the numerical results as presented in Fig. 4 reveals that the use of

the fixed-precision arithmetics leads to the loss of the reliability of the localization of the bound-

state roots kn(g) in the domain of small g < gcritical(n). Empirically we see a more or less linear

n−dependence of gcritical(n), with maximal gcritical(45) ≈ 0.57 at the highest level as identified in

Fig. 4.

Naturally, such a loss of precision is not too surprising. In fact, our a priori decision of

preferring the asymptotically decreasing solutions (10) proved rather lucky because Fig. 4 appeared

to provide a reliable information about the spectrum in the more difficult and non-perturbative

“strong-coupling” dynamical domain.

This being said, the exact solvability of our radial-like Schrödinger equation still admits the

use of an alternative strategy in which one would start from the initial conditions (7) and (8) and

in which one would construct the so called regular solutions ψ(regular)(r, k
2) by the purely analytic

and non-numerical means. In such a setting, naturally, the physical values of k =
√
En will have to

be sought via the fit of the regular solutions to the standard (i.e., Dirichlet) asymptotic boundary

conditions,

ψ(regular)(R, k
2) = 0 , R ≫ 1 . (15)

One can expect that such an alternative construction strategy could cover not only the domains of

parameters in which the above-described asymptotically-decreasing-solution approach had failed

but also some of the applications of the solutions in which one needs a very precise evaluation of

the wave functions.

Although the regular-solution algorithm could start, in principle, from the same change of vari-

ables as above, our analysis showed that the analytic formulae putting emphasis on the matching

at r = 0 become simpler if we change some signs and use the abbreviations

Kν(z) =
iπ

2
exp

(

iπ

2
ν

)

H(1)
ν (iz) (16)

Iν(z) = exp

(

−iπ
2
ν

)

Jν

(

exp

(

iπ

2

)

z

)

. (17)

In this manner, the modified, small−r−friendly ansatz

ψ(regular)(r, k
2) = D1(ν, g)Kν(w) +D2(ν, g) Iν(w) , w = w(g, r) = 2ger/2 , ν = 2ik (18)
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leads to the parity-dependent final results again. Thus, up to a modifiable overall normalization

the choice of the even parity may be shown to yield, after the straightforward though still rather

tedious computations, the coefficients given by the derivative-related formulae

D1(ν, g) = g Iν+1(2g) + ik Iν(2g) , D2(ν, g) = g Kν+1(2g)− ik Kν(2g) (even parity) . (19)

The choice of the odd parity leads to simpler expressions,

D1(ν, g) = −Iν(2g) , D2(ν, g) = Kν(2g) (odd− parity case) . (20)

Having these formulae at our disposal we are now prepared to test the numerical performance of

the regular-solution-based recipe.

At any suitable trial energy variable E = k2 the recipe requires that we formulate the secular

equation for the physical bound-state energies as the Dirichlet asymptotic boundary condition.

In the numerical practice this means that we preselect a suitable, sufficiently large value R of

the coordinate and, in both the even- and odd-parity cases, search for all of the roots k = kn(R)

of transcendental Eq. (15). In the limit of large R this form of secular equation should again

determine the exact physical values of the energy levels E = En = k2n(∞).

–20

0

20

40

1 2 3

energy level

wave functions

potential V(x)

(x)  ψ

E

x

Figure 5: The sample of V (x) (at g2 = 2), of one of its highly-excited even-parity bound-state

energy (viz., of En with n = 8) and of the related upper- and lower-bound radial-like wave-function

ψn(r), with normalization at r = 0 being re-scaled here ad hoc.

As we already indicated the key appeal of the use of regular solutions (18) lies, a priori, in

a more friendly representation of the wave functions. This expectation is confirmed by Fig. 5 in

which the visible difference between the wave functions evaluated at the minorizing and majorizing

k = kphysical ± 0.0001 only becomes detectable beyond r ≈ 4. In parallel, Table 1 shows that the

sufficient cut-off R need not lie too far beyond the intersection x0 of the energy level with the

exponentially growing wall of the potential well.
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Table 1: The sample of parameters for the numerical bracketing of the even-parity energies using

secular Eq. (15) (ψ(R) = 0, E = V (x0)).

n E
(lower bound)
n E

(upper bound)
n R x0

0 4.12005 4.12010 3.0 0.72

2 11.0065 11.0075 3.0 1.71

4 18.2822 18.2830 3.4 2.21

4 Discussion

In the present note we demonstrated that the elementary transition from the full-line equation (1)

to the half-line equation (5) enables one to claim that in spite of the admitted non-analyticity in

the origin our present model can be perceived as exactly solvable. In other words, we believe that

the conventional families of the exactly solvable one-dimensional potentials (with their typical list

provided by review paper [15]) should be complemented by the symmetric functions V (x) = V (−x)
which are non-analytic in the origin but still tractable via special functions (cf. also several other

comments [3, 16, 17, 18, 19, 20, 21] in this respect).

