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Quantum-statistical effects occur during the propagation of electromagnetic (EM) waves inside the dielectric
media or metamaterials, which include a large class of nanophotonic and plasmonic waveguides with dissipation
and noise. Exploiting the formal analogy between the Schrödinger equation and the Maxwell equations for
dielectric linear media, we rigorously derive the effective Hamiltonian operator which describes such propagation.
This operator turns out to be essentially non-Hermitian in general, and pseudo-Hermitian in some special cases.
Using the density operator approach for general non-Hermitian Hamiltonians, we derive a master equation that
describes the statistical ensembles of EM wave modes. The method also describes the quantum dissipative and
decoherence processes which happen during the wave’s propagation, and, among other things, it reveals the
conditions that are necessary to control the energy and information loss inside the above-mentioned materials.
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I. INTRODUCTION

Notwithstanding the long history of studies, the propagation
of electromagnetic (EM) wave inside dielectric media remains
an important and rapidly developing topic. Apart from an
obvious theoretical value, it finds numerous applications
in the designs of the nanoscale photonic and plasmonic
devices, structures and metamaterials, such as lasers, spasers,
modulators, waveguides, optical switches, laser-absorbers,
coupled resonators, and quantum wells.

During the past decade there has been growing interest
in studying those systems by means of the formal analogy be-
tween Maxwell equations in dielectric media and Schrödinger-
type equations, dubbed here as the Maxwell-Schrödinger (MS)
map [1–3]. In this analogy, Maxwell equations are rewritten
in the form of the matrix Schrödinger equation, except that
the role of time is played by the coordinate along the direction
of wave propagation (usually, z coordinate), the Hamiltonian
operator is non-Hermitian (NH), and the Planck constant is
replaced by an effective one [4]. Therefore a class of the
physical systems that allow such mapping is broadly referred
as non-Hermitian materials and waveguides. Moreover, inside
this class one can select the subclass of physical systems
and phenomena for which the above-mentioned Hamiltonian
operator has real spectrum, in which case it is called pseudo-
Hermitian [5,6]. This pseudo-Hermiticity manifests itself in
various phenomena, such as nonreciprocal light propagation
and Bloch oscillations [7–9], invisibility and loss-induced
transparency [10–14], power oscillations [15–17], optical
switching [18–20], coherent perfect absorptions [21–23],
laser-absorbers [24,25], plasmonic waveguides [26], unidirec-
tional tunneling [27], loss-free negative refraction [28], and
so on. These processes can be studied using a general theory
of pseudo-Hermitian (often referred also as PT -symmetric)
Hamiltonians, which has originated from works [29–31], one
could mention also the classical results by Dyson [32,33].

However, the class of non-Hermitian materials and waveg-
uides is obviously much larger than its pseudo-Hermitian
subclass. Indeed, as a result of the interaction of EM waves
with their environment (which can be very diverse and
uncontrollable), the description of their propagation requires

the usage of the NH Hamiltonians of different kinds, not
necessarily possessing real eigenvalues. In other words, this
propagation must be described within the framework of a
general theory of open quantum systems [34]. According to
that theory, for such situations one needs to engage the full
description of the (quantum) statistical ensemble of EM wave
modes. In turn, it requires the usage of the density matrix, in-
stead of a state vector, as a main object of theory. Therefore MS
map must be used to develop the corresponding generalization,
which is going to be the main goal of this paper. Although the
density-operator approach for quantum systems driven by NH
Hamiltonians has been long since known (see, for instance,
the monograph [35]), it has been further developed in the
works [36–41]. In the current paper, we adapt this formalism
for the purposes of describing the EM wave propagation inside
dielectric materials and waveguides in presence of dissipative
effects induced by environment, as well as for extracting
physical information and predicting new phenomena.

The contents of this paper are as follows. In Sec. II, we
provide essential information about the Maxwell-Schrödinger
map for EM wave propagation inside dielectric linear media
of a general type. We define the appropriate Hilbert space,
as well as we introduce notions and representations, which
will be necessary for what follows. In Sec. III, we formulate
the density matrix approach for NH dynamics adapted for the
MS-mapped models and NH waveguides with dissipation of
general type. We derive a master equation, which governs the
statistical behavior of EM wave modes inside the medium, and
describe its properties. In Sec. IV, we use the properties of the
Hilbert space in our case in order to introduce the two-level
approach to deriving quantum-statistical observables for any
given medium. This approach reveals more details about the
physical features of the systems that are being studied, as well
as it explicitly illustrates some statistical effects that occur.
Discussions and conclusions are given in Sec. V.

II. MAXWELL-SCHRÖDINGER ANALOGY
IN DIELECTRIC MEDIA

In this section, we formulate the formal mapping between
certain classes of Maxwell and Schrödinger equations. We
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rigorously derive the effective Hamiltonian operator, which
describes the propagation of EM waves in dielectric isotropic
media along a certain direction. Due to its generality, the
approach is applicable for studying EM wave propagation
inside a very large class of materials where at least one
preferred direction of propagation can be established.

A. Effective Hamiltonian

Let us consider EM wave propagating inside a dielectric
isotropic linear medium. For this situation, there are no free
charges and currents, therefore, Maxwell equations acquire a
simple form:

∇ × E + 1

c

∂

∂t
(μH) = 0, (1a)

∇ × H − 1

c

∂

∂t
(εE) = 0, (1b)

∇ · (εE) = ∇ · (μH) = 0, (1c)

where E = E(r,t) and H = H(r,t) are electric and magnetic
fields, respectively, while the cross and dot denote the vector
and scalar products, respectively. Here, c = 1/

√
ε0μ0, ε0

and μ0 being, respectively, the vacuum permittivity and
permeability, whereas ε and μ are the relative permittivity
and permeability, respectively (complex-valued functions of
coordinates, in general); as per usual, one can also express
them via the medium’s electric and magnetic susceptibilities:
ε = 1 + χe and μ = 1 + χm. The electromagnetic Gaussian
unit system’s conventions can be used here, as long as the
physical vacuum is assumed to be fixed in its current state
characterized by the adopted SI values of ε0 and μ0.

Further, if we align z axis with the direction of wave’s
propagation then, assuming the harmonic time dependence of
the electric and magnetic fields,

E(r,t) = E(x,y,z) exp (−iωt), (2a)

H(r,t) = H(x,y,z) exp (−iωt), (2b)

one can decompose them into the transverse and longitudinal
(along z axis) components: E = E⊥ + ezEz, H = H⊥ + ezHz,
and ∇ = ∇⊥ + ez

∂
∂z

, where en is the basis vector along the
nth axis. One can show that the vectors E⊥ and H⊥ are
essentially two-dimensional: E⊥ · ez = H⊥ · ez = 0. Corre-
spondingly, Maxwell equations take the form (from now on
we adopt the units where c = 1)

∂

∂z
E⊥ − ∇⊥Ez + iμω(ez × H⊥) = 0, (3a)

∂

∂z
H⊥ − ∇⊥Hz − iεω(ez × E⊥) = 0, (3b)

ez · (∇⊥ × H⊥) + iεωEz = 0, (3c)

ez · (∇⊥ × E⊥) − iμωHz = 0, (3d)

∂

∂z
(εEz) + ∇⊥ · (εE⊥) = 0, (3e)

∂

∂z
(μHz) + ∇⊥ · (μH⊥) = 0, (3f)

and also for definiteness we assume throughout the paper that
the medium is located at z � 0.

The system (3) can be recast in the form, in which the
equations for longitudinal and transverse vectors are explicitly
separated:

iez × ∂

∂z
E⊥ = L̂mH⊥, (4a)

iez × ∂

∂z
H⊥ = −L̂eE⊥, (4b)

Ez = (iεω)−1ez · (∇⊥ × H⊥), (4c)

Hz = −(iμω)−1ez · (∇⊥ × E⊥), (4d)

where we denote the following differential operators:

L̂e = εω − ω−1∇⊥ × μ−1∇⊥ × , (5a)

L̂m = μω − ω−1∇⊥ × ε−1∇⊥ × . (5b)

Using the 2D property ez × ez× = −1, Eqs. (4a) and (4b)
can be written in the matrix form

i
∂

∂z

(
E⊥
H⊥

)
= ĥ

(
E⊥
H⊥

)
, (6)

where we denote the operator

ĥ = σ̂2D̂ =
(

0 −ez × L̂m

ez × L̂e 0

)
, (7)

where σ̂2 is defined in Appendix A, and

D̂ ≡ σ̂2ĥ =
(

L̂e 0
0 L̂m

)
(8)

is the auxiliary operator. A schematic drawing of the EM
wave propagation as the wave function’s evolution along the z

direction is shown in Fig. 1.
Furthermore, using the formulas from Appendix A, one

can check that the operator (7) is non-Hermitian, even
when both ε and μ are real-valued. This holds for either
a uniform waveguide type geometry [Fig. 2(a)] or for a
more general nonuniform geometry [Fig. 2(b)], as long as
the issue of transverse fields vanishing at spatial infinity is

E
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FIG. 1. Propagation of EM wave through a dielectric medium
located at z � 0.
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FIG. 2. EM wave propagation along the z direction for different
kinds of media. Vertical planes represent the generalized waveguide’s
effective cross-section, at different values of z. For a general medium,
deviations from uniformity arise due to varying cross-section (wave-
shaded areas on the lower panel) or varying permittivity and/or
permeability (brick-shaded areas on the lower panel).

properly satisfied, as we will discuss later. The degree of
non-Hermiticity of the theory’s Hamiltonian becomes even
larger if we write (6) in a form that is fully analogous to
the Schrödinger equation, for we must rewrite it in terms of
normalized values. Defining an inner product as the integral
over what we can call the generalized waveguide’s effective
cross-section (i.e., the region outside of which the EM wave’s
fields vanish, cf. Fig. 2), one can introduce the normalization
factor

N 2 ≡
∫

dx⊥(|E⊥|2 + |H⊥|2), (9)

where dx⊥ would be dxdy in Cartesian coordinates. Function
N does not depend on the transverse coordinates but in general
it can depend on z. With these definitions in hand, we can

define the following wave function (using the Dirac’s bra-ket
notations):

