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Abstract: A methodology to select the best material combination and optimally design laminated composite pres-
sure vessels is described. The objective of the optimization is to maximize the critical internal pressure subject
to cost constraints. Exact elasticity solutions are obtained using the stress function approach, where the stresses
are determined taking into account the closed ends of the cylindrical shell. The approach used here allows us to
analyze accurately multilayered pressure vessels with an arbitrary number of orthotropic layers of any thickness
and a combination of different materials. The design optimization of the pressure vessel is accomplished using the
Big Bang–Big Crunch algorithm,subject to the Tsai-Hill failure criterion.
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1 Introduction
The increased use of laminated composite piping and
pressure vessels in many engineering applications has
led to a need for more accurate stress-strain analy-
sis. Their resistance to corrosion along with high
strength to weight ratios and relatively low densities
compared to other traditional materials makes them
indispensable in the chemical, petrochemical, marine
and aerospace industries. The versatility of compos-
ite materials offers opportunities and the flexibility to
tailor such structures according to needs. The tailor-
ing is mostly achieved by maximizing the mechani-
cal properties as a result of selecting the fiber angles
of the layers optimally. Obviously, such design op-
timization comes at a cost. This has created a need
for further progress in such classical areas of mechan-
ics as the theory of anisotropic and non-homogeneous
deformable solids, and the theory of optimization.

Despite a tremendous effort to uncover what oth-
ers have done, it appears that no researchers have
dealt with the selection of the best material combina-
tions for the design optimization of pressure vessels.
The usual constraints dealt with in design optimiza-
tion are mass, cost and geometrical characteristics. In
this paper a cost constraint is considered. Examples
of procedures to select the best material combination
and optimally design composite plates and cylindrical
shells for minimum cost and mass are presented by
Walker et al. [9, 10].

In this study, the optimal material combination in

laminated pressure vessels is determined. The pres-
sure vessels are optimized for maximum internal pres-
sure subject to a maximum cost constraint. The prob-
lem considered is complicated and requires the use
of a reliable optimization method. The present study
implements a new approach using the Big Bang–
Big Crunch (BB-BC) optimization method which was
proposed by Erol and Eskin in 2006 [2] as a new evo-
lutionary algorithm. The algorithm has proven to be
exceptionally fast and efficient compared to genetic
algorithms. This is especially true where the number
of the design parameters is rather large and genetic
algorithms become slow and inefficient [7].

Two types of pressure vessels have been used
for the design optimization, – thin and moderately
thick. Because of anisotropy and the presence of
curvature in shell structures, obtaining exact three-
dimensional elasticity solutions for laminated pres-
sure vessels presents considerable complexity. Ana-
lytical solutions accounting for the three-dimensional
nature of the stress-strain state in orthotropic cylin-
ders have been developed by a number of researchers.
The exact analytical analysis used in the present study
was developed by Tabakov and Summers in [6]. The
combination of accurate analysis and an efficient op-
timization algorithm has allowed we, the authors, to
determine the results presented here used to demon-
strate the methodology.
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2 Problem Description
2.1 Basic equations
The structure under consideration is a cylindrical shell
of finite length made from an anisotropic material.
The axis of anisotropy coincides with the axis of sym-
metry Oz of the cylinder and the stresses act on the
planes normal to the generator and do not vary along
the generator. Let U, V and W be the functions which
represent the displacement due to elastic deformation:
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The distribution of the stresses will be identical in all
cross sections and will depend only on the distance r
from the axis. Therefore, the stresses can be expressed
in terms of stress functions Φ and Ψas [4]
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where U is the potential of the body forces. The nor-
mal stress in the longitudinal direction can be given
as

σz = − 1

α33
(α13σr+α23σθ+α34τθz+α35τrz+a36τrθ)

(3)
where αij are components of the compliance matrix.
It should be noted that equation (3) is correct only for
open ended cylinders or those without applied longi-
tudinal forces, otherwise an additional constant needs
to be added.

The approach formulated above may be used for
the analysis of pressure vessels that are constructed
of filament–wound layers with a fibre orientation of
(±ϕ◦). Due to asymmetrical loading and geometry,
the distribution of the stresses will be identical in all
cross sections and will depend only on the distance r
from the axis. Therefore the stresses can be expressed
in terms of stress functions proposed by Lekhnitskii
[4] Φm = Φm(r), Ψm = Ψm(r) as
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and longitudinal stress
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Moreover, due to symmetry

τ (m)
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rθ = 0 (6)

In the above equations index m denotes the m-th layer
and m = 1, 2, . . . , nl with nl denoting the total num-
ber of layers.

