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Abstract We generalise the continual gravitational col-
lapse of a spherically symmetric radiation shell of matter in
five dimensional Einstein–Gauss–Bonnet gravity to include
the electromagnetic field. The presence of charge has a signif-
icant effect in the collapse dynamics. We note that there exists
a maximal charge contribution for which the metric func-
tions in Einstein–Gauss–Bonnet gravity remain real, which
is not the case in general relativity. Beyond this maximal
charge the spacetime metric is complex. The final fate of col-
lapse for the uncharged matter field, with positive mass, is an
extended, weak and initially naked central conical singular-
ity. With the presence of an electromagnetic field, collapse
terminates with the emergence of a branch singularity sepa-
rating the physical spacetime from the complex region. We
show that this marked difference in singularity formation is
only prevalent in five dimensions. We extend our analysis to
higher dimensions and show that for all dimensions N ≥ 5,
charged collapse ceases with the above mentioned branch
singularity. This is significantly different than the uncharged
scenario where a strong curvature singularity forms post col-
lapse for all N ≥ 6 and a weak conical singularity forms
when N = 5. A comparison with charged radiation collapse
in general relativity is also given.

1 Introduction

The allure of gravitational collapse is undeniable in gravita-
tional physics, cosmology and astrophysics. This is due to it
being a fundamental mechanism in the structural formation
of the entire universe. Over a time period, initially smooth
matter fields will contract to form small localised dense dis-
tributions which form the building blocks for galaxies, stellar
groups, stars and planets. Galaxy formation is thought to be
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the result of monolithic collapse, i.e. every galaxy formed as
the result of the contraction of a single, turbulent gas cloud
[1]. Gravitational collapse is also prominent in the entire
life cycle of a radiating star. Stars form as a result of the
gravitational collapse of localised dense regions of molec-
ular clouds in the interstellar medium [2], often referred to
as star-forming regions or nurseries. Core contraction con-
tinues in a subtle fashion (called gravitational compression)
throughout the star’s life as it burns off its matter content
in the nuclear fusion process. At the end of the luminous
phase of the star’s life cycle, when all the nuclear fuel has
been exhausted and the matter content consists of the mostly
very stable atomic nuclei 56Fe, 56Si or 60Zn, it will experi-
ence inwardly directed contraction due to gravity. Due to the
enormous amount of energy being released in such a pro-
cess, it remains a paramount case study in general relativity,
modified gravity, high energy physics, astrophysics and even,
due to the above mentioned stellar nucleosynthesis, nuclear
physics. The end result of such a contraction is either a more
compact object like a neutron star or, in the event of a more
intense electromagnetic field, a pulsar or magnetar. Other-
wise, in the case of truly massive stars, with masses above
the Tolman–Oppenheimer–Volkoff limit, collapse proceeds
in a continual manner without reaching an equilibrium end
state. The singularity theorems of Penrose [3] then predict
that the end state of gravitationally induced stellar collapse
is a spacetime singularity.

The singularity theorems envisage that the end state of
gravitational collapse is the formation of spacetime singular-
ities [4]. Their incidence depends on certain circumstances
such as gravity’s inherent attractive nature, the existence of
trapped surfaces and the preservation of causality. These con-
ditions hold within a variety of gravitational theories. There
also exist a large family of solutions to Einstein’s field equa-
tions which are geodesically incomplete. In fact, one of the
most important requirements for geodesic incompleteness is
the existence of trapped surfaces [3]. These theorems do not
take into account the nature of the spacetime singularities,
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only their formation. Whether or not it is possible for any
future directed null geodesics to escape the confines of a black
hole to infinity, leaving the singularity naked, is not regarded
by the theorems of singularity formation. Penrose [5] pro-
posed the cosmic censorship conjecture to avoid naked singu-
larities. Should any matter distribution that is deemed phys-
ically realistic, collapse under its own gravity, the end state
of this contraction must be a spacetime singularity which is
covered by a trapping horizon for its entire existence. There-
fore, the end state of collapse is a black hole with a central
curvature singularity covered by the event horizon which acts
as an aegis between it and the external universe. The event
horizon is defined as the smooth boundary of the causal past
of null infinity. As it stands there are no proofs for the conjec-
ture and, in fact, the Vaidya–Papapetrou model [6,7] is one
of the earliest models proposed that counters cosmic censor-
ship. Many other counterexamples exist in different contexts
for certain matter distributions, for example [8–16]. It turns
out that an increase in dimension may restore cosmic censor-
ship in general relativity. Under certain physical conditions,
it was demonstrated that collapse terminates with the for-
mation of singularities which are no longer naked, in higher
dimensions [12,17,18].

The generalisation of the Vaidya spacetime, which con-
tains the additional Type II null string fluid, has been exten-
sively studied in regards to the exteriors of radiating rela-
tivistic stars, dynamical black holes and even regular black
holes. Various properties of the additional Type II null fluid
were examined extensively in [19–23]. Contained within
these models were the collapsing monopole, de-Sitter/Anti
de-Sitter, the charged Vaidya models and the radiating dyon
solution. With regard to regular black holes, several models
were analysed in [24–29]. It must be mentioned that these
models are in a sense contrived since the regularity of the
solutions are artificial; coordinate transformations were used
to design them. Some examples of similar regularity con-
structions can be found in [30–32].

In modified theories of gravity, Dominguez and Gallo
[33] analysed black hole solutions in Einstein–Gauss–Bonnet
gravity and Chowdhury et al. [34] found solutions in f (R)

gravity using the idea of R-matching, an inescapable feature
of f (R) collapse. The reason for modifying general relativ-
ity lies in the fact that it is a global theory of gravity and is
therefore incomplete. General relativity itself extends New-
tonian gravity and so considerations for its own extension are
natural. It was shown by Lovelock [35,36] that a polynomial
form of the Lagrangian is possible leading to the Lovelock
action. Therefore higher order curvature terms appearing in
Lovelock gravity are corrections to general relativity. In fact,
general relativity can be considered as first order Lovelock
gravity, since it is the final limiting case. If the Lovelock
polynomial is quadratic in order, we then have the Einstein–
Gauss–Bonnet (EGB) action. This is then second order Love-

lock gravity, or EGB gravity. Quadratic terms in curvature
present as corrections to general relativity. The solution of
Boulware and Deser [37] is indeed the higher dimensional
EGB analogue of the Schwarzschild solution. As an ansatz to
the radiating solution of Vaidya, the Boulware–Deser metric
was studied as a radiating solution by Kobayashi [38] and
Brassel et al. [39]. Several solutions with equations of state
were found as EGB analogues of the Vaidya solutions found
by Husain [19] and Wang and Wu [20]. The role of dimen-
sions in any gravitational theory is an important one. It was
demonstrated in [40] that naked singularities are inevitable
upon the termination of radiation collapse in EGB gravity.
For the five dimensional case, a massive timelike naked sin-
gularity formed post collapse while in dimensions of six
and higher, a massless ingoing naked singularity resulted.
The gravitational collapse of the radiating Boulware–Deser
spacetime was analysed in detail by [41,42] where it was
shown that in five dimensions, the minimum dimension of
the EGB theory, the collapse terminates with an extended
weak and conical central singularity that is initially naked,
before succumbing to a trapping horizon. This is a remark-
able feature not present in general relativity. Conical singu-
larities have been discussed in the literature by [43–45]. It
should be noted that in all dimensions greater than six, col-
lapse terminates with a strong curvature singularity for posi-
tive mass, mirroring general relativity, and thus highlighting
the importance of the fifth dimension in EGB gravity. Weak
and strong curvature singularities were discussed in [46].
Consider a volume element defined by linearly independent
spacelike Jacobi fields1 with zero vorticity propagating along
null (timelike) geodesics or is orthogonal to its tangent vec-
tor. A gravitational curvature singularity is called strong if
such a volume element vanishes at the spacetime singular-
ity. Otherwise it is finite and called weak. The necessary and
sufficient conditions for the formation of strong curvature
singularities were given by Clarke and Królak [47].

