Introduction

Physical activity is recognised as a central component of overall approaches to primary prevention in reducing morbidity and mortality and improving well-being. However, current societal trends have led to decreases in energy expenditure. Encouraging the sedentary person to be more active is a public health priority and the health promotion agenda for the 21st century includes promoting incidental physical activity as part of an overall plan for active living. Therefore, the current emphasis in physical activity promotion is on the accumulation of lifestyle activity.

Consistent with the current recommendations for physical activity, people should be encouraged to accumulate physical activity throughout the day. Even small amounts of activity may lead to the accumulation of an adequate level of energy expenditure over the course of the day. An option easily accessible and feasible to most people for accumulating incidental physical activity is the use of stairs instead of an escalator or lift, particularly in an occupational setting where there are likely to be multiple trips during the day.

Stair climbing is a physiologically vigorous physical activity shown to require 8.6 times more energy expenditure than the resting state. Regular stair climbing also has well-documented health dividends such as increased fitness and strength, weight loss, improved lipid profiles and reduced risk of osteoporosis. In addition, stair climbing is free and readily available to most people. Most studies that have attempted to increase the use of stairs compared with an
escalator/lift have been successful.11-22 Few studies report lack of improvement during and/or after an intervention.23,24 A more recent form of health promotion is emphasis on the use of point-of-choice prompts to encourage stair climbing in the workplace.5,25

The aim of this study was to assess the effectiveness of a signed intervention to promote the use of stairs in a health and fitness facility which ultimately encouraged students, staff and visitors to increase their level of incidental physical activity.

Method

Formative work

Before the start of this study, focus group discussions were conducted at the Sports Science Institute of South Africa (SSISA). These discussions were conducted among students and staff to determine the perceptions around health, fitness and behavioural patterns in terms of incidental physical activity such as stair usage. E-mails were sent to students and staff, inviting them to attend a focus group discussion, with available time slots indicated. Two focus group discussions were conducted with 5 participants and 2 facilitators at each session, one facilitating discussion and the other scribing. The entire discussion lasted approximately 30 minutes and was recorded by means of an audiotape. Facilitating factors and barriers to stair usage and willingness to change behaviour towards accumulating incidental physical activity such as stair usage were also discussed. The outcome of this phase of the study provided input towards the development of the intervention programme.

Intervention programme and observation procedure

In the 3-week observational study, a simple time-series design of collecting data before, during and after the introduction of an intervention was used. The first phase of the study was the pre-intervention phase, the second was the intervention phase and the third was the post-intervention phase. Each of the phases was conducted on the same days of the week (Tuesday - Friday) and at the same time (07h00 - 09h00 and 16h00 - 18h00). Data were recorded by a researcher who counted 'people movements' up the stairs or into the elevators. The researcher was positioned in the kiosk area on the ground floor of the building in an unobtrusive manner, but such that good visibility of lift/stair users was maintained at all times. The directional measure was important since the energy cost of ascending stairs is approximately 3 times that of descending stairs.9 Before the study it was decided that only ascending movement will be recorded. The intervention materials were displayed during week 2 of the study. The intervention consisted of coloured signs (21 cm x 30 cm) mounted on the wall next to the elevator and stair areas (Fig. 1), and coloured, vinyl footprints stuck on the floor, which led people to the stairs.

Such signage aimed to provide a ‘point of choice’ motivational prompt to encourage staff and visitors to use the stairs as an alternative to the elevator to improve their health and fitness.24 Observational data collected by the researcher during the days and times specified were transformed into a percentage of number recorded and were subdivided into exercise science students/staff member (ESSM) and non-exercise science students/staff member (non-ESSM). The data were further stratified into gender-specific categories.

<table>
<thead>
<tr>
<th></th>
<th>Pre-intervention</th>
<th>Pre-intervention</th>
<th>Intervention</th>
<th>Intervention</th>
<th>Post-intervention</th>
<th>Post-intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(lift)</td>
<td>(stairs)</td>
<td>(lift)</td>
<td>(stairs)</td>
<td>(lift)</td>
<td>(stairs)</td>
</tr>
<tr>
<td>ESSM (males)</td>
<td>75 (56%)</td>
<td>58 (44%)</td>
<td>56 (30%)</td>
<td>129 (70%)</td>
<td>62 (43%)</td>
<td>81 (57%)</td>
</tr>
<tr>
<td>ESSM (females)</td>
<td>58 (45%)</td>
<td>70 (55%)</td>
<td>65 (34%)</td>
<td>127 (66%)</td>
<td>53 (40%)</td>
<td>81 (60%)</td>
</tr>
<tr>
<td>Non-ESSM (males)</td>
<td>287 (60%)</td>
<td>190 (40%)</td>
<td>346 (51%)</td>
<td>327 (49%)</td>
<td>267 (53%)</td>
<td>242 (48%)</td>
</tr>
<tr>
<td>Non-ESSM (females)</td>
<td>277 (56%)</td>
<td>214 (44%)</td>
<td>373 (52%)</td>
<td>345 (48%)</td>
<td>252 (53%)</td>
<td>221 (47%)</td>
</tr>
<tr>
<td>Total</td>
<td>697 (57%)</td>
<td>532 (43%)</td>
<td>840 (48%)</td>
<td>928 (52%)</td>
<td>634 (50%)</td>
<td>625 (50%)</td>
</tr>
<tr>
<td>(% of total)</td>
<td>1 229 (100%)</td>
<td>1 768 (100%)</td>
<td>1 259 (100%)</td>
<td>1 259 (100%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE I. Summarised counts of study