� ≡ 〈x⊥|�〉 = 1

N

(
E⊥
H⊥

)
, (10)

which is automatically normalized to one

〈�|�〉 = 1, (11)

and thus the corresponding state vector |�〉 can be regarded as
a ray in some appropriate Hilbert space (defined in Sec. II C
below). In terms of this state vector Eq. (6) acquires the
Schrödinger form

i�w
∂

∂z
� = Ĥ�, (12)

where we denote the operator

Ĥ ≡ �w(ĥ + ĤN ) = �w(σ̂2D̂ − i�N Î)

= �w

(
0 −ez × L̂m

ez × L̂e 0

)
− i�w�N

(
Î 0
0 Î

)
, (13)

where Î and Î are, respectively, the identity operator and the
2 × 2 identity matrix, and the coefficient

�N = ∂

∂z
ln |N | (14)

is in general a real-valued function of z (as well as a functional
of the fields); if N do vary with z then Eq. (12) is not merely
a rescaled version of Eq. (6) but involves a corrective term, in
general. Here by z we assume the value z/c, and the “Planck”
constant �w is an effective scale constant of the dimensionality
energy×time, which is introduced for a purpose of preserving
the correct dimensionality of the relevant terms in the emergent
Schrödinger equation (the ambiguity of �w is yet another
manifestation of the absence of the fundamental length scale
in Maxwell equations [4]). Following traditions, we will refer
to the operator (13) as the Hamiltonian operator of the system,
although, strictly speaking, a non-Hermitian operator cannot
be fully regarded as Hamiltonian: the anti-Hermitian part
of such an operator does not correspond to any symplectic
structure but rather plays a special role which will be discussed
in Sec. III A below. It should be also noted that in a case
when free charges or currents exist in the medium, the original
Maxwell equations of Sec. II A must be modified, which
can result either in a different expression for our analogous
Hamiltonian or in a breakdown of the Maxwell-Schrödinger
analogy as such. In this paper, we assume such charges and
currents to be sufficiently small and consider a leading-order
approximation.

Furthermore, it should be noticed the appearance of the
additional term in the Hamiltonian (13), ĤN ≡ −i�N Î =
−i�N

(
Î 0
0 Î

)
, which is essentially anti-Hermitian and pro-

portional to the identity operator. Due to the latter feature, it
belongs to the class of the Hamiltonian “gauge” terms, which
role’s discussion will be postponed until Sec. III F.

Thus Eqs. (10)–(13) represent the formal map between
Maxwell equations for dielectric linear media and the dif-
ferential equation of the Schrödingertype, which opens up
the possibility of using quantum mechanical notions (with
certain provisions of course) for the purposes of a theory
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of EM wave propagation inside different dielectric materials,
including waveguides.

B. Basic features of Hamiltonian

Let us consider now the operator (7). Its Hermitian
conjugate is given by

ĥ† = D̂†σ̂2 =
(

0 −L̂
†
eez×

L̂
†
mez× 0

)
, (15)

where

L̂†
e = ε∗ω − ω−1∇⊥ × 1

μ∗ ∇⊥ × , (16a)

L̂†
m = μ∗ω − ω−1∇⊥ × 1

ε∗ ∇⊥ × , (16b)

hence, it is clear that ĥ �= ĥ† even if the L operators are both
self-adjoint (which happens in the case μ = μ∗ and ε = ε∗,
which will be discussed in what follows), as L̂† now appears
on the right side of the curl. The only difference between the
case of real-valued ε and μ and the general one (when either
or both ε and μ are complex) is that the operator ĥ is pseudo-
Hermitian in the former case and strongly non-Hermitian in
the latter. The eigenvalues of a pseudo-Hermitian operator
are real-valued, whereas the ones of a general non-Hermitian
operator are complex. Indeed, the case of real ε and μ is a
special one because then

ĥ† =
(

0 −L̂eez×
L̂mez× 0

)
, ∀ ε,μ ∈ �, (17)

such that the following identity takes place:

ĥ†σ̂2 − σ̂2ĥ = D̂† − D̂ = 0, ∀ ε,μ ∈ �, (18)

which confirms that the operator ĥ is pseudo-Hermitian with
σ̂2 playing a role of the intertwining operator [6]. Alternatively,
using (9) and (10), one can check that the expectation value of
the operator σ̂2ĥ is real-valued when the values ε and μ are—
since in that case, the operator D̂ is self-adjoint, cf. Eq. (8).

Besides, we can also derive that

σ̂1ĥ = i

(
L̂e 0
0 −L̂m

)
, (19)

(σ̂1ĥ)† ≡ ĥ†σ̂1 = −σ̂1ĥ, ∀ ε,μ ∈ �, (20)

σ̂3ĥ = −ĥσ̂3 = −
(

0 ez × L̂m

ez × L̂e 0

)
, (21)

such that

{σ̂3,ĥ} = {σ̂3,σ̂2D̂} = σ̂2[D̂,σ̂3] = 0 (22)

and

[D̂,σ̂3] = [D̂†,σ̂3] = 0, ∀ ε,μ ∈ �. (23)

The last two equations become identities in the case of a
diagonal matrix D̂.

For further developments it will be convenient to know the
expectation values of the products of operators that involve ĥ,
as well as their relations to the EM fields. Using the formulas
above, we obtain

〈ĥ〉� = ω

N 2

∫
dxdy[εH∗

⊥ · (ez × E⊥) − μE∗
⊥ · (ez × H⊥)] − i

N 2

∫
dxdy[Ez(∇⊥ · E∗

⊥) + Hz(∇⊥ · H∗
⊥)]

= ω

N 2

∫
dxdy(εE[xH

∗
y] + μE∗

[xHy]) − i

N 2

∫
dxdy[Ez(∇⊥ · E∗

⊥) + Hz(∇⊥ · H∗
⊥)], (24)

〈σ̂1ĥ〉� = i
ω

N 2

∫
dxdy(ε|E⊥|2 − μ|H⊥|2 + ε∗|Ez|2 − μ∗|Hz|2), (25)

〈σ̂2ĥ〉� = 〈D̂〉� = ω

N 2

∫
dxdy(ε|E⊥|2 + μ|H⊥|2 − ε∗|Ez|2 − μ∗|Hz|2), (26)

〈σ̂3ĥ〉� = ω

N 2

∫
dxdy[εH∗

⊥ · (ez × E⊥) + μE∗
⊥ · (ez × H⊥)] + i

N 2

∫
dxdy[Ez(∇⊥ · E∗

⊥) − Hz(∇⊥ · H∗
⊥)

= ω

N 2

∫
dxdy(εE[xH

∗
y] − μE∗

[xHy]) + i

N 2

∫
dxdy[Ez(∇⊥ · E∗

⊥) − Hz(∇⊥ · H∗
⊥)], (27)

and 〈
∂

∂ω
(σ̂2ĥ)

〉
�

=
〈

∂

∂ω
D̂

〉
�

= 1

N 2

∫
dxdy(ε|E⊥|2 + μ|H⊥|2 + ε∗|Ez|2 + μ∗|Hz|2), (28)

and similarly for the adjoint operator:

〈ĥ†〉� = ω

N 2

∫
dxdy[μ∗H∗

⊥ · (ez × E⊥) − ε∗E∗
⊥ · (ez × H⊥)] + i

N 2

∫
dxdy[E∗

z (∇⊥ · E⊥) + H ∗
z (∇⊥ · H⊥)]

= ω

N 2

∫
dxdy

(
ε∗E∗

[xHy] + μ∗E[xH
∗
y]

) + i

N 2

∫
dxdy[E∗

z (∇⊥ · E⊥) + H ∗
z (∇⊥ · H⊥)], (29)
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〈σ̂1ĥ
†〉� = i

ω

N 2

∫
dxdy(μ∗|E⊥|2 − ε∗|H⊥|2) − i

ωN 2

∫
dxdy

(
1

ε∗ |∇⊥ · E⊥|2 − 1

μ∗ |∇⊥ · H⊥|2
)

, (30)

〈σ̂2ĥ
†〉� = ω

N 2

∫
dxdy(μ∗|E⊥|2 + ε∗|H⊥|2) − 1

ωN 2

∫
dxdy

(
1

ε∗ |∇⊥ · E⊥|2 + 1

μ∗ |∇⊥ · H⊥|2
)

, (31)

〈σ̂3ĥ
†〉� = − ω

N 2

∫
dxdy[μ∗H∗

⊥ · (ez × E⊥) + ε∗E∗
⊥ · (ez × H⊥)] − i

N 2

∫
dxdy[E∗

z (∇⊥ · E⊥) − H ∗
z (∇⊥ · H⊥)]

= ω

N 2

∫
dxdy(ε∗E∗

[xHy] − μ∗E[xH
∗
y]) − i

N 2

∫
dxdy[E∗

z (∇⊥ · E⊥) − H ∗
z (∇⊥ · H⊥)]. (32)

It is easy to see that some of these expectation values can be
related to the energy density quantities of a wave mode

〈σ̂2ĥ〉� = 〈D̂〉� = 4ω

N 2
(E⊥ − E∗

z ), (33)

〈L+(σ̂2ĥ)〉� = 〈L+D̂〉� = 8ω

N 2
E⊥, (34)

〈L−(σ̂2ĥ)〉∗� = 〈L−D̂〉∗� = 8ω

N 2
Ez, (35)

〈L+D̂〉� + 〈L−D̂〉∗� = 8ω

N 2
Etot, (36)

where L± = ω ∂
∂ω

± 1 is a differential operator with respect to
the frequency parameter, and

Ez = 1
4

∫
dxdy(ε|Ez|2 + μ|Hz|2), (37a)

E⊥ = 1
4

∫
dxdy(ε|E⊥|2 + μ|H⊥|2), (37b)

are, respectively, the longitudinal and transverse EM wave
energy densities, such that

Etot = E⊥ + Ez (38)

is the total energy density of a mode described by the state
vector (10). Finally, one can add to this list the transmitted
power Pz from Eq. (A8b).