An important feature of gravitational collapse, and one
of the bases of this paper, is the notion of the electromag-
netic field contribution. Charged collapse is well known in
the literature since the discovery of the Reissner–Nordström
[48–51] and Kerr–Newman [52,53] metrics. In general rela-
tivity, charged collapse has been analysed in detail, for exam-
ple see [54–56]. In modified theories of gravity, Ghosh [57]
studied radiating black holes in five dimensional Einstein–
Yang–Mills–Gauss–Bonnet (EYMGB) gravity, discussing
the effect of the Yang-Mills gauge charge on the structure and
locations of trapping horizons. Hansraj [58] obtained solu-
tions in static Einstein–Gauss–Bonnet–Maxwell (EGBM)
theory by utilising a coordinate redefinition which led to

1 A Jacobi field is a variation field of a geodesic variation. If we consider
the space of all geodesics, the Jacobi fields along a particular geodesic
form the tangent space to the said geodesic.
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several new solutions. The charged Boulware–Deser metric,
which is the basis of this treatment, was first studied in detail
by Wiltshire [59] where a generalisation of the Birkhoff the-
orem was proved with the effect of the Gauss–Bonnet term.
The conditions for horizon formation were also provided and
compared to the general relativistic limit. Abbas and Ahmed
[60] studied the contraction of a charged spherically sym-
metric fluid in f (R, T ) gravity where the trapped surfaces,
apparent horizon and singularity structure were addressed.
More recently, the effects of the electromagnetic field on
conformally flat collapsing stellar configurations with an
anisotropic heat flow in f (R) gravity were studied in [61].
It was shown that the effect of the charge contribution and
heat flux slowed down the rate of collapse. It should be noted
however that in general relativity, the charge compression
in collapsing a charged mass is significantly higher (around
forty orders of magnitude) than the gravitational attraction.
Therefore it is unlikely that a black hole forming in nature
will have any significant charge contribution. Whether this is
the case in modified theories of gravity is unknown in gen-
eral.

1.1 This paper

We analyse the continual gravitational contraction of a
charged spherically symmetric shell of radiation in five
dimensional EGBM gravity. We will show that the final fate
of such a collapse is a branch-like singularity which separates
the physical collapsing spacetime from an unphysical region
resulting from the charge contributing to the metric becom-
ing complex. We compare this with the uncharged case where
radiation collapse ceases with the formation of a necessarily
weak and conical central singularity, under certain conditions
for the mass function, which remains initially naked for a
time before becoming shrouded by a trapping horizon within
a black hole. This paper is organised in the following way: In
Sect. 2 we give an overview of units and the role of dimen-
sion in gravity. In the following section we highlight some
definitions indicative of the EGB theory. The gravitational
collapse of a radiating spacetime within an electromagnetic
field is considered in Sect. 5, where we highlight the differ-
ences in the collapse process with both the uncharged sce-
nario and the general relativistic case. Finally, we briefly look
at collapse in arbitrary dimensions, noting that the dimension
critically alters the collapse dynamics of radiating matter in
EGB gravity. A brief recap of charged radiation collapse in
general relativity is given in Appendix B.

2 Higher dimensional preamble

The role of dimensions in all gravity theories is a germane
one. In this research paper, we will utilise units where G =

c = 1. In arbitrary dimensions, Einstein’s coupling constant
is expressed in terms of the factorial function and is given by

κN = 2(N − 2)π
N−1

2

(N − 3)
( N−1

2 − 1
)! . (1)

The surface area of the (N − 2)-sphere is given by the fol-
lowing

AN−2 = 2π
N−1

2

Γ
( N−1

2

) , (2)

where we note the presence of the Gamma function Γ (. . .).
Since EGB gravity is only relevant in five dimensions
or higher, these terms become important in the analy-
sis, especially with regards to the electromagnetic field.
The Lorentzian signature of the spacetime manifold is
(−,+,+, . . . ,+). These expressions become especially
critical when considering a charged radiating stellar mass,
or black hole, which is the basis of this paper.

The surface gravity of a black hole is not well defined in
general. However, it is possible to define it for a black hole
whose event horizon is a Killing horizon.2 Every stationary
(non-rotating) black hole has a Killing horizon [62,63]. The
surface gravity K of a Killing horizon is the acceleration (as
exerted at infinity) required to keep an object at the horizon of
a black hole. It can be derived from the Raychauduri equation
[64,65] and is given by

K ka = kbka ;b, (3)

where ka is a Killing vector. In the above, the semicolon
represents covariant differentiation.

3 Second order Lovelock gravity

The Lovelock (or Lovelock–Zumino) action in arbitrary
dimensions is given by

S =
∫

d N x
√−g

N/2∑

k=0

αkR
k + Smatter , (4)

where we have

Rk = 1

2k
δ

c1d1...ck dk
a1b1...ak bk

k∏

r=1

Rar br
cr dr ,

and δ
c1d1...ck dk
a1b1...ak bk

is the Kronecker delta. In the context of Love-
lock gravity in higher dimensions, some spherically sym-
metric exact solutions for cosmological backgrounds were
found by Bajardi et al. [66]. They also obtained solutions in
five dimensional, topological Chern–Simons gravity where it

2 A Killing horizon is a null hypersurface which is defined by the van-
ishing of the norm of a Killing vector field.
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was shown that for particular Lovelock parameters, Anti-de
Sitter invariant Chern–Simons gravity is contained in Love-
lock gravity in five dimensions. If we consider second order
Lovelock gravity, the action reduces to

S =
∫

d N x
√−g(α0 + α1R + α2R

2), (5)

where α0 = Λ is the cosmological constant term, α1 is the
constant (usually unity) associated with the Einstein–Hilbert
action (R = R) and α2 = α is the constant associated with
the Gauss–Bonnet term. It is important to note that in order
to avoid any pathologies, α > 0 [37]. In the above,

R2 = LG B = R2 + Rabcd Rabcd − 4Rcd Rcd , (6)

is the second order Lovelock Lagrangian. Varying the second
order action (5) with respect to the metric gab gives the second
order Lovelock or EGB field equations

Gab − α

2
Hab = κN Tab. (7)

Here, Gab is the Einstein tensor, Tab is the energy momen-
tum tensor and Hab is the Lovelock tensor which arises as a
consequence of varying the action (5). It is given by

Hab = gab LG B − 4R Rab + 8Rac Rc
b + 8Racbd Rcd

−4Racde Rb
cde. (8)

The nontrivial nature of this expression requires that the min-
imum dimension of the spacetime in EGB gravity has to sat-
isfy N ≥ 5. If we have that N < 5, the Lovelock tensor
(8) vanishes, and there is no contribution from the higher
curvature of the theory.3 In the limit where α → 0, general
relativity will be regained in five dimensions. For the case of
a nonvanishing electromagnetic field, the Einstein–Gauss–
Bonnet–Maxwell (EGBM) field equations are written as

Gab − α

2
Hab = κN (Tab + Eab), (9a)

Fab;c + Fbc;a + Fca;b = 0, (9b)

Fab;b = AN−2 J a, (9c)

for a relevant energy momentum tensor Tab and the electro-
magnetic energy tensor Eab. In the above, J a is the current
and the fluid N -velocity is u. The electromagnetic energy
tensor can be written as

Eab = 1

AN−2

(
Fa

c Fbc − 1

4
Fcd Fcd gab

)
, (10)

and is expressed in terms of the Faraday tensor Fab = Φb;a −
Φa;b, the gauge potential Φ and the surface area (2). We note
that the tensor (10) is trace-free only in four dimensions.