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Message displayed in signage.}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig2.png}
\caption{Comparative display of lift/stair usage at SSISA before, during and after the intervention.}
\end{figure}
The data were analysed using STATISTICA version 7 (StatSoft Inc., Tulsa, OK, USA). Logistic regression analyses were used, with lift/stair use as the dichotomous dependent variable. Predictor variables such as gender and whether or not the individual was affiliated to the academic sports medicine unit (ESSM or non-ESSM) were entered into the model as independent variables. Logistic regression of odds for using the stairs was determined with Bonferroni correction for 3 comparisons (significance accepted at $p<0.015$). The focus group discussions were not statistically analysed, as the nature of the work was descriptive and was used to develop the signed intervention used in the study.

Results

Formative work

Themes that emerged from the discussions in the focus groups were categorised as facilitating factors and barriers to the use of stairs in the accumulation of intended and/or incidental physical activity. The long waiting period for an available lift was the primary facilitating factor to stair use. The congestion at the lift lobby during peak times was also a facilitating factor to stair use in some participants. These participants became accustomed to stair use and therefore continued this practice throughout the day. A further facilitating factor to stair use was the location of the staircase. Participants interviewed reported that the positioning of the staircase provides a good view of the activities (usually training sessions) taking place on the quadrangular area on the first floor of the building.

The main barrier to the use of the stairs indicated by students/staff was laziness and/or being too busy. In addition, some participants felt that using the stairs would make little/no difference towards improved health and fitness, while others felt that they accumulated enough intended physical activity and did not see the need for additional benefits that may be gained through stair usage.

Intervention programme and observation procedure

A total of 4 256 counts were recorded and entered onto a Microsoft XL spreadsheet. The summarised counts are indicated in Table I and represented graphically in Fig. 2.

The recorded data were entered into the logistic regression model and logistic regression of odds for using the stairs before intervention to intervention (with Bonferroni correction) was calculated. The results indicated that there was a 45% increase odds of using the stairs from before intervention to intervention; a 41% increased odds if you were an ESSM; and a 55% greater odds if you were a woman. Similarly, for comparison of intervention with post-intervention effects, those previously described for ESSM and gender remained the behaviour did not regress significantly after intervention.

In addition, comparison of pre-intervention with post-intervention data again showed the same effects for gender and ESSM, and the pre-intervention to post-intervention effects were statistically significant ($p<0.015$).

Discussion

From previous studies it is apparent that there is a decline in physical activity levels as energy expenditure-associated work and daily living activities decrease.\(^1\)\(^6\)\(^8\) Interventions aimed at increasing incidental physical activity such as using the stairs over the lift have been shown to improve health and fitness levels.\(^9\) Consistent with previous studies,\(^16\)\(^17\) the main barrier to the use of the stairs indicated by students/staff was laziness and/or being too busy. In addition, some felt that stair usage would not make a difference towards improved health and fitness. Such information provides useful cues in developing appropriate health promotion initiatives that encourage and support behavioural change in this regard.

Andersen et al.\(^1\) suggested that an increase in stair use may not prompt people to significantly alter their overall level of physical activity and that further investment in stair campaigns needs to be looked at with caution. This has been further supported by a study by Marshall et al.\(^2\) with a sample size more extensive than most other studies (approximately 158 000 counts compared with an average of a few thousand observational counts) and a longer intervention period (12 weeks compared with an average of 4 - 6 weeks). The study showed an initial increase in stair walking that declined to baseline levels at follow-up. Similarly, Auweele et al.\(^3\) reported a significant increase in stair use for female employees and when a health sign was used. However, as with Marshall et al.\(^4\) this increased stair usage declined to baseline over the study period (7 weeks).

Two studies reported significant increases in stair use which were sustained between baseline and follow-up: follow-up at 2 - 3 weeks after a 4-month intervention period,\(^5\)\(^6\) and follow-up at 2 weeks after a 6-week intervention period.\(^7\) In the latter study, a significant effect on stair climbing (ascent) was seen (OR 1.12, $p<0.005$). Kerr et al.\(^8\) reported no significant intervention effect for stair climbing, but there was a significant increase in stair descent (OR 1.21, 95% CI 1.07 - 1.37).

Results of the present study add to the pool of supporting evidence that stair-promoting interventions are a viable public health strategy for increasing incidental physical activity. Moreover, the key outcome intended to be achieved goes beyond simply choosing the stairs over the lift, but rather of bringing about behavioural change towards improved health and fitness. While public health promoters support the notion that accumulating incidental physical activity is a stepping stone towards behavioural change, further research is needed to determine the extent to which modest improvements in incidental activity produce more significant improvements in overall physical activity. A more objective and comprehensive view of overall stair use (e.g. a 24-hour, 7-days-a-week motion-sensing device)\(^9\) is also recommended so that the data are not subject to observer bias or periodic observation periods. In addition, more extensive long-term studies are needed to examine the loss of effect after an intervention.

References

