Please use this identifier to cite or link to this item: https://hdl.handle.net/10321/980
DC FieldValueLanguage
dc.contributor.authorZuva, Tranosen_US
dc.contributor.authorOlugbara, Oludayo O.en_US
dc.contributor.authorOjo, Sunday O.en_US
dc.contributor.authorNgwira, Seleman M.en_US
dc.date.accessioned2014-05-15T08:33:16Z
dc.date.available2014-05-15T08:33:16Z
dc.date.issued2012-06-
dc.identifier.citationTranos Z.; Oludayo, O.O.; Sunday, O.O. and Seleman, M.N. 2012. Introducing an Adaptive Kernel Density Feature Points Estimator for Image Representation. International Conference on Computer Science, Engineering and Technology.en_US
dc.identifier.issn2091-0266-
dc.identifier.urihttp://hdl.handle.net/10321/980-
dc.description.abstractThis paper provides an image shape representation technique known as Adaptive Kernel Density Feature Points Estimator (AKDFPE). In this method, the density of feature points within defined rings (bandwidth) around the centroid of the image is obtained in the form of a vector. The AKDFPE is then applied to the vector of the image. AKDFPE is invariant to translation, scale and rotation. This method of image representation shows improved retrieval rate when compared to Kernel Density Feature Points Estimator (KDFPE) method. Analytic analysis is done to justify our method, which was compared with the KDFPE to prove its robustness.en_US
dc.format.extent7 pen_US
dc.language.isoenen_US
dc.publisherIJITCSen_US
dc.subjectKernel Density Functionen_US
dc.subjectSimilarityen_US
dc.subjectImage Representationen_US
dc.subjectSegmentationen_US
dc.subjectDensity Histogramen_US
dc.subject.lcshImage segmentationen_US
dc.titleIntroducing an adaptive kernel density feature points estimator for image representationen_US
dc.typeArticleen_US
dc.publisher.urihttp://www.ijitcs.comen_US
dc.dut-rims.pubnumDUT-002021en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextopen-
Appears in Collections:Research Publications (Accounting and Informatics)
Files in This Item:
File Description SizeFormat
zuva__olugbara__ojo___ngwiral_2012_non_acc_output-2.pdf116.49 kBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s) 50

761
checked on Dec 16, 2024

Download(s)

369
checked on Dec 16, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.