C. Hilbert space and L-diagonal representation

Let us consider the following auxiliary eigenvalue problem:

L̂eF(e) = λeF(e), (39a)

L̂mF(m) = λmF(m), (39b)

where the eigenfunctions F(e),(m) are 2D vectors obeying the
normalization condition∫

dxdy(|F(e)|2 + |F(m)|2) = 1, (40)

as well as the boundary conditions—they must vanish either
outside the medium or at the transverse spatial infinity
|x|2 + |y|2 → +∞. The auxiliary eigenvalues are in general
complex-valued functions of z and ω, λ = λ(z,ω), which also

depend on the parameters inside the functions ε(x,y,z) and
μ(x,y,z). They can become real-valued in some cases, e.g.,
when the permittivity and permeability are both real-valued. In
the latter case, both L-operators become self-adjoint, therefore,
this eigenvalue problem reduces to that of the Sturm-Liouville
type.

Thus the total Hilbert space of our theory can be represented
as a direct sum of the function space of the eigenvectors
F(e),(m). These spaces store, separately from each other, all
electric and magnetic components of EM wave modes, which
are allowed by imposed boundary conditions. Their union
space thus contains the information about energy transfer
between electric and magnetic components for each mode, see
Appendix A for details. Below in Sec. IV B, we will see that the
auxiliary eigenvalues λ(e),(m) have distinct behaviors compared
to the familiar eigenvalues of Helmholtz-type equation and
their dispersion relations show the physics of waves under a
different light.

Further, in this representation, the operators (7) and (8) take
the form

D̂ =
(

λeÎ 0
0 λmÎ

)
= λ−σ̂3 + λ+Î, (41)

ĥ = σ̂2D̂ = iλ−σ̂1 + λ+σ̂2, (42)

where

λ± = 1
2 (λe ± λm), (43)

therefore, the total Hamiltonian (13) becomes

Ĥ = �wσ̂2

(
λeÎ 0
0 λmÎ

)
− i�w�N

(
Î 0
0 Î

)

= �w(iλ−σ̂1 + λ+σ̂2 − i�N Î)

= i�w(λeσ̂− − λmσ̂+ − �N Î), (44)

where σ̂± = 1
2 (σ̂1 ± iσ̂2). Thus, in this representation, the

Hamiltonian becomes a 4×4 matrix consisting of 2 × 2 blocks.

III. STATISTICAL MECHANICS OF WAVE MODES

What we have done in the previous section is merely a
way of rewriting Maxwell equations for waves in dielectric
media in the Schrödinger form (12). In this section we will
proceed with an important generalization: we go beyond
those equations and adapt the quantum-type density matrix
approach [35–41] for describing the propagation of EM waves
inside dielectric media. This will allow us to describe not only
separate wave modes (“pure states,” in quantum-mechanical
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terminology) or their superpositions (“entangled pure states”)
but also their statistical ensembles (“mixed states”). The latter
are crucial for introducing the dissipative effects since the
purity of the states is not necessarily preserved in presence of
dissipative environments [41,42]. More details will be given
in Sec. III A below, here we only note that one should not
confuse our approach with the Loudon microscopical QED-
type quantization of light in presence of matter [43,44], nor
our approach is directly related to the Nyquist-Callen(-Rytov)
approach to thermal fluctuational electrodynamics [45]. The
quantum-type statistics of wave modes we are going to
introduce here is an effective phenomenon which emerges due
to existence of the Maxwell-Schrödinger map and associated
quantum-type dynamics.

Furthermore, the main difference of the proposed approach
from the standard non-Hermitian quantum-statistical one
[35–41] is that the role of the time variable is played here by the
third coordinate, z/c. In other words, instead of time evolution
of quantum states the method will describe the distribution of
EM wave energy along the propagation axis. This, however,
does not pose much difference from the technical viewpoint,
and most of concepts can be borrowed and applied for the
purposes of the EM theory. Finally, due to the fact that in this
theory both the speed of light and effective Planck constant
are scale constants, from now on we work in units where
�w = � = c = 1.

A. Master equation

To begin with, if a Hamiltonian is a non-Hermitian operator,
then it can be decomposed into its Hermitian and anti-
Hermitian parts, respectively:

Ĥ = Ĥ+ + Ĥ− = Ĥ+ − i�̂, (45)

where we use the notations

Ĥ± ≡ 1
2 (Ĥ ± Ĥ†) = ±Ĥ†

±, (46)

and the Hermitian operator

�̂ ≡ iĤ− = �̂† (47)

is usually dubbed the decay operator. For instance, for the
Hamiltonian (13) one easily computes that

Ĥ+ = ĥ+ = 1

2
(σ̂2D̂ + D̂†σ̂2), (48a)

�̂ = Ĝ + �N Î = i

2
(σ̂2D̂ − D̂†σ̂2) + �N Î, (48b)

where we assume the notations from the previous section. This
decomposition means that within the total system, described
by Ĥ, one can single out the Hermitian subsystem, described
by Ĥ+, whereas the operator �̂ can be regarded as describing
the energy exchange of this subsystem with its environment.
The question of whether the system Ĥ itself can be a subsystem
of a more general, Hermitian, system, is not considered here,
since it would bring us outside the scope of this paper.

The quantum-statistical approach means here that the
“evolution” (distribution along the propagation direction) of
such a system is described by the (reduced) density operator,
which contains information not only about superpositions of
the EM wave modes but also about the statistical uncertainty

of their distribution inside a medium. Such uncertainty can be
caused, for instance, by the interaction of the wave with its
environment, which usually happens inside realistic dielectric
media. An example would be the thermal randomness that
arises in the statistical mixture of large numbers of EM wave
modes, each with a certain classical probability, switching
from one to another due to thermal fluctuations. In such cases,
unpolarized light (“mixed state”) appears, which is in fact not
the plain superposition of single modes (“pure states”), but
their statistical ensemble. Thus the density matrix contains
all the information necessary to calculate any measurable
property of polarized or unpolarized radiation propagating
inside realistic media with or without dissipation. Besides, one
of its advantages is that for each mixed state there can be many
statistical ensembles of pure states but only one density matrix.

In our case, a density operator has a few distinctive features
when it comes to its interpretation. Firstly, it is a reduced
density operator which means that environment’s degrees
of freedom have been averaged out, one deals only with
their cumulative effect upon the subsystem described by
such a density operator. Furthermore, the Hilbert space of
the Hamiltonian (13) has a block structure where one block
corresponds to a set of all electric components of EM wave
modes and other block does to all magnetic ones, see Sec. II C.
Thus the off-diagonal mnth components of the density matrix
describe the transition between the electrical component of mth
mode and magnetic component of nth mode, where indexes
belong to different blocks, whereas the diagonal components
are related to integral energy measures of either electrical
or magnetic components of a single mode, see Sec. III C,
Eqs. (105) and (106), and Appendix A.

An equation for the density matrix can be directly derived
from any equation that has the Schrödingerform, see, for
instance, Ref. [35]. Using Eq. (12), one can show that our
NH system is fully described by the so-called non-normalized
density operator ρ̂ ′, which is defined as a solution of the
operator equation of the Liouvillian type,

d

dz
ρ̂ ′ = i(ρ̂ ′Ĥ† − Ĥρ̂ ′) = −i[Ĥ+,ρ̂ ′] − {�̂,ρ̂ ′}, (49)

where square and curly brackets denote the commutator and
anticommutator, respectively. One can see that, as z varies, the
trace of ρ̂ ′ is not conserved,

d

dz
tr ρ̂ ′ = −2〈�̂〉′, (50)

where we denoted

〈�̂〉′ = tr(�̂ ρ̂ ′), (51)

therefore, ρ̂ ′ describes a case when subsystem’s integrity will
eventually be completely broken—either through the complete
decay (trρ̂ ′ vanishes at large z) or critical instability (trρ̂ ′ blows
up at large z). In both cases, the subsystem gets destroyed very
fast, usually at an exponential rate.

This is definitely not what always happens in reality,
therefore in Ref. [36] we introduced the operator

ρ̂ = ρ̂ ′/tr ρ̂ ′, (52)

which is automatically normalized (the physical meaning of
this procedure will be discussed later), therefore, it can be
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used for computing expectation values, correlation functions
and other observables.

In principle, in Eq. (49) one can change from ρ̂ ′ to ρ̂, and
obtain the equation for the normalized density operator itself

d

dz
ρ̂ = −i[Ĥ+,ρ̂] − {�̂,ρ̂} + 2〈�〉ρ̂, (53)

where the notation

〈A〉 = tr(ρ̂ Â) (54)

will be used for denoting the expectation value of any given
operator Â with respect to the normalized density operator.

From the mathematical point of view, Eq. (53) is both
nonlocal and nonlinear with respect to the density operator
ρ̂. Though this does not pose a significant problem from the
technical point of view, since one can always use Eq. (52) as
an ansatz for getting a linear equation. Thus Eqs. (49)–(53),
together with the definition for computing the expectation
values (54), represent the map that allows us to describe
the distribution of system (45) along z direction in terms of
the matrix differential equation, whose mathematical structure
resembles the one of the conventional master equations of
the Lindblad kind [46]. According to this map, the Hermitian
operator Ĥ+ = (Ĥ + Ĥ†)/2 takes over a role of the system’s
Hamiltonian [cf. the commutator term in Eqs. (49) or (53)
above] whereas the decay operator �̂ = i(Ĥ − Ĥ†)/2 induces
additional terms in the evolution equation that are supposed
to account for NH effects. In other words, a theory with the
non-Hermitian Hamiltonian Ĥ is dual to a theory with the
Hermitian Hamiltonian (Ĥ + Ĥ†)/2 but with the modified
evolution equation, which thus becomes the master equation of
a special kind. This equivalence not only reveals new features
of the dynamics driven by non-Hermitian Hamiltonians but
also facilitates the application of such Hamiltonians for open
quantum systems [37].