3 It should be noted that the Lovelock term LG B does not vanish for
dimensions less than five. It remains an invariant in whatever dimension
is being utilised.

4 The generalised radiating Boulware–Deser solution

The EGB analogue of the Schwarzschild solution was found
by Boulware and Deser [37]. Similar to the Vaidya solution,
this metric can be written in Eddington–Finkelstein coordi-
nates and then can be made to radiate [38,39,41,42]. The
five dimensional radiating metric is given by

ds2 = − f (v, r)dv2 + 2dvdr

+r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (11)

where

f (v, r) = 1 + r2

4α

(

1 ±
√

1 + 8αM(v, r)

r4

)

. (12)

We have that M(v, r) represents the gravitational mass of the
five dimensional hypersurface. In the above expression (12),
the negative branch solution has the general relativity limit as
α → 0 [37]. The solution (12) comes about as a result of the
generalised uncharged Type II matter with a string fluid. The
negative branch solution (12) is essentially the EGB analogue
of the Vaidya spacetime, to which it reduces in the general
relativity limit when α → 0. This motivation is necessary to
compare the EGB effects to those in the general relativistic
limit. The energy momentum tensor is written as

Tab = μ̃lalb + (ρ̃ + P̃)(lanb + lbna) + P̃gab, (13)

where we have that

la = δ0
a, (14a)

na = 1

2
f (v, r)δ0

a + δ1
a, (14b)

with the restrictions

lclc = ncnc = 0, lcnc = −1. (15)

The null vector la is a double null eigenvector of the energy
momentum tensor (13). The EGB field equations (7) take the
simple form

μ̃ = Mv

2π2r3 , (16a)

ρ̃ = Mr

2π2r3 , (16b)

P̃ = − Mrr

6π2r2 , (16c)

where

Mv = ∂ M

∂v
, Mr = ∂ M

∂r
.

The Einstein tensor components and Lovelock tensor compo-
nents will be presented in Appendix A. They are complicated
in form but their union in (7) yields the simple expressions
above.

The energy conditions for the Type II fluid (as shown in
[21,67,69]) are
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– The null energy condition:

μ̃ ≥ 0, ρ̃ + P̃ ≥ 0. (17)

– The weak energy condition:

μ̃ ≥ 0, ρ̃ ≥ 0, ρ̃ + P̃ ≥ 0. (18)

– The strong energy condition:

μ̃ ≥ 0, ρ̃ + P̃ ≥ 0, ρ̃ + 3P̃ ≥ 0. (19)

– The dominant energy condition:

μ̃ ≥ 0, ρ̃ ≥ |P̃|(≥ 0). (20)

These are equivalent in the five-dimensional general relativ-
ity limit. Using (14) and (15), the surface gravity K can also
be written as

K = lbnanb;a . (21)

5 Charged Boulware–Deser collapse

The charged analogue of the Boulware–Deser metric was
first analysed in detail by Wiltshire [59]. If we consider the
mass function in (12), we make the choice

M(v, r) = M(v) − κ5 Q(v)2

6A3r2 , (22)

which gives4

M(v, r) = M(v) − Q(v)2

4r2 , (23)

which is analogous to the choice made in the Appendix (B.7).
This choice comes about by following the methodology used
in Wang and Wu et al. [20]. We then have the metric for the
charged Boulware–Deser spacetime

ds2 = − f (v, r)dv2 + 2dvdr

+r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (24)

where we now have

f (v, r) = 1 + r2

4α

⎛

⎝1 −
√

1 + 8αM(v)

r4 − 2αQ(v)2

r6

⎞

⎠ . (25)

The solution (25) was first found by Wiltshire [59]. In the
limit when α → 0, the above reduces to the Vaidya metric

4 The quantities (1) and (2) evaluate to

κ5 = 3π2, A3 = 2π2,

in five dimensions.

(B.8) with nonzero charge q(v) (see Appendix B). The five
dimensional gauge potential and five-current are given by

Φa = Q(v)

2r2 ,

and

J a = Qv

4π2r3 la .

The electromagnetic field contribution (10) is built into
the above definition (23) in five dimensions. In the above,
Q = Q(v) is the charge indicative of the Einstein–Gauss–
Bonnet–Maxwell (EGBM) theory. Note that the five dimen-
sional Einstein constant and surface area of the 3-sphere are
incorporated into this definition analogously to (B.7).

Using (16), we can write the EGBM field equations (9)
with the mass function (23) as

M(v, r) = M(v) − Q(v)2

4r2 , (26a)

μ̃ = Mv

2π2r3 − Q Qv

4π2r5
, (26b)

ρ̃ = P̃ = Q(v)2

4π2r6 . (26c)

We note that in the absence of charge, M(v, r) = M(v) in
the above, and only one field equation (26b) will survive as
expected.5 For the metric (25) the energy conditions (17)–
(20) must be satisfied. From the field equations (26), this
gives

Mv ≥ Q Qv

2r2 , (27)

Q(v) ≥ 0. (28)

Similarly to the general relativity case (shown in Appendix
B), the condition (27) is violated near r = 0 [70,71].
For the case of the metric (25) the reason for this viola-
tion is different to the general relativity case, which we
explain in the paragraphs below. The collapse dynamics of
the charged Boulware–Deser spacetime differ significantly
to its uncharged counterpart [41]. We observe from (25) that

since the charge term − 2αQ(v)2

r6 has a negative sign, there
must exist a maximal charge contribution before which this
metric becomes complex. Therefore a branch singularity is
generic for the charged collapse in EGB gravity [72,73]. Con-
sidering the square root term in (25), this only remains real
if

|Q(v)| ≤
√

r2(r4 + 8αM(v))

2α
,

otherwise it becomes complex. There exists no real spacetime
whenever the above inequality is violated. This inequality can

5 In general, ρ̃ and P̃ are nonzero by (16) and (26a).
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be written as

r6
s + 8αMr2

s − 2αQ2 ≥ 0, (29)

which has six solutions for r = rs(v), two of which are real
and one of which is positive. There exists a branch singularity
at r = rs(v) for any value of the mass function M , if Q �= 0,
which separates the real spacetime from the complex metric.
The positive real solution to the above inequality is given by

rs ≥

√√
√
√−3

(
27αQ + 3

√
E
) 1

3

(

24αM −
(

27αQ + 3
√

E
) 2

3

)

3
(

27αQ + 3
√

E
) 1

3

,

(30)

where we have set E = 1536M3α3 + 81Q2α2. This branch
singularity forms at rs(0) = 0 = v and extends into the
future. The value of the inequality determines the domain
of r which is 0 < rs < r < ∞; there is no spacetime at
r = 0, which is one reason the weak energy condition (27)
is violated. The Kretschmann invariant K = Rabcd Rabcd

can be used to check whether any spacetime manifold has
singularities. For the charged metric (25) it is given by