Once more, let us remind the readers that our choice and study of potential (2) was motivated

by the need of interpolation between the ubiquitous harmonic oscillator V (HO)(x) = ω2x2 and its

equally easily solvable square-well alternative

V (SW )(x) =











∞ , x < −L,
0 , x ∈ (−L, L) ,
∞ , x > L

with, say, L = 1/ω. Such a need of interpolation may have various pragmatic as well as theoretical

reasons [22]. Nevertheless, one of the main difficulties encountered during such a search is usually

seen in an inadvertent loss of the appealing, textbook-explained exact solvability (ES) status of

the underlying one-dimensional bound-state Schrödinger Eq. (1).

In practice, due to the ordinary linear differential nature of Eq. (1) it is still fortunate that

one can employ standard numerical methods and one can construct the bound state solutions,

with arbitrarily predetermined precision, for a vast majority of the potentials of phenomenological

interest. Still, one usually argues that the strictly non-numerical nature of bound states makes

the ES interactions V (HO)(x) and V (SW )(x), in many a respect, privileged.

By our opinion, the key weakness of the latter argument lies in the vagueness of the very

definition of the ES status. This definition proves even different for the smooth, analytic potentials

and for the various discontinuous versions and descendants of square wells for which the wave
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functions remain elementary but for which, in a way illustrated, e.g., in Refs. [23, 24, 25, 26], the

energies must still be sought – purely numerically – as roots of transcendental equations. In the

former case, on the contrary, the energies are usually given by closed and elementary formulae while

the wave functions themselves remain elementary only due to a slightly mysterious degeneracy

of the infinite-Taylor-series special-function general solutions to classical orthogonal polynomials

(cf., e.g., [15] for a representative list of the analytic ES interaction models as sampled here by

V (HO)(x)).

As a true test of the robustness of the ES concept we studied here the “non-ES” toy-model

interaction (2) which can be also considered, cum grano salis, solvable. In addition, potential

(2) shares certain geometrical as well as solvability features with both of the above-mentioned ES

examples. At the small couplings g2 > 0 and in the low-lying energy region its shape resembles

harmonic oscillator (cf. Fig. 2 where g2 = 1/4). With the growth of the coupling the spike at

x = 0 becomes more pronounced (return to Fig. 1 where the value of g2 varied from 1/4 to 4).

It is obvious that with the growth of g2 the spectrum is being pushed upwards. Moreover, at

higher excitations the function (2) of x becomes steeper so that the potential resembles, more and

more, square well. In contrast to the equidistant harmonic-oscillator case the n ≫ 1 differences

δn = En+1−En between the neighboring levels may be, therefore, expected to grow - more or less

quadratically - with n. Indeed, such an expectation is numerically confirmed by Fig. 6

k

g

25

30

35

40

45
6 7 8 9 10

Figure 6: The sample of the approximate equidistance of the square roots kn =
√
En of the

highly-excited even-parity bound-state energies in the domain of g ∈ (6, 10) and k ∈ (25, 40).

From the purely phenomenological point of view interaction (2) is made interesting by an

interplay between the latter two features. The model seems also remarkable on the purely for-

mal grounds because, as we showed, the underlying bound-state Schrödinger equation (1) proves

piecewise exactly solvable in terms of the various forms of Bessel functions. Naturally, this could

open a way towards various further generalizations.
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Last but not least we would like to emphasize that we also showed here how one can circum-

vent the usual precision-fighting difficulties. Incidentally, some of these difficulties are intimately

connected with the extremely quick exponential growth of the walls of our potential well (2) at

large distances. In this context we may also recall Ref. [27] in which, in the context of a simplified

description of the deuteron, a similar necessity of the cross-checking verification of the numerical

reliability of the exact s−wave formulae has been noticed to occur in the opposite extreme of the

exponentially decreasing potentials.
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