From the viewpoint of theory of open quantum systems, the
equation for the non-normalized density operator ρ̂ ′ effectively
describes the subsystem represented by the Hamiltonian Ĥ+
with the effect of environment represented by �̂. If the
“evolution” (energy distribution along z direction) is governed
by ρ̂ ′, which trace is not preserved, then this subsystem
“eventually” (at some value of z) becomes critically unstable
or disappears. Thus the post-selecting procedure (52) can be
interpreted as follows: in order to maintain the probabilistic
interpretation of ρ̂ (as well as to ensure that the subsystem
exists at every point z), one must neglect the amount of
the energy that is not associated with the original subsystem
Ĥ+ anymore. Consequently, the equation for the normalized
density operator ρ̂ effectively describes the subsystem Ĥ+
together with the effect of environment �̂ and the energy flow
between this subsystem and environment.

To summarize, the normalized ρ̂ and non-normalized ρ̂ ′
density operators describe, at a given Hamiltonian and initial
and boundary conditions, two types of EM wave evolution.
The former operator applies if the wave’s evolution is know-
ingly sustainable; in this case, the operator ρ̂ ′ contains the
information about the above-mentioned energy flow between
the system and environment, which can be extracted using
auxiliary techniques (such as the entropy, see Sec. III E below).
If the normalized density operator does not exist or it has

unphysical properties (e.g., singularity at some value of z)
then one is left with the nonsustainable evolution described
solely by the operator ρ̂ ′. The choice between these types of
evolution is dictated by the physical context: it depends on
values of Hamiltonian’s parameters as well as on boundary
and initial conditions for master equations, which specify one
or another configuration.

B. Initial conditions

Obviously, any Liouvillian-type dynamics implies that the
equations for density operators must be supplemented with
initial conditions. In our case, a few subtle points exist that
must be taken into account. First, since the role of time is
played by the z coordinate here, the initial condition at the
surface z = z0 is, strictly speaking, a boundary condition. For
example, it is convenient to choose this surface to be the
interface between a medium and the rest of space, which is
orthogonal to the propagation direction. Thus the choice must
be dictated by geometrical properties of the material layout.

The second subtlety is that, in our case, we have two
possible types of evolution, described by two equations—for
the non-normalized ρ̂ ′ and normalized ρ̂ density operators—
Eqs. (49) and (53), respectively. However, it is Eq. (49), which
must be solved in the first place in both cases, therefore the
corresponding initial/boundary condition at the surface z = z0

must be specified as

ρ̂ ′|z=z0 = ρ̂ ′
0, (55)

whereas for the normalized density operator, we would
automatically obtain

ρ̂|z=z0 = ρ̂ ′
0/tr ρ̂ ′

0, (56)

according to Eq. (52). Note that from a physical point of view,
the condition (55) is not equivalent to ρ̂(z = z0) = ρ̂ ′

0 since
the operator ρ̂ ′

0 does not necessarily have a unit trace, hence
fixing its trace’s value would require invocation of additional
physical considerations.

The third subtlety arises when dealing with pure states,
i.e., states whose density matrices �̂ obey the idempotency
condition �̂2 = �̂. When dealing with Hermitian Hamiltoni-
ans, it is often convenient to choose a pure state as an initial
one because pure states have simpler structure and are easier to
prepare. However, in our case, the original incident wave is not
necessarily in a pure state, therefore, not all initial/boundary
conditions are admissible. Besides, even if the operator ρ̂ ′

0 is
pure then it does not necessarily mean that the operator ρ̂ ′

0/tr ρ̂ ′
0

will also be pure.
To summarize, when dealing with EM wave’s propagation

in media within the framework of the statistical approach,
there is no “conventional” set of values of ρ̂ ′

0, instead these
must be decided on a case by case basis, depending on the
physical context. Besides, since the Hamiltonian (13) depends
not only on permittivity and permeability but also on the values
of EM fields, the properties of the whole system depend both
on the properties of a medium and on the characteristics of
the original (incident) wave. Therefore one must always refer
to the total “medium+wave” configuration when describing
properties of our system.
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C. Averages and observables

The simplest averages one can start from are the primary
ones, by which we imply the expectation values of the Pauli
operators,

〈σa〉 = tr(ρ̂σ̂a) = 〈σa〉′/trρ̂ ′, (57)

〈σa〉′ = tr(ρ̂ ′σ̂a), (58)

where a = 1,2,3; here 〈σa〉 are the expectation values for
sustainable evolution (see Sec. III A), whereas 〈σa〉′ are the
ones for nonsustainable evolution. In the theory of EM wave
propagation, these averages would be related to the energy
flow between the wave modes and a dielectric medium, see
Appendix A. The primary averages are also useful when one
needs to decompose a given density operator in terms of the
Pauli operators.

(a) Main equations. Using Eqs. (48)–(54), one easily
obtains the equations for the averages

d

dz
〈σ1〉′ = 〈σ̂3D̂ + D̂†σ̂3〉′ − 2�N 〈σ1〉′, (59a)

d

dz
〈σ2〉′ = i〈D̂† − D̂〉′ − 2�N 〈σ2〉′, (59b)

d

dz
〈σ3〉′ = −〈σ̂1D̂ + D̂†σ̂1〉′ − 2�N 〈σ3〉′, (59c)

d

dz
tr ρ̂ ′ = i〈D̂†σ̂2 − σ̂2D̂〉′ − 2�N trρ̂ ′, (59d)

and

d

dz
〈σ1〉 = 〈σ̂3D̂ + D̂†σ̂3〉 + i〈σ̂2D̂ − D̂†σ̂2〉〈σ1〉, (60a)

d

dz
〈σ2〉 = i〈D̂† − D̂〉 + i〈σ̂2D̂ − D̂†σ̂2〉〈σ2〉, (60b)

d

dz
〈σ3〉 = −〈σ̂1D̂ + D̂†σ̂1〉 + i〈σ̂2D̂ − D̂†σ̂2〉〈σ3〉, (60c)

where we have used the notations 〈Â〉′ = tr(ρ̂ ′Â). For instance,
in the L-representation (see Sec. II C), in matrix notations these
equations become, respectively,

1

2

d

dz

⎛
⎜⎜⎜⎝

〈σ1〉′
〈σ2〉′
〈σ3〉′
trρ̂ ′

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−�N 0 R+ R−
0 −�N −I− −I+

−R+ I− −�N 0

R− −I+ 0 −�N

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

〈σ1〉′
〈σ2〉′
〈σ3〉′
trρ̂ ′

⎞
⎟⎟⎟⎠ (61)

and

1

2

d

dz

⎛
⎝〈σ1〉

〈σ2〉
〈σ3〉

⎞
⎠ =

⎛
⎝ 〈Ĝ〉 0 R+

0 〈Ĝ〉 −I−
−R+ I− 〈Ĝ〉

⎞
⎠
⎛
⎝〈σ1〉

〈σ2〉
〈σ3〉

⎞
⎠ +

⎛
⎝ R−

−I+
0

⎞
⎠,

(62)

where

〈Ĝ〉 ≡ i

2
〈ĥ − ĥ†〉 = −R−〈σ1〉 + I−〈σ2〉 (63)

and the matrix components

R± = 1

2
(λ± + λ∗

±) = 1

4
[λe + λ∗

e ± (λm + λ∗
m)], (64a)

I± = i

2
(λ± − λ∗

±) = i

4
[λe − λ∗

e ± (λm − λ∗
m)], (64b)

are real-valued numbers; the last two equations can be inverted
and written in the form

Re(λe) ≡ 1

2
(λe + λ∗

e ) = R+ + R−, (65a)

Im(λe) ≡ 1

2i
(λe − λ∗

e ) = −I+ − I−, (65b)

Re(λm) ≡ 1

2
(λm + λ∗

m) = R+ − R−, (65c)

Im(λm) ≡ 1

2i
(λm − λ∗

m) = −I+ + I−, (65d)

which will be also useful in what follows.
Correspondingly, the “steady-state” (extremum) values of

the primary averages for sustainable evolution can be found as
a solution of the quadratic equations⎛

⎝ 〈Ĝ〉s 0 R+
0 〈Ĝ〉s −I−

−R+ I− 〈Ĝ〉s

⎞
⎠
⎛
⎝〈σ1〉s

〈σ2〉s
〈σ3〉s

⎞
⎠ =

⎛
⎝−R−

I+
0

⎞
⎠, (66)

where

〈Ĝ〉s = −R−〈σ1〉s + I−〈σ2〉s (67)

is a “steady-state” (extremum) value of the average of the Ĝ
operator.

(b) Energy density. By analogy with Eqs. (33)–(38), the
wave’s energy density averaged over the statistical ensemble
represented by ρ̂ can be written as

E⊥ = N 2

8ω
〈L+D̂〉, (68)

Ez = N 2

8ω
〈L−D̂〉∗, (69)

E tot = E⊥ + Ez, (70)

where the differential operators L± = ω ∂
∂ω

± 1 were already
defined after Eq. (36), and Ez, E⊥ and E tot are, respectively,
longitudinal, transverse and total energy densities. Thus the
ratio

�E = Ez

E⊥
= 〈L−D̂〉∗

〈L+D̂〉 (71)

describes how much of the averaged wave energy is stored in
the longitudinal component as compared to the transverse one.
Other related ratios can be expressed via �E :

�⊥ ≡ E⊥
E tot

= 1 − Ez

E tot
= 1

1 + �E
, (72)

and so on.
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Besides, using the corresponding formulas from
Appendix A, one can add to this list the following energy-
related identities

U (e)
⊥ = N 2〈ê〉 = N 2

2
(1 + 〈σ̂3〉), (73)

U (m)
⊥ = N 2〈ĝ〉 = N 2

2
(1 − 〈σ̂3〉), (74)

whereU (e)
⊥ andU (m)

⊥ are, respectively, the electric and magnetic
components of the transverse energy density averaged over
the ensemble ρ̂, in absence of the effect of the medium:
U = E |ε,μ→1. Thus, from the viewpoint of conventional
electrodynamics, the ratio

�U = U (e)
⊥

U (m)
⊥

= 〈ê〉
〈ĝ〉 = 1 + 〈σ̂3〉

1 − 〈σ̂3〉 (75)

describes how much of the averaged wave energy would be
stored in the electric component as compared to the magnetic
one if the medium has been replaced by a vacuum. In case of a
nonsustainable evolution (see Sec. III A), these formulas stay
intact except that the averages must be computed with respect
to the operator ρ̂ ′ not ρ̂.