K = 1

4α2r6(r6 + 8αMr2 − 2αQ2)3

[
−20r24

√
F

×88Q8α4 + 16Q6α3r6
√

F − 256Q6α3r6

+11264M3α3r12 − 352M Q4α3r8
√

F

+2640M Q4α3r8 − 2304M2α2r16

−122Q2αr18 − 132Q4α2r12 + 20r24

+12288M4α4r8 + 1920M2 Q2α3r10
√

F

−400Mαr20
√

F − 8832M2 Q2α3r10

−2208M Q2α2r14 − 3072M3α3r12

+351Q4α2r12 − 12288M3 Q2α4r6

+480Mαr20 + 5568M2 Q4α4r4r18

+1120M Q2α2r14
√

F + 4032M2α2r16

+102Q2αr18
√

F − 1152M Q6α4r2
]
, (31)

where we have set F = 1 + 8αM
r4 − 2αQ2

r6 . We note the

r6 + 8αMr2 − 2αQ2 term outside the bracket in (31),
which is of the same form as (29). Therefore in the region
r6

s + 8αMr2
s − 2αQ2 = 0, there is a curvature singular-

ity; this branch singularity r = rs(v) is indeed the curva-
ture singularity of the spacetime. It can be observed that in
this case the Kretschmann invariant diverges at the branch
r = rs(v) (see Figs. 1 and 2) as K ≈ r−24 which is signifi-
cantly more than the uncharged case (K ≈ r−16), and even
more so than the general relativistic charged Vaidya analogue
(K ≈ r−8). This highlights the role of the curvature correc-
tions of EGB gravity in tandem with the charge component

Fig. 1 Plot indicating the behaviour of the Kretschmann scalars for the
charged Vaidya and the charged Boulware–Deser (BD) spacetimes

Q of the electromagnetic field. There is no physical space-
time in the region 0 < rs . In the limiting case of Q = 0, the
scalar (31) reduces to that of the uncharged metric studied in
[40,41].

Figures 1 and 2 depict the behaviours of the Kretschmann
scalars for the three spacetimes (B.8), (12) and (25). We
have used the values α = 2, m(v) = M(v) = 15 and
q(v) = Q(v) = 2. Figure 1 depicts the behaviour of the
Kretschmann scalars for the charged Vaidya spacetime and
the charged Boulware–Deser spacetime. The charged Vaidya
metric diverges strongly near the singularity r = 0 in a
steadily decreasing manner with increasing r . However it
is apparent that the divergence of the charged Boulware–
Deser spacetime is negative nearer to the branch singularity
r = rs ≈ 0.258, and then increases as one moves along
the radial coordinate. This is an interesting feature since
at some finite radial coordinate, the quantity (31) vanishes
entirely before increasing steadily with increasing r . Fig-
ure 2 shows the behaviour of the Kretschmann invariants
for the uncharged and charged Boulware–Deser metrics. We
note that for the uncharged Boulware–Deser spacetime, the
divergence pattern is similar to the charged Vaidya space-
time. Near the central singularity, the Kretschmann scalar
diverges, before steadily decreasing with increasing r . We
can clearly see in Figs. 1 and 2 that the charged Boulware–
Deser spacetime diverges rapidly near the branch singularity
located at r = rs ≈ 0.258.

The apparent horizon forms when

1 + r2
H

4α

(

1 −
√

1 + 8αM(v)

r4
H

− 2αQ(v)2

r6
H

)

= 0, (32)

which, after simplification, turns out to be a quartic polyno-
mial in rH . It yields four solutions, namely

r0 = ±1

2

√
2M + 2

√
(M − 2α)2 − Q2 − 4α, (33a)

r1 = ±1

2

√
2M − 2

√
(M − 2α)2 − Q2 − 4α, (33b)
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≠

Fig. 2 Plot indicating the behaviour of the Kretschmann scalars for the
uncharged and charged Boulware–Deser (BD) spacetimes

Again, only the positive parts of (33a) and (33b) are applica-
ble so we therefore have

r0 = 1

2

√
2M + 2

√
(M − 2α)2 − Q2 − 4α, (34a)

r1 = 1

2

√
2M − 2

√
(M − 2α)2 − Q2 − 4α. (34b)

Depending on the value of the discriminant

Δ̄ = (M − 2α)2 − Q2,

three cases arise.

1. If Δ̄ < 0, no real solutions are possible, and there does
not exist any physical horizon.

2. If we have that Δ̄ = 0, then M = 2α ± Q. Two scenarios
are possible:

– For the case, M = 2α − Q, no horizon formation
takes place since the values under the square roots in
system (34) will be negative, and so both r0 and r1

will be complex.
– If M = 2α + Q the above solutions coincide with

the single extremal horizon in five dimensions, i.e.
r0 = r1 = rH = √

M − 2α from [41].

3. If Δ̄ > 0, then there will exist two real physical apparent
horizons for the charged radiating black hole. The solution
(34a) will be the outer horizon and (34b) will represent
the inner horizon. To an external observer, only the outer
horizon will be visible. This is in line with the conclusions
drawn in [59].

We now make the following observations:

– If the Gauss–Bonnet coupling constant vanishes (α = 0)

the solutions (34) reduce to charged Vaidya solutions in

five dimensions

r0,1 = 1

2

√

2m ± 2
√

m2 − q2,

from (B.13).
– If the charge contribution is vanquished (Q = 0), the

solutions (34) reduce to the single solution

rH = √
M − 2α,

studied in [41].

Similarly, the mass function from setting (32) to zero can be
written as

M = r2
H + 2α + Q2

4r2
H

:= MH (rH ), (35)

where the horizon radius must satisfy rH > 0. When Q = 0,
(35) reduces to

MH (rH ) = r2
H + 2α,

which is monotonically increasing in the domain 0 ≤ r <

∞ and satisfies MH (0) = 2α. In the case where M(v) ≤
2α at a time v, there is no horizon formation. One horizon
will form if M(v) > 2α; this apparent horizon formation is
delayed by the EGB coupling constant α as shown in [41].
The effect of the charge Q is, thus, significant in EGB gravity.
If we consider the square root in (32) and solve for the mass
function M , this gives

M = − 1

8α
r4

s + Q2

4r2
s

:= Ms(rs), (36)

which further iterates that there is a branch singularity at
r = rs for all M and nonzero Q.

In order to quantify this analysis, we assume α = 2,
M = 15 and Q = 2 and calculate approximate values of
the branch rs , as well as the inner and outer horizons r1 and
r0 respectively. This gives the three solutions

rs =
√

2
√

(1 + 3
√

899)
2
3 − 20

(1 + 3
√

899)
1
6

≈ 0.258196,

r1 = 1

2

√
22 − 3

√
17 ≈ 0.302776,

r0 = 1

2

√
22 + 3

√
17 ≈ 3.302776,

and it is clear that for these values, the branch singularity is
covered by the two horizons within the domain for r which
is 0 < rs < r1 ≤ r0 < ∞. Table 1 depicts the different
scenarios for the formation of singularities and horizons for
differing mass values. We have used the values α = Q = 2
throughout; for these values the two critical solutions for
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Table 1 Singularity and horizon formation scenarios for different mass values with α = Q = 2. (rs - branch singularity, r1 - inner horizon, r0 -
outer horizon)

Mass Singularity and horizon values Discriminant Δ̄ Domain 0 < rs < r1 ≤ r0 < ∞ Horizon formation

M = 1 rs = 0.97310

r1 = 1.61803i Δ̄ < 0 Yes No horizon

r0 = 0.61803i (0 < rs < ∞)

M = 2 rs = 0.70440

r1 = i Δ̄ = 0 Yes No horizon

r0 = i (0 < rs < ∞)

M = 5 rs = 0.44710

r1 = 0.866 − 0.5i Δ̄ < 0 Yes No horizon

r0 = 0.866 + 0.5i (0 < rs < ∞)

M = 6 rs = 0.40819

r1 = 1 Δ̄ = 0 Yes One horizon

r0 = 1

M = 10 rs = 0.31622

r1 = 0.41421 Δ̄ > 0 Yes Two horizons

r0 = 2.41421

M = 15 rs = 0.25819

r1 = 0.30278 Δ̄ > 0 Yes Two horizons

r0 = 3.30278

M = 20 rs = 0.22361

r1 = 0.25049 Δ̄ > 0 Yes Two horizons

r0 = 3.99215

the discriminant Δ̄ = 0 = (M − 2α)2 − Q2 are M = 2
and M = 6. These are shown in the table. For M = 2, no
horizon will form since the values of the inner and outer
horizons are imaginary numbers. From the table, we also
note that for 0 < M < 2 and 2 < M < 6, no horizon
will form since the discriminant Δ̄ < 0. When M = 6, we
have r0 = r1 = 1 and so there is one horizon which forms
upon collapse. For all M > 6, two horizons will always form
covering the singularity rs . It is interesting to note that as the
values of the mass function increase, the value of the branch
singularity rs appears to decrease, however this value will
never terminate for Q > 0.