By eliminating U , V and W from the system of
equations (1) by means of differentiation and taking
into account the above assumptions the new system of
differential equations takes the following form [4]:
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ij are elastic constants given by
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2.2 Computation of Stresses
The boundary conditions on the internal (r = a0) and
external (r = anl) surfaces are specified as

σ(1)
r (a0) = −p0; σ(nl)

r (anl) = −pnl (10)

where a0, . . . , am, . . . , anl are the radii measured
from inside to outside. At the contact surfaces of ad-
jacent layers we have the conditions
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The equilibrium of forces on the end surfaces gives
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2
0 + F (12)
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where F is the applied axial force.
With regards to the condition (11) and taking into

account the assumptions on physical and geometrical
properties given above, the general solution of the sys-
tem (8) has the following form [4]
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By satisfying the boundary conditions (10) and (11)
the constants C1 and C2 can be expressed in terms of
the constant C. By introducing the notations
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the final expressions for the stresses can be written as
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In equation (16) pm−1 and pm denote the normal
forces acting on internal and external surfaces of the
m-th layer. The remaining unknown forces and con-
stant C are determined from the boundary conditions
(11) and (12). These expressions are rather compli-
cated and will be derived in the next section.

By the above, we have adapted the solution ob-
tained by Lekhnitskii in [4] for a multilayered closed–
ended cylinders.

2.3 Evaluation of Interface Forces and Con-
stant of Integration

Next we shall derive the system of equations which
will be used later for the calculation of the unknown
interface forces p1, p2, . . . , pnl−1 and the constant of
integration C. The first nl−1 equations of the system
of equations are derived by satisfying the displace-
ment continuity conditions at the interfaces, i.e.

ε
(m)
θ = ε

(m+1)
θ at r = am (17)

which gives us the following system of nl − 1 equa-
tions

ε
(m)
θ − ε

(m+1)
θ = 0 m = 1, 2, . . . , nl − 1 (18)
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for pm, where
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By substituting the stress expressions (16) into the
equations for the boundary conditions (18), and after
rearranging terms and simplification, we arrive at the
set of equations for unknown forces and the constant
of integration C:
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Where the coefficients f
(m)
i , i = 1, 2, . . . , 9 are the

functions which depend on geometrical and physical
properties [6]. It is apparent that when we consider a
couple of adjacent layers, we do all the calculations at
the top of the layer m and at the bottom of the layer
m+ 1 with the same radius am.

The total number of unknown terms in the system
of equations (20) is equal to the number of the layers
nl, whereas the number of equations is nl− 1. There-
fore, in order to solve this system we need one more
equation, namely the equation (12) which contains the
piecewise integral. After the integration the additional
equation can be written in the following form

nl∑
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3
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2
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Unlike the system (20), the expression (21) represents
only a single equation calculated as a sum through the
thickness, with m varying from 1 to nl. The expres-
sions for the coefficients λ1, λ2 and λ3 are rather cum-
bersome and can be found in [6].

Finally, it should be noted that when the wind-
ing angle ϕm = 0◦ or 90◦ then we are dealing with
an orthotropic layer with cylindrical anisotropy, which
means that there are two planes of elastic symmetry,
radial and tangential. Then α

(m)
34 = β

(m)
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24 =

g
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ishes. In the case when ϕm = 0◦
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11
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and some denominators containing km become equal
to zero that leads to singularity. In actual computation,
this difficulty can be overcome by assigning a very
small number for ϕm (e.g. = 0.001◦) when ϕ = 0◦.

3 Failure Criterion and Optimiza-
tion Method

The strength of filamentary composites is determined
by the tensile and compressive strengths in the fibre
directions and by the shear strength of the composite
material. In composite structures, tensile, compres-
sive and shear stresses may result even from simple
loading conditions, and therefore the failure mode of
composite structures is rather complicated. Thus, an
appropriate failure criterion must be used for the anal-
ysis of such structures. In the case of the composite
pressure vessels the problem is simplified by the fact
that there are no compressive stresses present.

The Tsai–Hill failure criterion is well suited
here; it takes into account only the tensile and shear
strengths. It considers the distortion portion of the
strain energy which causes the shape change. The as-
sumption of the Tsai–Hill criterion is that there exists
a failure surface in the stress space and, in the case
of laminated pressure vessels possessing cylindrical
anisotropy, for the m-th layer can be expressed in the
following form:

σ
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X
(m)2
t

− σ
(m)
1 σ

(m)
2

X
(m)2
t

+
σ
(m)2
2

Y
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t

+
τ
(m)2
12

S(m)2
= 1 (23)

where Xt and Yt are longitudinal and transverse ten-
sile strengths,respectively, and S is the shear strength.
The above equation is then used to calculate the crit-
ical pressure Pcr at any point through the thickness.
It should be noted that the normal stresses σ1, σ2 and
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shear stress τ12 are stresses computed in the material
coordinates.