(c) Transmitted power. From the equations for the primary
averages one can deduce an important quantum-statistical
effect that occurs during the EM wave’s propagation in a
medium. In order to see this, let us introduce the total
transmitted power Pz of the EM wave. If the wave’s evolution
is sustainable, as defined in Sec. III A, one can formally write
that

Pz ≡ 1

4

〈∫
dxdy[(ez × E∗

⊥) · H⊥ + c.c.]

〉
, (76)

where the bar denotes the average taken over the statistical
ensemble represented by the normalized density operator ρ̂ (in
case of sustainable evolution) or the non-normalized density
operator ρ̂ ′ (in case of nonsustainable evolution).

In the latter case, we can define a value

P ′
z = N 2

4
〈σ2〉′, (77)

by analogy to the single-mode power (A8b). One can derive
that

d

dz
P ′

z = − i

4
N 2〈D̂ − D̂†〉′, (78)

so its right-hand side contains the expected term which van-
ishes in case of real permittivity and permeability, cf. Eq. (18).
Therefore P ′

z would be conserved in case of real-valued ε

and μ.
Furthermore, in case of a sustainable evolution, using

Eq. (57), one can similarly define

Pz = N 2

4
〈σ2〉, (79)

such that Pz = P ′
z/trρ̂ ′. Using Eq. (60b), one obtains the rate

of power distribution along the propagation direction:

d

dz
Pz = 2〈�̂〉Pz − i

4
N 2〈D̂ − D̂†〉, (80)

where

〈�̂〉 = 〈Ĝ〉 + �N = i

2
〈σ̂2D̂ − D̂†σ̂2〉 + �N (81)

is an average value of the decay operator (48b). In the L

representation, Eq. (80) reads

d

dz
Pz = 2

(
�N − R−〈σ1〉 + 4

N 2
I−Pz

)
Pz

−1

2
N 2(I−〈σ3〉 + I+), (82)

for which derivation we have used Eqs. (41), (63), and (79).
One can see that the right-hand side of Eq. (80) contains the
expected term (proportional to 〈D̂ − D̂†〉) but it also contains
the additional term 2〈�̂〉Pz, which can remain nonzero even
if both ε and μ are real. This term describes the purely
quantum-statistical nonlinear effect—the additional channel
of energy’s gain or loss (depending on a sign of �̂) that
occurs during the sustainable wave evolution. This effect is yet
another manifestation of the sustainability-supporting energy
flow, described by the last term in Eq. (53). In case of a weakly
coupled environment, the magnitude of this effect must be
small but nevertheless viable for quantum EM devices and
precise measurements.

To summarize, the transmitted power’s behavior is different
for two types of evolution discussed in Sec. III A above. This
opens the possibility to determine experimentally which type
of evolution happens in a given physical configuration.

D. Correlation functions

Here we consider only the case when wave evolution is
described by the normalized density operator, the other type
can be easily considered by analogy. Apart from the plain
averages of operators (54) taken in one point of z, it is often
necessary to consider correlations between different or the
same operators evaluated in the two or more points zn > · · · >

z1 � z0, which was done in general NH case in Ref. [37]. In
case of a two-point correlation function, the definition adapted
for our purposes would be

Cξχ (z1,z2) ≡ 〈χ (z2)ξ (z1)〉 = tr{χ̂K(z2,z1)ξ̂ ρ̂(z1)}
= tr{χ̂K(z2,z1)ξ̂K(z1,z0)ρ̂(z0)}, (83)

where χ̂ and ξ̂ are operators in the Schrödinger representation
and K is the (generalized) evolution operator defined as
follows. When K(zb,za) is applied to anything on its right, it
evolves it from the point za to the point zb using Eq. (53).
Hence, in the expression above, the first application of K
evolves ρ̂ from the point z0 to z1 as a solution of (53).
The second application of the evolution operator acts on the
operator ξ̂ ρ̂(z1) and propagates it from the initial point z1

until the final point z2, using Eq. (53). Equation (83) has two
obvious properties: it reduces to the conventional definition
of a correlation function when �̂ = 0, and to the normalized
average of χ̂ , given by Eq. (54), when ξ̂ is the identity operator.

Thus the definition (83) is based on the spatial distribution
of the density matrix governed by Eqs. (50) and (52), or (53).
Naturally, the nonlinearity of the latter may invalidate the
properties of the correlation function, which are related to
linearity. Moreover, the linearizing ansatz (52), often adopted
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in calculations, can be applied only if the input of the evolution
operator K has a unit trace. Otherwise, one should use other
analytical (or numerical) approaches.

The generalization of the definition of correlation func-
tions (83) to a multipoint case is straightforward. First, we
introduce the ordered sets of third-axis coordinates zn > · · · >

z1 � z0 and sm > · · · > s1 � z0, as well as their ordered union
{τ }: τu > · · · > τ1 � z0 where u � n + m. Next, for any set
of operators χ̂j (j = 1, . . . ,m) and ξ̂k (k = 1, . . . ,n) in the
Schrödinger picture, one can define the superoperator �l

(l = 1, . . . ,u), cf. Refs. [34,47], through its action upon the
operator D̂:

�lD̂ =
⎧⎨
⎩

ξ̂kD̂ if τl = zk �= sj for some k and all j,

D̂χ̂j if τl = sj �= zk for some j and all k,

ξ̂kD̂χ̂j if τl = zk = sj for some k and j,

(84)
and for our case the operator D̂ would be equal to ρ̂. Then one
can define the multi-point correlation functions in the standard
way:

C(z1, . . . ,zn; s1, . . . ,sm)

≡ 〈χ1(s1) . . . χm(sm)ξn(zn) . . . ξ1(z1)〉
= tr{�uK(τu,τu−1)�u−1K(τu−1,τu−2)

. . . �1K(τ1,z0)ρ̂(z0)}, (85)

where the evolution operator K is defined above.

E. Entropy

Let us consider first the sustainable case—when wave evo-
lution is described by the normalized density operator. Apart
from purity trρ̂2 and linear entropy SL = 1 − trρ̂2, there exists
another characteristic value describing the amount of disorder
and statistical uncertainty in a system—the quantum entropy
of the Gibbs type. In Ref. [40], it was shown that for a system
driven by NH Hamiltonian one can introduce two types of
quantum entropy: the conventional Gibbs-von-Neumann one

SvN ≡ −kB〈ln ρ̂〉 = −kB tr(ρ̂ ln ρ̂), (86)

and the NH-adapted Gibbs-von-Neumann one

SNH ≡ −kB〈ln ρ̂ ′〉 = −kB tr(ρ̂ ln ρ̂ ′) = −kB

tr(ρ̂ ′ ln ρ̂ ′)
tr ρ̂ ′ , (87)

where kB is the Boltzmann constant. The two notions of
entropy are related by the formula

SNH = SvN − kB ln (tr ρ̂ ′), (88)

therefore, the difference between SNH and SvN is a measure
of deviation of tr ρ̂ ′ from unity. One can see that the
entropy SNH combines both the normalized and “primordial”
(non-normalized) density operators, and thus can signal the
expected thermodynamic behavior of an open system. The
entropy SNH also seems to be more suitable for describing
the gain-loss processes that are related to the nonconservation
of entire probability sample space measure, since it contains
information not only about the conventional von Neumann
entropy but also about the trace of the operator ρ̂ ′, according
to the relation (88). Assuming that SvN is bound at large
times, the NH entropy grows when tr ρ̂ ′ decreases, also it
takes positive values if tr ρ̂ ′ < 1 and negative ones otherwise.

Hence one can say that in our case SNH takes into account
the statistical uncertainty, which comes from the flow of EM
energy between the wave and its environment.

As for the case of nonsustainable evolution, governed by
the non-normalized density operator, one can only define the
Gibbs-von Neumann entropy

S ′
NH ≡ −kB〈ln ρ̂ ′〉′ = −kB tr(ρ̂ ′ ln ρ̂ ′), (89)

and the linear entropy S ′
L = 1 − trρ̂ ′2.

F. Hamiltonian “gauge” transformations

One can see that the last term ĤN of the Hamilto-
nian operator (13) is proportional to the identity operator,
therefore, one could wonder what kind of physics can be
described by such terms. Expanding the discussions presented
in Refs. [36,37,40], let us consider the following “shift”
transformation of the decay operator

�̂ �→ �̂ = �̂ + 1
2 �wα(z)Î, (90)

where α(z) is an arbitrary real-valued function. This transfor-
mation is similar to the transformation

Ĥ �→ Ĥ = Ĥ + c0Î, (91)

c0 being an arbitrary complex number, which is the non-
Hermitian generalization of the energy shift in conventional
quantum mechanics. Therefore, in Refs. [36,37], it was called
the “gauge” transformation of the Hamiltonian, whereas the
terms of the type c0Î can be called the “gauge” terms.

By direct substitution one can show that the equation (53)
is invariant under the transformation (90), therefore, one
immediately obtains

ρ̂ = ρ̂, SvN = SvN, (92)

therefore the von Neumann entropy is not affected by the trans-
formation (90). One can see that any information regarding the
“shift” of the total non-Hermitian Hamiltonian is lost if one
deals solely with the normalized density operator.

However, equation (50) is not invariant under the trans-
formation (90). If both Ĥ+ and �̂ commute with z then,
substituting (90) into (50), we obtain that the non-normalized
density acquires an exponential factor:

ρ̂ ′ = ρ̂ ′ exp

(
−

∫ z

0
α(ζ ) dζ

)
, (93)

such that, recalling Eq. (88), one obtains

SNH = SvN − kB ln tr ρ̂ ′ = SNH + kB

∫ z

0
α(ζ ) dζ, (94)

which indicates that any information about the “shift” term in
Eq. (91) in the total non-Hermitian Hamiltonian, which was
lost during the normalization procedure (52), can be recovered
by means of the NH entropy.