Figure 3 depicts the possible collapse scenario, from an
initially flat spacetime, for charged null matter. We have radi-
ating charged null matter falling into a black hole. The two
apparent horizons, of which only the outer is visible to an
observer, form at v = rs(0) = 0 unlike in the uncharged
scenario, and encompass trapped surfaces in a dense region
0 < v < V0. The Gauss–Bonnet constant α does not delay
the formation of the two apparent horizons, unlike the single
horizon of the uncharged case. The presence of the charge

contribution 2αQ(v)2

r6 in the metric (25) indicates that for a spe-
cific value of r(= rs) (in tandem with Q), the metric becomes
complex and there is no physical spacetime below this value.
This contributes to the formation of a curvature singularity

(a branch singularity) which separates the unphysical part
of the metric from the rest of the collapsing spacetime. This
singularity forms at v = rs(0) = 0 and extends into the
future, however, covered by the two horizons. The electro-
magnetic field contribution is significant in the late stages of
collapse in EGB gravity. This is unlike the general relativity
case where the electromagnetic field contribution appears to
be minimal. At a time v = V0, the apparent horizons match
smoothly to the two event horizons, of which the outer is vis-
ible to the external universe. The charged Boulware–Deser
exterior is separated from the black hole by this outer hori-
zon. Within the charged Boulware–Deser black hole resides a
strong central curvature singularity separating the collapsing
matter from the unphysical metric. Incidentally, the collapse
scenario remains the same for all N ≥ 6, so gravitational col-
lapse in EGBM gravity is similar for all dimensions greater
than five (see Sect. 6).

The collapse scenario differs when Q = 0, as analysed by
[40,41]. The uncharged Boulware–Deser spacetime is, first
of all, metric regular in five dimensions. The spacetime itself
is singular due to the diverging diffeomorphism invariants
[41]. Therefore collapse terminates with a sufficiently weak
central conical singularity. This conical singularity exists for
a period of time where it is naked, and this is due to the Gauss–
Bonnet coupling constant α which delays the formation of the
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Fig. 3 Spacetime diagram of possible charged radiation collapse sce-
nario in five dimensional EGBM gravity. There is a branch singularity
r = rs(v) which forms at v = rs(0) = 0 extending into the future sep-
arating the unphysical region from the rest of the collapsing spacetime.
The apparent horizons form immediately at v = rs(0) = 0 covering
the central singularity. Only the outer horizon r = r0 is visible to an
external observer at infinity. In the case of the discriminant Δ̄ = 0,
the inner and outer horizons coincide; there will be a single extremal
horizon separating the singularity from the external universe, and so
this diagram remains the same. It should be noted that this diagram also
remains unchanged for all N ≥ 6

apparent horizon. There are also a separate class of curvature
singularities in EGB gravity. In the case of uncharged null
matter, (25) becomes

f (v, r) = 1 + r2

4α

(

1 −
√

1 + 8αM(v)

r4

)

. (37)

Upon inspection of the above metric, a zero within the square-
root implies a curvature singularity. Two branches of solu-
tions meet here and so the singularity is also a branch sin-
gularity6 at some finite radius r = rs , however unlike in the
charged situation, this can be resolved. Letting the square

root
√

1 + 8αM(v)

r4 = 0 in (37) and solving for M yields

M(v) = − 1

8α
r4

s := Ms(rs), (38)

and should rs > 0 hold, the domain of r becomes 0 < rs <

r < ∞. We note that a branch singularity only forms for
the case M < 0 which is unphysical in itself. Therefore for
any positive choice of the mass function M(v), collapse ter-
minates with the above mentioned central conical singular-
ity (see Fig. 4). The collapse situation differs in dimensions
N ≥ 6, in that collapse will terminate with a strong curva-

6 Lovelock gravity, in general admits more than one class of solutions,
therefore a branch singularity at a finite radius r = rs > 0 is common.

Fig. 4 Spacetime diagram of possible neutral radiation collapse in five
dimensional EGB gravity for M(v) > 0. There is a weak and conical
naked singularity which forms within the region 0 < v < V0, and there
are families of trajectories which escape to infinity from the black hole.
The apparent horizon forms in the region V0 < v < V1 since the EGB
coupling constant α initially delays its formation. We have radiating
null matter focusing into the black hole and at v = V0, null radiation
falls through this distribution into the black hole

≠

≠

Fig. 5 Plot indicating the Hawking temperatures for the spacetime
metrics (B.8), (37) and (25)

ture singularity since the Boulware–Deser spacetime is met-
ric singular for all dimensions greater than five. However, the
branch singularity case mentioned above, i.e. M < 0, holds
for all dimensions greater than five.

These collapse scenarios in EGB gravity are fundamen-
tally different to the higher dimensional Vaidya collapse in
general relativity, highlighting the effect of the curvature cor-
rections indicative of the Lovelock theory.
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Table 2 Comparisons between
spacetimes

Spacetime Charged Vaidya Boulware–Deser Charged Boulware–Deser

Metric regularity No (N ≥ 4) Yes (N = 5) No (N ≥ 5)

No (N > 5)

Spacetime regularity No No No

K = Rabcd Rabcd Divergent Divergent Divergent

Rab Rab Regular Divergent Divergent

Cabcd Cabcd Divergent Divergent Divergent

Singularity existence Yes Yes Yes

Singularity type Curvature Conical Curvature branch

Singularity strength Strong Weak Strong

In five dimensions, the temperature at the horizon is cal-
culated as

T (rH ) = 1

A3
f ′(rH ), (39)

where we have f (v, r) from (25) at the horizon. We note
the presence of the surface area term A3, due to the horizon
surrounding the 3-sphere in the five dimensional collapsing
geometry. The surface gravity is equivalent to the definition
[74]

K = 1

2
f ′(rH ). (40)

Note that the temperature at the horizon r = rH is equal to
the Hawking temperature7 so one can write

T (rH ) = 1

A3
f ′(rH ) = 2K

A3
, (41)

where we have used (40). The surface gravity of the charged
metric (25) is given by

K = rH

4α

⎡

⎢⎢
⎣

−1 +
√

8αM
r4

H
− 2αQ2

r6
H

− αQ2

r6
H

√
8αM
r4

H
− 2αQ2

r6
H

⎤

⎥⎥
⎦ , (42)

where we note the charge contribution Q. When the charge
vanishes, the above reduces to

K = rH

4α

⎡

⎣
−1 +

√
1 + 8αM

r4
H√

1 + 8αM
r4

H

⎤

⎦ . (43)

7 In arbitrary dimensions, the Hawking temperature is written as

TH = 2K

AN−2
,

where we note the surface area term for the higher dimensional sphere.
In four dimensions this reduces to the well known result TH = K

2π
.

The Hawking temperature at the horizon is given by

TH = rH

4απ2

⎡

⎢⎢
⎣

−1 +
√

8αM
r4

H
− 2αQ2

r6
H

− αQ2

r6
H

√
8αM
r4

H
− 2αQ2

r6
H

⎤

⎥⎥
⎦ . (44)

The above quantity gives a measure of the black body radia-
tion emanating from a black hole due to quantum effects near
the horizon [75]. In Fig. 5 the Hawking temperatures for all
three spacetimes are represented. We again have used the val-
ues α = 2, m(v) = M(v) = 15 and q(v) = Q(v) = 2. Now
since the Hawking temperature is measured at the horizon,
we consider each spacetime separately.