The design objective is the maximization of the
burst pressure Pcr subject to the failure criterion (23).
The design problem for a multilayered pressure vessel
of a given thickness ratio anl/a0 and number of layers
nl can be stated as

Pmax
def
= max

ϕ̄
Pcr(ϕ̄, r) = max

ϕ̄
min
r

Pcr (24)

where
ϕ̄ = {ϕ1, ϕ2, ϕ3, . . . , ϕnl}T (25)

Taking into account the cost constraint the final ex-
pression can be written as

Pmax = max
ϕ̄

min
r

Pcr −max
[
0, ξ · VC

]2
(26)

where ξ is the penalty constant used and VC is the cost
violation for the entire package.

The optimization procedure involves the stages of
iteratively improving ϕ

(m)
opt , m = 1, 2, . . . , nl in order

to maximize Pcr for a given radius, thickness ratio and
constraint.

These type of problems are computationally
highly complex and require the use of a fast and re-
liable multi–dimensional optimization method. The
Big Bang – Big Crunch (BB-BC) method [2] has
quickly demonstrated its superiority over other heuris-
tic population-based search techniques when em-
ployed to perform structural optimization tasks, eg.
for the optimal design of space trusses [1], skeletal
structures [3], for parameter estimation in structural
systems [8] as well as a number of other successful
applications.

The Big Bang – Big Crunch algorithm is a
heuristic population-based evolutionary optimization
method. Among the merits of this method are compu-
tational simplicity, ability to handle multidimensional
problems and very fast convergence.

4 Numerical Results and Conclu-
sions

The method developed is implemented for the design
optimization of pressure vessels of two thickness ra-
tios, anl/a0 = 1.01 and 1.1, and different number of
layers. Three different composite materials are used:
Carbon/, S-2 Glass/ and Kevlar-49/Epoxy. The cheap-
est material here is E-Glass, while Carbon is the most
expensive. By using relative quantities the cost fac-
tor can be expressed as 1.0 for E-Glass, 6.25 for Car-
bon, and 4.375 for Kevlar-49, while the densities are

1900kg/m3, 1500kg/m3 and 1300kg/m3, respec-
tively. The material data are taken from ISO 12215
which are the recommended values of the Interna-
tional Organization for Standardization.

The simplest case of optimization is a single-
layered cylinder where there is only one design vari-
able ϕ. It is well established fact that for the single-
layered cylinder, depending on its thickness ratio and
material properties, the optimal fiber orientation ϕopt

is in range of 54−57◦; see for example [5]. This fact is
illustrated for three different materials in Fig. 1. This
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Figure 1: Critical pressure in a thin single layered
pressure vessel vs the fiber orientation calculated for
different composite materials.

figure clearly demonstrates how the performance of
the structure depends on the fiber orientation (ϕ). It
also can be seen that both the Carbon and Kevlar are
much more sensitive to the change in angle ϕ. The
above fact is further supported by Fig. 2, which shows
a graphical representation of the functional space of
the three-dimensional optimization problem for a thin
(anl/a0 = 1.01) two-layered cylinder. Clearly, the
complexity of the functional space will increase even
more with the increase in dimensionality, yet it offers
us unmatched possibilities for the optimization.

As an example of the maximization of the burst
pressure subjected to the cost constraint we consider
thin and thick ten-layered pressure vessels. The re-
sults of the optimization are shown in the next two
figures, Fig. 3 and Fig. 4. Since the weight factor is
not used during the optimization procedure, it is calcu-
lated later to show its impact on the structure. An im-
portant characteristic derived from these graphs is the
ratio of the relative bust pressure to the cost factor. For
example, in the case of the thin cylinder and the cost
constraint set to 40%, we have 37.5% of the cost re-
duction, while the burst pressure calculated is reduced
to only 61.5%. In this case we have six layers made
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Thin cylinder Ro/Ri = 1,01 (two layers). Materials: Carbon/Carbon.

Pcr = 2.80 MPa
φ1 = 53o

φ2 = 53o
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Figure 2: Critical pressure plotted against ply angles
for a thin two-layered pressure vessel.
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Figure 3: The optimal burst pressure compared to the
cost and weight factor subject to the cost constraint
and the choice of three materials in the thin pressure
vessel.

of E-Glass and four layers of Kevlar-49. This result is
achieved with the fiber orientation 43◦/43◦/42◦/42◦

and the rest of layers 69◦ each. As it can be seen from
the graphs, in most cases, this ratio is in favour of the
critical pressure. The detailed results for each type
of the optimization problem are not given here due to
limited space.
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