IV. TWO-LEVEL MODELS

As one can see from Sec. II and Appendix A, the features
of two-level systems (TLS) have sufficiently tight links with
the EM wave’s propagation inside media. Thus, in our case,
the TLS approach is not just an approximation, but a simple
way to construct the models that reflect main symmetries and
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statistical properties of a full theory, yet they are not too
complex to be studied analytically. In essence, this approach is
responsible for describing the physics of the energy transfers
between electric and magnetic components of EM wave, which
propagates in the medium and interacts with its environment.
Indeed, from the L-representation, described in Sec. II C,
one can see that the features of the electrical and magnetic
components of each mode are separately encoded in the
eigenvalues λe and λm (which can differ from mode to mode,
and can be complex-valued in general), therefore, an appro-
priate two-level model would describe quantum transitions
between them, as well as any related (quantum-)statistical and
dissipative effects that may occur.

A. Generic model with constant parameters

With the use of Sec. II C, for a given mode, in the L

representation, we can write the following Hamiltonian:

Ĥ = ĥ − i�N Î = i

(−�N −λm

λe −�N

)
, (95)

ĥ = σ̂2D̂ = iλ−σ̂1 + λ+σ̂2 =
(

0 −iλm

iλe 0

)
, (96)

where σ̂ ’s are the standard 2×2 Pauli matrices, and

D̂ = λ−σ̂3 + λ+Î =
(

λe 0
0 λm

)
, (97)

and the λ’s notations of Sec. II C are implied. The eigenvalues
λe,m become z-independent if one assumes that the permittivity
and permeability are functions of the transverse coordinates
only. It means that the waveguide’s material possesses, at least,
one translational symmetry—along the direction of wave’s
propagation (i.e., z axis), which is a case for a large class
of optical fibers, long scatterers of constant cross-section, and
integrated, nanophotonic and plasmonic waveguides. Note that
in general, coefficient �N , as well as N , can be a function
of z, according to Eqs. (9) and (14). However, because the
EM wave’s propagation inside the above-mentioned materials
results in the fields’ dependence on z being of an exponential
type, the integral (9) becomes dominated by an exponential
function of z; therefore the coefficient �N can be assumed
constant in the leading approximation (in many cases, exactly
constant or even zero). Thus here we assume the components
of the matrix (95) being constant but otherwise free parameters
(their specific values can be always found for a given mode).

As in Sec. III A, the Hamiltonian (95) can be easily
decomposed into self-adjoint and skew-adjoint parts to acquire
the form (45), with

Ĥ+ = ĥ+ = 1

2
(σ̂2D̂ + D̂†σ̂2) = I−σ̂1 + R+σ̂2

=
(

0 − i
2 (λ∗

e + λm)
i
2 (λe + λ∗

m) 0

)
, (98a)

�̂ = Ĝ + �N Î = i

2
(σ̂2D̂ − D̂†σ̂2) + �N Î

= −R−σ̂1 + I+σ̂2 + �N Î

=
(

�N − 1
2 (λ∗

e − λm)
− 1

2 (λe − λ∗
m) �N

)
, (98b)

where the notations (64) are assumed.

(a) Eigenvalues and singular points. The eigenvalues of the
Hamiltonian (95) are

�± = ±
√

λe

√
λm − i�N , (99)

therefore, the “energies” and “resonance” (half-)widths (we
use quotes because of working within the framework of the
Maxwell-Schrödinger analogy) are given, respectively, by

E± ≡ Re(�±) = ±Re(
√

λe

√
λm), (100a)

�± ≡ Im(�±) = −�N ± Im(
√

λe

√
λm), (100b)

such that �± = E± + i�±.
The necessary condition for a singular point (SP) is when

the two eigenvalues coalesce (if corresponding eigenfunctions
also coincide then such a point called exceptional). For our
model, this results in the following condition:

λeλm = 0, (101)

which is equivalent to two relations

Re(λe)Re(λm) − Im(λe)Im(λm) = 0, (102a)

Im(λe)Re(λm) + Re(λe)Im(λm) = 0, (102b)

where the formulas (65) are implied. These relations narrow
the set of all SP-compatible eigenvalues’ components,

{λ}c = {Re(λe), Im(λe), Re(λm), Im(λm)}, (103)

down to seven possible combinations

{λ}(0)
c = {0, 0, 0, 0}, (104a)

{λ}(Ia)
c = {Re(λe), 0, 0, 0}, (104b)

{λ}(Ib)
c = {0, Im(λe), 0, 0}, (104c)

{λ}(Ic)
c = {0, 0, Re(λm), 0}, (104d)

{λ}(Id)
c = {0, 0, 0, Im(λm)}, (104e)

{λ}(IIa)
c = {Re(λe), Im(λe), 0, 0}, (104f)

{λ}(IIb)
c = {0, 0, Re(λm), Im(λm)}, (104g)

where the nonzero components can be any real numbers. Thus
this results in the simplest classification of eigenvalues λe,m

which tells us that for a singular point to exist, at least one of
the eigenvalues must vanish. In other words, our system (95)
avoids level crossing unless at least one of its matrix off-
diagonal components vanishes.

(b) Density matrix. Due to the completeness of Pauli spin
operators in two-dimensional Hilbert space, the exact solutions
of the master equations for the density operators of the system
can be searched in the form

ρ̂ ′ = 1

2

(
trρ̂ ′ Î +

3∑
k=1

〈σk〉′ σ̂k

)
, (105)

ρ̂ ≡ ρ̂ ′

trρ̂ ′ = 1

2

(
Î +

3∑
k=1

〈σk〉σ̂k

)
, (106)

where the averages 〈σk〉′ and 〈σk〉 satisfy Eqs. (61) and (62),
respectively. Notice that Eqs. (62), hence the normalized
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density ρ̂ and related mean values, do not depend on �N ,
as discussed in Sec. III F.

Further, Eqs. (61) are primary equations to solve, and they
must be supplemented with the “initial” (boundary) conditions.
Following Sec. III B, we impose

ρ̂ ′|z=0 = ρ̂ ′
0, (107)

where the matrix ρ̂ ′
0 describes the state which corresponds to

the EM wave at the boundary of a medium (assuming that the
latter occupies the region z � 0).

For instance, one can assume that the wave is originally
(an instant before entering a medium) in a pure state with
respect to the density ρ̂ ′. This means that the matrix ρ̂ ′

0 must
be idempotent:

ρ̂ ′2
0 = ρ̂ ′

0. (108)

However, as mentioned in Sec. III B, there is still a certain
ambiguity because the trace of ρ̂ ′

0 does not necessarily equal
to one. Therefore one must differentiate the following two
cases:

(1) trρ̂ ′
0 = 1. Then this operator can be parametrized using

the Bloch sphere (such a parametrization is also of interest in
the coupled mode theory [48]):

ρ̂
′(1)
0 =

(
sin2(θ0/2) 1

2 eiφ0 sin θ0
1
2 e−iφ0 sin θ0 cos2(θ0/2)

)

= 1

2
[Î + sin θ0(cos φ0 σ̂1 − sin φ0 σ̂2) − cos θ0σ̂3], (109)

where we use the notations from Appendix B. Notice that in
this case,

ρ̂(1)
∣∣
z=0 = ρ̂

′(1)
0

/
tr ρ̂

′(1)
0 = ρ̂

′(1)
0 (110)

as well.
(2) trρ̂ ′

0 �= 1. One can easily show that the only nontrivial
2×2 Hermitian matrix with a nonunit trace, which satisfies the
property (108), is the identity matrix:

ρ̂
′(2)
0 = Î . (111)

Notice that in this case the normalized operator

ρ̂(2)
∣∣
z=0 = ρ̂

′(2)
0

/
trρ̂ ′(2)

0 = 1
2 Î (112)

is neither equal to ρ̂
′(2)
0 nor idempotent (pure). The latter

means that ρ̂
(2)
0 describes the mixed state—in which there is

an equal probability to find the system in either of the basis
states ê and ĝ defined in Appendix B. To summarize, for
practical computations in the two-level models, one can choose
boundary conditions of either (109) type or given by Eq. (111),
which correspond to the states, which are, respectively, either
pure or classical-type mixtures with respect to ρ̂.

B. Homogeneous medium with constant cross-section area and
real frequency-independent permittivity and permeability

Let us now consider the special case of the model described
in Sec. IV A, for which ε and μ are real-valued constants:

μ = const, ε = n2/μ = const, (113)

where n = √
εμ is a relative refractive index between the

medium and physical vacuum.

(a) Hamiltonian. In this case, the operators (5) and (97)
are Hermitian, therefore constants λe and λm are real-valued.
Moreover, Eqs. (39) can be exactly solved by means of the
plane-wave ansatz. When using the latter for a medium with a
finite-size cross-section we assume that either the cross-section
area is large enough to neglect boundary near-field effects, or
the fields inside the medium can be matched with the fields
outside it, for example those which decay at spatial infinity,
and one can find a solution of Eqs. (39) by means of the
Fourier or Laplace transforms. This matching can be achieved
by imposing suitable conditions across the medium’s surface
or interface, for instance one can assume the smoothness
of fields across this surface. Because we are dealing with
the Maxwell-Schrödinger analogy, this matching would be
somewhat similar to the quantum-mechanical problem of a
particle in a finite potential well.

One can derive that

λe = εω − |k⊥|2
μω

= εω

[
1 −

( |k⊥|
nω

)2]
, (114a)

λm = μω − |k⊥|2
εω

= μω

[
1 −

( |k⊥|
nω

)2]
, (114b)

where |k⊥| =
√

k2
x + k2

y is the transverse wave number. Corre-

spondingly, the absolute value of the transverse phase velocity
of wave is

vp = ω/|k⊥|. (115)

It is convenient to express this wave number in terms of the
frequency at which the eigenvalues vanish:

ω0 = |k⊥|/n, λe,m|ω=ω0 = 0, (116)

and rewrite Eqs. (114) in the form

λe = εω̄, (117a)

λm = μω̄, (117b)

and

vp = ω̃/n, (118)

where we have denoted

ω̄ = ω

(
1 − ω2

0

ω2

)
= ω0

(
ω̃ − 1

ω̃

)
, (119)

and ω̃ = ω/ω0. Quantity ω0 can be interpreted as the frequency
at which, for a given k⊥, there is no “evolution” along z axis;
this corresponds to a wave propagating normal to the z-axis in
the xy plane [49]. In our plane-wave ansatz, this can be related
to the light-line limit, which is a tenet of the coupling between
small-scale structures and the far-field, notably in all kinds of
nano-objects and in bounded periodic media [50].