1. Charged Vaidya: Using the numerical values above, the
outer horizon (B.13a) evaluates to

r0 = 1

2
(
√

13 + √
17) ≈ 3.84328.

It can clearly be seen that the Hawking temperature is pos-
itive at this value and then steadily decreases with increas-
ing r .

2. Uncharged Boulware–Deser: The value of the apparent
horizon rH = √

M − 2α evaluates to

rH = √
11 ≈ 3.316625,

and it can be seen that the Hawking temperature corre-
sponding to this value is also positive and slowly decreas-
ing as expected with increasing r .

3. Charged Boulware–Deser: The value corresponding to
the outer horizon (34a) is given by

r0 = 1

2

√
22 + 3

√
17 ≈ 3.302776.

Again, we observe that the Hawking temperature at this
value is positive and expectedly decreasing as one moves
away from the outer horizon to infinity.
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We note that below the respective horizons, these tempera-
tures diverge rapidly when nearing the central singularities.

In Table 2 we highlight the differences between the three
spacetimes studied in this paper, with regards to the end state
of gravitational collapse.

Another point to emphasise is the effect of the electro-
magnetic field on the gravitational collapse dynamics in EGB
gravity compared to conventional Einstein gravity. In general
relativity, the effect of the charge contribution appears to be
minimal since the collapse dynamics of the Vaidya spacetime
are not too different from its charged counterpart. Collapse
for both spacetimes ceases with the formation of a strong cur-
vature singularity which may or may not be naked [12,13].
If it is not naked, it is covered within the confines of a black
hole. Radiation collapse is markedly different in EGB gravity.
Firstly, the gravitational collapse of the uncharged Boulware–
Deser spacetime is critically affected by the presence of the
Gauss–Bonnet constant α. The metric is regular and well
defined for all r , however the spacetime itself is singular
due to its diverging diffeomorphism invariants. This implies
that collapse terminates with the formation of an extended,
weak conical singularity at the centre that is initially naked
if M(v) ≥ 0; the Gauss–Bonnet constant α delays its for-
mation. Eventually the apparent horizon forms and matches
smoothly with the event horizon forming a single trapping
horizon that contains the trapped surfaces within a black
hole with a centrally weak conical singularity. Secondly, the
charged Boulware–Deser metric is dynamically very differ-
ent to its uncharged counterpart. The metric is no longer
regular or well defined. The presence of the charge contri-
bution changes the type of singularity encountered upon the
cessation of collapse; it ceases with the formation of a cur-
vature singularity which is a branch singularity forming at
v = rs(0) = 0 separating the spacetime from an unphysical
region which is the result of a complex metric. The horizons
can also form at v = rs(0) = 0 unlike with the uncharged
case. The Gauss–Bonnet constant appears not to affect the
collapse dynamics as profoundly as for the uncharged case.
Only the outer horizon is visible to an external observer at
infinity and covers all trapped surfaces within the confines
of a black hole. A further point to highlight is the role of
dimensions in this analysis. In EGB gravity, it is well known
that N = 5 and N = 6 are the physically important dimen-
sions. We note that the Boulware–Deser spacetime in N ≥ 6
dimensions, whether charged or not, will collapse to a strong,
central curvature singularity for all M(v) ≥ 0 (or a branch-
like singularity for the charged case). The uncharged case
mirrors general relativistic collapse. It is only in five dimen-
sions, where a marked difference can be seen in the collapse
dynamics of the uncharged Boulware–Deser spacetime and
its counterpart with the electromagnetic field contribution.
This highlights that N = 5 is the critical dimension in EGB

gravity, and that the electromagnetic field effects are more
profound in EGB gravity, than in general relativity.

6 Higher dimensions

Gravitational contraction in higher dimensions is vital with
regards to modified or higher order theories of gravity. Higher
dimensional collapse has been extensively studied, for exam-
ple see [76–78] in general relativity and [42,79,80] in mod-
ified gravity. As iterated earlier, the collapse process of the
Boulware–Deser spacetime in dimensions greater than five
differs from the five dimensional case. For all N > 5 the
collapse ceases with the formation of a strong curvature sin-
gularity, whether the spacetime has a charge contribution or
not. If the charge component is there, the result of collapse is
a branch singularity separating the physical spacetime from
the region where the metric function is complex. The N -
dimensional generalised Boulware–Deser metric is given by

ds2 = − f (v, r)dv2 + 2dvdr + r2dΩ2
N−2, (45)

where we have the (N − 2)-sphere

dΩ2
N−2 =

N−2∑

i=1

⎡

⎣
i−1∏

j=1

sin2(θ j )

⎤

⎦ (dθi )
2.

In the above

f (v, r) = 1 + r2

2α̂

(

1 −
√

1 + 4α̂

N − 3

(
2M(v, r)

r N−1

))

, (46)

where we have set α̂ = α(N − 3)(N − 4) for neatness.
In higher dimensions the choice of the mass function (23)
becomes

M(v, r) = M(v) − κN Q(v)2

2(N − 2)AN−2r N−3 , (47)

where we note the explicit appearance of Einstein’s gravita-
tional constant and the surface area of the (N − 2)-sphere.
The electromagnetic stress energy tensor (10) is built into
this definition (47) above. The metric (46) then becomes

f (v, r) = 1 + r2

2α̂

(
1 −√

G(v, r)
)

, (48)

with

G(v, r) = 1 + 4α̂

N − 3

[
2M(v)

r N−1
− κN Q(v)2

(N − 2)AN−2r2N−4

]

. (49)

We note the following:

– When N = 5, the above expression (48) reduces to (25)
found by Wiltshire [59].

– When N = 5 and Q(v) = 0, the expression (48) reduces
to the uncharged metric (37).
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We also note that there exists a maximal charge contribution
to the higher dimensional metric (48) for which it remains
real. This contribution depends on the dimension N , sur-
face area AN−2, Einstein’s gravitational constant κN and the
Gauss–Bonnet constant α̂ = α(N − 3)(N − 4). It is given
by

|Q(v)| ≤
√

(N − 2)(N − 3)

4α̂κN
AN−2

[
r2N−4 + 8α̂M(v)

N − 3
r N−3

]
,

for all dimensions N ≥ 5 and α �= 0. This can also be written
in the form

r2N−4
s + 8α̂M(v)

(N − 3)
r N−3
s − 4α̂κN Q(v)2

(N − 2)(N − 3)AN−2
≥ 0, (50)

where r = rs(v) > 0 denotes a branch singularity separating
the physical spacetime from the complex metric, analogously
to the five dimensional case. When N = 5 this reduces to
(29). Therefore, the collapse process of null radiating matter
within an electromagnetic field is similar for all dimensions
N ≥ 5.

The dimension appears to focus the effects of the higher
order curvature indicative of the theory. If we consider the
general N -dimensional metric (46), the formation of the
apparent horizon will occur when

1 + r2
H

2α̂

⎛

⎝1 −
√√√
√1 + 4α̂

N − 3

(
2M(v, r)

r N−1
H

)⎞

⎠ = 0. (51)

This simplifies to

α̂r N−5
H + r N−3

H − 2M(v, r)

N − 3
= 0. (52)

It is important to note that whenever the order of the poly-
nomial is odd, there will always be at least one real root.
When the order is even, this need not be the case; all roots
could possibly be complex. It is indeed possible to incor-
porate the electromagnetic field into the generalised mass
function M(v, r) in (52). This gives

α̂r N−5
H + r N−3

H − 2M(v)

N − 3

+ κN Q(v)2

(N − 2)(N − 3)AN−2r N−3
H

= 0. (53)

Equivalently, we can solve the above for the mass function
to get

M = N − 3

2
r N−3

H + (N − 3)α̂

2r N−5
H

+ κN Q2

2(N − 2)AN−2r N−3
H

:= MH (rH ). (54)

When N = 5 in (54), this reduces to (35), and so the form of
MH (rH ) is qualitatively the same for all dimensions N ≥ 5.

Therefore, as previously mentioned, the gravitational col-
lapse of charged null matter in higher dimensions is not dif-
ferent to the five dimensional case in EGBM gravity. This is
markedly different to the uncharged scenario where in five
dimensions collapse ceases with a weak conical singularity
(for positive mass) and for dimensions six and higher, col-
lapse terminates with a strong curvature singularity.

We will present different cases for the polynomials in dif-
ferent dimensions in Table 3.

It is interesting to note that when the electromagnetic field
is present, we see in Table 3 that the polynomial equations
in r are always of even order. When Q = 0, the order of
the polynomial equations alters from even to odd, with odd
dimensions corresponding to even ordered polynomials and
even dimensions corresponding to odd ordered equations. We
deduce from this that for vanishing charge, and for all even
dimensions, it is guaranteed that the resulting polynomial
equation for the horizon formation will yield at least one real
root. If such a root is positive, this means that an apparent
horizon will always form to cover the central singularity. We
can state the following in a theorem:

Theorem 1 Consider an uncharged collapsing, inhomoge-
neous and radiating Boulware–Deser spacetime in N > 5
dimensions, from a regular epoch with a generalised mass
function M(v, r) that obeys all physically reasonable energy
conditions and is at least C2 in the entire spacetime man-
ifold. Whenever the dimension of spacetime is even (i.e.
N = {2k, k ≥ 3, k ∈ Z}), and the real solution to the hori-
zon formation equation is positive, the final fate of collapse
will be a strong curvature singularity that will eventually be
covered by an event horizon.

7 Conclusion

In this paper we studied the continual gravitational contrac-
tion of a charged null radiation shell in five dimensional
EGBM gravity. The final outcome of collapse was the forma-
tion of a curvature branch singularity covered by two trap-
ping horizons, of which the outer is visible to the external
universe. The charge contribution yielded a situation where
the metric is complex in a certain region, separated by this
branch singularity. This is very different to uncharged radi-
ating collapse where, for a positive mass, the final end state
was an extended weak conical singularity which remains ini-
tially naked before succumbing to an apparent horizon at a
later time. The electromagnetic field contribution critically
alters the dynamics of the collapse process of the radiating
Boulware–Deser spacetime. In general relativity, the charge
contribution to the collapse process appears to be minimal
when compared to EGB gravity. The collapse of the Vaidya
spacetime and its charged counterpart both cease with the for-
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Table 3 Horizon formation polynomials

Dimension Einstein constant and surface area Horizon formation Horizon formation
(Q �= 0) (Q = 0)

N = 5 κ5 = 3π2 r4 + 2αr2 − Mr2 + Q2

4 = 0 r2 + 2α − M = 0

A3 = 2π2

N = 6 κ6 = 32
9 π2 r6 + 6αr4 − 2

3 Mr3 + Q2

9 = 0 r3 + 6αr3 − 2
3 M = 0

A4 = 8
3 π2

N = 7 κ7 = 5
4 π3 r8 + 12αr6 − 1

2 Mr4 + Q2

16 = 0 r4 + 12αr2 − 1
2 M = 0

A5 = π3

N = 8 κ8 = 32
25 π3 r10 + 20αr8 − 2

5 Mr5 + Q2

25 = 0 r5 + 20αr3 − 2
5 M = 0

A6 = 16
15 π3

N = 9 κ9 = 7
18 π4 r12 + 30αr10 − 1

3 Mr6 + Q2

36 = 0 r6 + 30αr4 − 1
3 M = 0

A7 = 1
3 π4

N = 10 κ10 = 256
735 π

7
2 r14 + 42αr12 − 2

7 Mr7 + Q2

49 = 0 r7 + 42αr5 − 2
7 M = 0

A8 = 32
105 π

7
2

mation of a strong curvature singularity which may or may
not be naked.

In EGB gravity the electromagnetic field contribution
alters the type of singularity formed, post collapse. When
Q = 0 and M > 0, the Boulware–Deser spacetime collapses
to a weak and conical singularity which is initially kept naked
by the presence of the positive Gauss–Bonnet coupling con-
stant α; the curvature corrections directly affect the collapse
and post collapse scenarios. While naked, families of trajec-
tories can escape to infinity from the singularity. Eventually
an apparent horizon forms which encloses all trapped sur-
faces and this horizon eventually matches smoothly to an
event horizon when the collapse process is complete. The
event horizon separates the trapped surfaces from the exter-
nal five dimensional Boulware–Deser vacuum. When Q �= 0,
gravitational collapse abates with the formation of a branch
curvature singularity covered by two trapping horizons, the
outer of which is visible to any observer at infinity. The
branch singularity r = rs(v) results from the fact that the
metric is complex whenever the inequality

r6
s + 8αMr2

s − 2αQ2 ≥ 0,

is violated. This marked difference only occurs when the
dimension of the spacetimes is N = 5. This is due to the
fact that the five dimensional uncharged Boulware–Deser
metric (12) is regular and everywhere well defined for all
values of r . This is not the case for the charged analogue
(25). This is fundamentally different to the general relativis-
tic case of radiation contraction. We note also that for the
charged Boulware–Deser metric in all dimensions N ≥ 5,
there exists a maximal contribution due to the electromag-
netic field, for which the metric on the spacetime remains
real. Otherwise it becomes complex. This is critically differ-

ent to the charged Vaidya analogue in Einstein gravity. This
highlights the effects of the higher order corrections as well
as those corrections in tandem with the electromagnetic field.

For all dimensions N ≥ 6 the collapse of the charged
shells of radiation mirror five dimensional collapse. It is only
in the uncharged scenario where the collapse dynamics differ
from N = 5 and N ≥ 6. This reinforces the notion that the
role of dimension in gravitational collapse cannot be under-
estimated, especially when the gravity theory has modified
curvature components and an electromagnetic field affecting
the dynamics of the model. What remains to be done is a
singularity analysis of the five dimensional charged collapse
model. Are naked singularities possible? The conditions for
a locally naked singularity; the determining of the existence
of outgoing nonspacelike geodesics, need to be analysed.
This will allow one to ascertain whether cosmic censorship
is violated or not. This will be the subject of future work.