Further, one can show that for this model the functional (9)
becomes

N 2 → N 2
0 = A(|E⊥(0)|2 + |H⊥(0)|2), (120)

where E⊥(0) = E⊥|x=y=z=0, similarly for H⊥, and A is the
cross-section area. If we assume the latter being independent
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of z then, according to Eq. (14),

�N = 0, (121)

and the Hamiltonian has the form (45), with

Ĥ+ = 1

2
{σ̂2, D̂} = λ+σ̂2 =

(
0 −iλ+

iλ+ 0

)
, (122a)

�̂ = i

2
[σ̂2, D̂] = −λ−σ̂1 =

(
0 −λ−

−λ− 0

)
, (122b)

where Eqs. (64) have been used, and

λ± = 1
2h±ω̄, (123)

where h± = ε ± μ.
Further, according to Eq. (99), the eigenvalues of the

Hamiltonian (122) are

�± = ±nω̄ = ±nω
(
1 − ω2

0

/
ω2

)
, (124)

from which one can see that the levels cross at ω = ω0,
where both eigenvalues vanish. Thus, for ω0 �= 0, the Hamilto-
nian (122) becomes singular at ω = 0 and vanishes at ω = ω0.
At ω0 = 0, the energy becomes proportional to the frequency,
similarly to the quantum harmonic oscillator, see Fig. 3.

(b) Density matrix and averages. The exact solutions of the
master equations for the density operators of the system can
be found in the form given by Eqs. (105) and (106), where the
averages 〈σk〉′ and 〈σk〉 satisfy Eqs. (61) and (62). The latter
become, respectively,

1

2

d

dz

⎛
⎜⎝

〈σ1〉′
〈σ2〉′
〈σ3〉′
trρ̂ ′

⎞
⎟⎠ =

⎛
⎜⎝

0 0 λ+ λ−
0 0 0 0

−λ+ 0 0 0
λ− 0 0 0

⎞
⎟⎠
⎛
⎜⎝

〈σ1〉′
〈σ2〉′
〈σ3〉′
trρ̂ ′

⎞
⎟⎠, (125)

and

1

2

d

dz

⎛
⎝〈σ1〉

〈σ2〉
〈σ3〉

⎞
⎠ =

⎛
⎝ 〈Ĝ〉 0 λ+

0 〈Ĝ〉 0
−λ+ 0 〈Ĝ〉

⎞
⎠

⎛
⎝〈σ1〉

〈σ2〉
〈σ3〉

⎞
⎠ +

⎛
⎝λ−

0
0

⎞
⎠,

(126)
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(b) ω0 = 0

FIG. 3. Eigenvalues (124) vs frequency. The vertical axis’s units
are nω0 (left) or n×Hz (right). Solid curves correspond to �+, dashed
ones to �−.

where

〈Ĝ〉 = −λ−〈σ1〉, (127)

and λ± are given in Eq. (123).
As per usual, these equations must be supplemented with

the “initial” (boundary) conditions (107) where for ρ̂ ′
0 we

can choose either (109) or (111). It turns out that the latter
is suitable in this case since the corresponding normalized
density matrix (112) describes the classical-type mixture of
two states with equal probabilities to happen. Using Eqs. (105)
and (111), we derive the following conditions for the non-
normalized averages:

〈σa〉′|z=0 = 0, trρ̂ ′|z=0 = 2, (128)

where a = 1,2,3. Correspondingly, the solution of Eq. (125)
is

〈σ1〉′ = h−
n

sin(βzz), (129a)

〈σ2〉′ = 0, (129b)

〈σ3〉′ = − 1

2n2
F+(z), (129c)

trρ̂ ′ = 1

2n2
F−(z), (129d)

where

βz = 2nω̄, (130)

and we have denoted the functions

F+(z) = h+h−(1 − cos(βzz)),

F−(z) = h2
+ − h2

− cos(βzz),

where the former is non-negative at ε � μ � 1, and the latter is
always positive for the materials with positive permittivity and
permeability. This solution indicates a presence of a stationary
wave, therefore it contains interference terms described by the
linear combinations of sine or cosine functions.

Consequently, the normalized expectation values are

〈σ1〉 = 2nh− sin(βzz)/F−(z), (131a)

〈σ2〉 = 0, (131b)

〈σ3〉 = −F+(z)/F−(z). (131c)

It is clear from these expressions that our statistical ensemble
of wave modes has a periodic structure along z direction, with
the period equal to

Tz = 2π/|βz| = π/(n|ω̄|), (132)

so its behavior strongly depends on the wave frequency ω, see
Fig. 4. When ω �= 0, the dependence on z can still disappear—
when βz → 0, which is equivalent to ω → ω0. Thus ω0 is a
critical frequency at which the oscillations of the statistical
averages become suppressed.

(c) Observables: wave energy. Once we know the exact
solution for density matrix, we have all the information about
the probability weights of every mode that forms the beam,
therefore, a number of energy-related averages, which have
been defined in Sec. III C, can be easily computed. Due to
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FIG. 4. Period of oscillations (132) vs frequency. The vertical
axis’s units are (nω0)−1 (left) or (n×Hz)−1 (right).

real-valued permittivity and permeability, some formulas of
Sec. III C get simplified:

E⊥ = N 2
0

8ω
〈L+D̂〉 = N 2

0

2
G(z), (133)

Ez = N 2
0

8ω
〈L−D̂〉 = N 2

0 ω2
0

2ω2
G(z), (134)

E tot = E⊥ + Ez = N 2
0

4

〈
∂

∂ω
D̂

〉

= N 2
0

2

(
1 + ω2

0

ω2

)
G(z), (135)

�E ≡ Ez

E⊥
= 〈L−D̂〉

〈L+D̂〉 = ω2
0

ω2
, (136)

�⊥ ≡ E⊥
E tot

= 1 − Ez

E tot
=

(
1 + ω2

0

ω2

)−1

, (137)

where

G(z) = h+
4

(
1 + h−

h+
〈σ3〉

)
= n2h+

F−(z)
, (138)

and

U (e)
⊥ = N 2

0 〈ê〉 = N 2
0

2
G+(z), (139)

U (m)
⊥ = N 2

0 〈ĝ〉 = N 2
0

2
G−(z), (140)

�U = U (e)
⊥

U (m)
⊥

= μh+ + εh− cos(βzz)

εh+ − μh− cos(βzz)
, (141)

where

G±(z) = 1 ± 〈σ3〉 = 1 ∓ F+(z)

F−(z)
, (142)

and

Pz = N 2
0

4
〈σ2〉 = 0, (143)

0
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FIG. 5. Total energy density (135), divided by (N0/2)2, vs z, at
ε = μ + 1 = 2 and different frequencies: ω/ωu = 1/5 (solid curves),
1/2 (dashed curves), 1 (dash-dotted curves), 2 (dotted curves), and
5 (dash-double-dotted curves), where ωu equals to ω0 (left) or 1 Hz
(right). The horizontal axis’s units are h−ω0 (left) or h−×Hz (right).

where the averages are given by Eqs. (131), and we have used
the identity

∂

∂ω
D̂ = 1

ω̄

(
1 + ω2

0

ω2

)
D̂,

which can be easily derived from Eqs. (97) and (117).
From these expressions, one can immediately spot a

few universal features of the system. For example, energy
density (135), as well as its parts, are positive functions if
medium’s permittivity and permeability are positive values.
These functions are oscillatory but become constant when
ε = μ or βz = 0. The former condition defines media in
which the oscillations are suppressed, therefore, the wave

0 2

2.5

3.0

3.5

4.0

4.5

5.0

(a) ω0 = 0

0 2

2.0

2.5

3.0

3.5

4.0

(b) ω0 = 0

FIG. 6. Total energy density (135), divided by (N0/2)2, vs z, at
ω/ωu = 2, μ = 1 and various values of relative permittivity: ε = 1
(solid curves), 3/4 (dashed curves), 3/2 (dash-dotted curves), 2
(dotted curves), and 3 (dash-double-dotted curves), where ωu equals
to ω0 (left) or 1 Hz (right). The horizontal axis’s units are h−ω0 (left)
or h−×Hz (right).
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FIG. 7. Total energy density (135), divided by (N0/2)2, vs z,
at ω/ωu = 2, ε = 3/2 and various values of relative permeability:
μ = 1 (solid curves), 3/4 (dashed curves), 3/2 (dash-dotted curves), 2
(dotted curves), and 3 (dash-double-dotted curves), where ωu equals
to ω0 (left) or 1 Hz (right). The horizontal axis’s units are h−ω0 (left)
or h−×Hz (right).

propagation is similar to the one in the vacuum. The latter
condition is discussed above, after Eq. (132). Further, if
ω0 → 0, then all energy gets concentrated in the transverse part
E⊥. When ω0 �= 0, the energy tends to move to the transverse
part at large frequencies ω and to the longitudinal part Ez at
small frequencies. The example profiles of the energy-related
functions of z, at different values of ε, μ, and ω, are given in
Figs. 5–7.

(d) Entropy. In this case, the “initial” (boundary) values of
the notions of entropy, which were introduced in Sec. III E, are

SvN|z=0 = ln 2, SNH|z=0 = 0, (144)
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FIG. 8. Gibbs-von-Neumann entropy (145) vs z, at ε = μ + 1 =
2 and different frequencies: ω/ωu = 1/4 (solid curves), 1/2 (dashed
curves), 0.9 (dash-dotted curves), 1 (dotted curves), and 2 (dash-
double-dotted curve, right panel only), where ωu equals to ω0 (left)
or 1 Hz (right). The horizontal axis’s units are h−ω0 (left) or h−×Hz
(right).

according to Eqs. (86), (87), (105), (106), and (128). The
Gibbs-von-Neumann entropy (86) for our density matrix can
be computed as (in units kB = 1)

SvN = ln(4n2) − 1

2
tr

{(
Î + 2nh−

sin(βzz)

F−(z)
σ̂1 − F+(z)

F−(z)
σ̂3

)

× ln[F−(z)Î + 2nh− sin(βzz)σ̂1 − F+(z)σ̂3]

}
, (145)

whereas the NH entropy (87) can be derived from the relation

SNH = SvN − ln [F−(z)] + ln(2n2), (146)

which follows from Eq. (88).
The behavior of the Gibbs-von-Neumann entropy at differ-

ent values of frequency ω is illustrated in Fig. 8. One can see
that this entropy is oscillating between its initial value, ln 2,
and value 1/2, and the period of oscillations depends on the
frequency, as expected from Eq. (132). Therefore, for the case
ω0 �= 0, it suffices to consider the plots with ω � ω0 since this
entropy is invariant under the transformation ω̃ → 1/ω̃.