It will also be an interesting endeavour to look for possible
observational signatures for compactified higher dimensions,
and whether the underlying theory of gravity is indeed EGB
gravity. There are numerous qualitative differences between
four and higher dimensional gravitational collapse of null
or charged null dust in Einstein gravity and these differences
escalate in the presence of Gauss–Bonnet term. For example,
in five dimensional neutral null dust collapse in EGB gravity,
there is a possibility of forming a weak curvature extended
naked conical singularity at the centre, that may give rise to
strong quantum gravity signatures, that are not shielded from
the external observers by the horizon [41]. Furthermore, as
we have already seen, after the black hole forms in the radiat-
ing EGB collapse, the surface gravity and hence the Hawking
temperature of the black holes crucially depend on the EGB
coupling constant α. In four dimensional general relativity,

123



  359 Page 14 of 17 Eur. Phys. J. C           (2022) 82:359 

we know that the Hawking temperature of solar mass black
holes is significantly less than the cosmic microwave back-
ground radiation (CMBR) temperature, and hence these are
not readily detectable. However in higher dimensional EGB
scenarios, there exists a set of non-zero measures of param-
eter values, that can actually make a solar mass black hole
“hotter" than the CMBR, and hence should be, in principle,
detectable via a measure of their Hawking radiation.
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Appendix A: Nonvanishing Einstein and Lovelock tensor
components

The nonvanishing Einstein tensor components for the gener-
alised metric (12) are given by

G0
0 = −3

(
r4 + 4αM − r4√F (v, r) + αr Mr

)

2αr4
√
F (v, r)

= G1
1, (A.1a)

G1
0 = 3Mv

2r3
√
F (v, r)

, (A.1b)

G2
2 = 1

2αr4(r4 + 8αM)
√
F (v, r)

×
[
3r8

√
F (v, r) − αr6 Mrr

−3r8 + 4αr2 M2
r − 36αr4 M

−32α2r M Mr − 32α2r2 M2

−8α2r2 M Mrr + 24αr4 M
√
F (v, r)

]

= G3
3 = G4

4. (A.1c)

The Lovelock tensor components which are nonzero are

H0
0 = − 3

α2r3(r4 + 8αM)

[
r7
√
F (v, r)

+αr4 Mr

√
F (v, r) − r7 − 8α2 M Mr

−αr4 Mr − 8αr3 M + 4αr3
√
F (v, r)

]

= H1
1, (A.2a)

H1
0 = 3Mv

(
r4√F (v, r) − r4 − 8αM

)

αr3(r4 + 8αM)
, (A.2b)

H2
2 = 1

α2r4(r4 + 8αM)
√
F (v, r)

[
αr6 Mrr

√
F (v, r)

−αr6 Mrr + 4α2r2 M2
r − 36αr4 M

+8α2r2 M Mrr

√
F (v, r) − 8α2r2 M Mrr

+24αr4 M
√
F (v, r) − 32α2r M Mr

−3r8 + 3r8
√
F (v, r) − 32α2 M2

]

= H3
3 = H4

4. (A.2c)

Again, in the above,

Mv = ∂ M

∂v
, Mr = ∂ M

∂r
,

and F (v, r) =
√

1 + 8αM
r4 . Using (A.1) together with (A.2)

in (7) will yield the system (16). Despite the inherent com-
plexity of the above expressions, it is remarkable, though
not altogether surprising, that their combinations result in
significant simplification.

Appendix B: Charged radiation collapse in general rela-
tivity: a recap

The generalised Vaidya spacetime in five dimensions is given
by

ds2 = − f (v, r)dv2 + 2εdvdr

+r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (B.3)

where we have

f (v, r) =
(

1 − m(v, r)

r2

)
, (B.4)

and m(v, r) is the gravitational mass of the body. We note that
ε = ±1, however since we are dealing with collapsing matter,
we take ε = 1. The Einstein field equations Gab = κ5Tab

then become

3π2μ = 3mv

2r3 , (B.5a)

3π2ρ = 3mr

2r3 , (B.5b)

3π2 P = −mrr

2r2 , (B.5c)
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where subscripts denote differentiation. In the above, μ is
the energy density of the null dust, ρ is the energy density of
the null string, and P is the null string pressure. The system
(B.5) comes about as a result of the generalised two-fluid
energy momentum tensor

Tab = μlalb + (ρ + P)(lanb + lbna) + Pgab, (B.6)

where the vectors la = δ0
a and na = 1

2 f (v, r)δ0
a + δ1

a are
null. For the case of the charged Vaidya (or Vaidya-Bonner)
spacetime, the mass function is given by

m(v, r) = m(v) − q(v)2

4r2 . (B.7)

Therefore the charged Vaidya spacetime in five dimensions
is then

ds2 = −
(

1 − m(v)

r2 + q(v)2

4r4

)
dv2 + 2dvdr

+r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2). (B.8)

We note the presence of the charge contribution q in (B.8).
When q = 0, the above reduces to the Vaidya metric. We can
also write (B.5) as the system

μ = mv

2π2r3 − qqv

4π2r5
, (B.9a)

ρ = P = q(v)2

4π2r6 , (B.9b)

where the role of the charge contribution q2 is more clear.
When q = 0 we obtain the single field equation of the five
dimensional Vaidya solution. This is consistent with [20].
The energy conditions (17)–(20) for (B.8) will be satisfied if
we have that

mv ≥ qqv

2r2 , q(v) ≥ 0,

and there is a violation of the first condition near r = 0.
It was shown in [70] that the energy conditions can still be
satisfied in such a scenario if the equation of motion includes
a Lorentz force term.

7.1 Collapse

For the charged Vaidya metric (B.8) the diffeomorphism
invariants are given by

Rabcd Rabcd = 9

4r8

(
7q4r12 − 8mq2r6 + 32m2

)
, (B.10a)

Rab Rab = 99

4
q4r4, (B.10b)

CabcdCabcd = 9

8r8

((
8m − q2r6

)2
)

, (B.10c)

where the Kretschmann scalar K = Rabcd Rabcd clearly
diverges as K ≈ r−8. This is indicative of a strong curvature

singularity at r = 0. The boundary of the apparent horizon
is given by

1 − m(v)

r2
H

+ q(v)2

4r4
H

= 0, (B.11)

where rH denotes the radius of the apparent horizon. This
gives the four solutions

r0 = ±1

2

√

2m + 2
√

m2 − q2, (B.12a)

r1 = ±1

2

√

2m − 2
√

m2 − q2. (B.12b)

Only the positive parts of (B.12a) and (B.12b) are viable so
we have

r0 = 1

2

√

2m + 2
√

m2 − q2, (B.13a)

r1 = 1

2

√

2m − 2
√

m2 − q2. (B.13b)

Three cases arise depending on the sign of the discriminant
Δ = m2 − q2.

1. If Δ < 0, there exist no real solutions and so there is no
physical apparent horizon.

2. If Δ = 0, we have the m = q and the solutions (B.13)
coincide with the single extremal apparent horizon in five
dimensions, i.e. r0 = r1 = √

m.
3. If Δ > 0, there exist two physical apparent horizons, an

inner horizon r1 (also called a Cauchy horizon [81]) and
the outer horizon r0 for the radiating black hole.

Alternatively, solving (B.11) for m gives

m = r2
H + q2

4r2
H

:= m H (rH ), (B.14)

which is a condition at a time v = v. The mass function
m H (rH ) is defined in the domain 0 ≤ r < ∞ and clearly
diverges as r → 0 or r → ∞. The minimum value of the

mass is m H (rH ) = q at rH =
√

1
2 q . Thus, at a time v = v,

– if m(v) < q(v), there is no trapping horizon,
– if m(v) > q(v), there are two trapping horizons,
– if m(v) = q(v), there is one degenerate horizon.

Therefore, the end state of collapse for a charged Vaidya
spacetime with m(v) > q(v) is a black hole with a strong cur-
vature singularity covered by two horizons,8 with the outer
horizon being the only one visible to an external observer.

8 In the situation of stellar collapse, one expects that the mass of the
star will be significantly greater than the charge contribution, which is
well known to be minimal in a main sequence star, due to the enormous
amount of charge compression required to collapse a charged mass.
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The surface gravity (3) in (v, r, θ, φ) coordinates [74] for
the charged Vaidya spacetime (B.8), is calculated to be

K = m

r3
H

− q2

2r5
H

. (B.15)

In the absence of charge, the above reduces to the quan-
tity K = m/r3

H for the five dimensional Vaidya spacetime.
Using (41), the Hawking temperature at the horizon in five
dimensions is then given by

TH = 2K

A3
= K

π2 , (B.16)

which gives

TH = 1

π2

[
m

r3
H

− q2

2r5
H

]

, (B.17)

from (B.15) for the charged Vaidya spacetime (B.8). Note that
both the mass function m and charge contribution q depend
on v.
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