V. CONCLUSION

In this paper, using the formal analogy between the
Schrödinger equation and a certain class of Maxwell equations,
we have generalized the theory of EM wave’s propagation in
dielectric linear media—in order to be able to describe not only
separate wave modes (or their linear superpositions) but also
the statistical ensembles of modes, referred as mixed states in
quantum mechanics.

It turns out that the Hamiltonians, which govern the dynam-
ics of such ensembles, are in general not just pseudo-Hermitian
but essentially non-Hermitian and thus require a special
systematic treatment. Using the density operator approach for
general non-Hermitian Hamiltonians developed in our earlier
works, we have demonstrated that the non-Hermitian terms
play an important role in the physics of wave propagation.

The proposed approach applies to a large class of dielectric
media and nanoscale photonic and plasmonic materials and
wave-guiding devices, where it provides a tool to construct
and study different models, as well as to derive the observables
of different kinds: correlation functions (Sec. III D), entropy
(Sec. III E), energy density and transmitted power (Sec. III C),
etc. For instance, the introduced notions of entropy are
important for estimating the degree of statistical uncertainty
and chaos in a given system, whereas the statistically averaged
values of energy density and transmitted power are helpful for
describing the dissipative effects in the system due to interac-
tion of different modes, which lead to energy and information
loss. The method sheds light upon various quantum-statistical
effects that can occur, such as the additional corrections to
the conservation equation for the transmitted power, which
arise due to the quantum exchange of energy between the
medium and electric and magnetic components of wave
modes, see Sec. III C. Another effect, demonstrated by one
of our examples, in Sec. IV B, reveals that quantum-statistical
corrections can make the wave’s propagation essentially
dispersive, even if the media itself has frequency-independent
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permittivity and permeability. That example also demonstrates
that non-Hermitian terms in Hamiltonians do not always lead
to energy loss but can describe, under certain conditions, the
oscillating behavior of statistical uncertainty in the system
which can be related to certain kinds of noise.

This results in a consistent and thorough understanding
of whether and how one can control the dissipative effects
in different dielectric media, which lead to decoherence and
energy and information loss during propagation of EM waves.
The control over these effects is especially important for
the development of the next generation of quantum electro-
magnetic devices, including those which use the quantum
interference of multimode EM beams in order to improve
the sensitivity and noninvasivity of measurements, quantum
amplifiers and radars being just some examples [51–56].
For instance, the uncontrolled spontaneous transition of pure
modes into statistical ensembles during beam’s propagation
would inevitably result in an increase of statistical uncertainty
and hence lead to higher degrees of dissipation and noise.
Further studies of such quantum-statistical effects is a fruitful
direction of future research.

Last but not least, one can use this approach both ways:
it also provides a methodology of how one can use electro-
magnetic phenomena for experimental testing of the heuristic
concepts and ideas of the non-Hermitian formalism per se,
such as non-normalized and normalized density operators,
master equations with anticommutators, nonlinear and non-
local terms, different notions of entropy, to mention just a few
examples.
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APPENDIX A: OPERATOR ALGEBRA AND
OBSERVABLES FOR EM WAVE MODES

In case of a two-dimensional transverse space, one can
define the SU(2) algebra by using the vector product with the
basis vector along the longitudinal direction, ez. Indeed, when
applied to a 2D vector, the operator ez× acts as the imaginary
unit,

(ez×)† = −ez × , ez × ez× = −Î , (A1)

which means that it is anti-Hermitian, anti-involutary, and
antiunitary operator in the space of two-dimensional vectors.
Therefore, using this operator, one can define the following set

of Pauli matrices:

σ̂1 = −i

(
0 ez×

ez× 0

)
, (A2a)

σ̂2 =
(

0 −ez×
ez× 0

)
, (A2b)

σ̂3 =
(

Î 0
0 −Î

)
, (A2c)

which are Hermitian, involutary, unitary, traceless, of a unit
determinant, and satisfy the commutation relations

{σ̂a,σ̂b} = 2δabÎ , (A3)

[σ̂a,σ̂b] = 2i

3∑
c=1

εabcσ̂c, (A4)

where δab and εabc are the Kronecker and Levi-Civita symbols,
respectively. Besides,

σ̂aσ̂b = i

3∑
c=1

εabcσ̂c + δabÎ, (A5)

σ̂ 2
1 = σ̂ 2

2 = σ̂ 2
3 = −iσ̂1σ̂2σ̂3 = Î =

(
Î 0
0 Î

)
. (A6)

The expectation values of these Pauli matrices,

〈σa〉� ≡ 〈�|σ̂a|�〉, (A7)

have a physical interpretation in terms of energies associated
with the EM wave: using (9) and (10), one obtains

〈σ1〉� = i

N 2

∫
dxdy[(ez × E∗

⊥) · H⊥ − c.c.]

= i

N 2

∫
dxdy(E∗

[xHy] − c.c.), (A8a)

〈σ2〉� = 1

N 2

∫
dxdy[(ez × E∗

⊥) · H⊥ + c.c.]

= 1

N 2

∫
dxdy(E∗

[xHy] + c.c.) = 4Pz

N 2
, (A8b)

〈σ3〉� = 1

N 2

∫
dxdy(|E⊥|2 − |H⊥|2), (A8c)

where the integrals are taken over waveguide’s effective cross-
section, and we use the notation A[jBm] = AjBm − AmBj .
HerePz is the transmitted power carried by an EM wave mode.
One can also borrow the notations from theory of two-level
systems and introduce the operators

ĝ ≡ |g〉〈g| ≡ 1

2
(Î − σ̂3) =

(
0 0
0 Î

)
, (A9a)

ê ≡ |e〉〈e| ≡ 1

2
(Î + σ̂3) =

(
Î 0
0 0

)
, (A9b)

where

|g〉 ≡
(

0
Î

)
, |e〉 ≡

(
Î

0

)
, (A10)
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such that

〈ĝ〉� = 1

N 2

∫
dxdy|H⊥|2, (A11a)

〈ê〉� = 1 − 〈ĝ〉� = 1

N 2

∫
dxdy|E⊥|2, (A11b)

where letters g and e indicate the “ground” and “excited”
states, respectively. From the viewpoint of electrodynamics,
the ratio

〈ê〉�/〈ĝ〉� =
[

1

〈ê〉�
− 1

]−1

(A12)

describes how much of wave’s “pure” energy (in absence
of a medium) would be stored in the electric component as
compared to the magnetic one.

APPENDIX B: BLOCH-SPHERE PARAMETRIZATION
FOR EM WAVE MODES

Any Hermitian operator �̂, which has trace one and
idempotency property �̂2 = �̂, can be parametrized using the
Bloch sphere:

�̂ = |�0〉〈�0| =
(

sin2(θ0/2) 1
2 eiφ0 sin θ0

1
2 e−iφ0 sin θ0 cos2(θ0/2)

)

= 1

2
[Î + sin θ0(cos φ0 σ̂1 − sin φ0 σ̂2) − cos θ0σ̂3], (B1)

where

|�0〉 = cos (θ0/2)|g〉 + eiφ0 sin (θ0/2)|e〉, (B2)

|g〉 =
(

0
1

)
, |e〉 =

(
1
0

)
, (B3)

and 0 � θ0 � π and 0 � φ0 < 2π . Matrix (B1) has the
eigenvalues 0 and 1, therefore, one of its special cases would
be the basis states

{θ0 = π, φ0 = 0}: �̂(e) =
(

1 0
0 0

)
= ê,

{θ0 = 0, φ0 = 0}: �̂(m) =
(

0 0
0 1

)
= ĝ, (B4)

where

ĝ ≡ |g〉〈g| ≡ 1
2 (Î − σ̂3), (B5a)

ê ≡ |e〉〈e| ≡ 1
2 (Î + σ̂3), (B5b)

which physical meaning is clear from Appendix A and
Eqs. (73) and (74): matrices �̂(e) and �̂(m) describe the
states during wave’s propagation when the wave’s “medium-
independent” energy (as if the medium were absent) is stored
mostly inside the electrical and magnetic field components,
respectively. Consequently, we have

〈�̂(e)〉� = 1 − 〈�̂(m)〉� = 1

N 2

∫
dxdy|E⊥|2, (B6a)

〈�̂(m)〉� = 1

N 2

∫
dxdy|H⊥|2, (B6b)

where the Appendix A’s notations are used. Another example
of a pure-state matrix are the following superpositions of basis
states:{

θ0 = π

2
, φ0 = 0

}
: �̂(+) = 1

2

(
1 1
1 1

)
= |+〉〈+|,

{
θ0 = −π

2
, φ0 = 0

}
: �̂(−) = 1

2

(
1 −1

−1 1

)
= |−〉〈−|, (B7)

where

|±〉〈±| = 1
2 [|g〉〈g| + |e〉〈e| ± (|g〉〈e| + |e〉〈g|)]

= 1
2 (Î ± σ̂1), (B8)

|±〉 = 1√
2

(
1

±1

)
= 1√

2
(|e〉 ± |g〉), (B9)

which represent the states when the wave’s medium-
independent energy is distributed between the electrical and
magnetic field components, as one can see by computing the
corresponding averages with respect to a state vector |�〉:

〈�̂(±)〉� = 1 ± 1

N 2

∫
dxdy(E∗

⊥ · H⊥ + c.c.). (B10)
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