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The energy conditions are studied, in the relativistic astrophysical setting, for higher-dimensional
Hawking–Ellis Type I and Type II matter fields. The null, weak, dominant and strong energy
conditions are investigated for a higher-dimensional inhomogeneous, composite fluid distribu-
tion consisting of anisotropy, shear stresses, non-vanishing viscosity as well as a null dust and
null string energy density. These conditions are expressed as a system of six equations in the
matter variables where the presence of the higher dimension N is explicit. The form and struc-
ture of the energy conditions is influenced by the geometry of the (N − 2)-sphere. The energy
conditions for the higher-dimensional Type II fluid are also generated, and it is shown that under
certain restrictions the conditions for a Type I fluid are regained. All previous treatments for four
dimensions are contained in our work.
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subject Index E00, E01

1. Introduction

Higher-dimensional gravity has come to the forefront in recent times with the advent of modified
gravitation theories such as the f (R) models [1], the Lovelock gravity models [2], supergravity [3],
Jackiw–Teitelboim gravity [4], de Rham–Gabadadze–Tolley (dRGT) massive gravity [5] and others.
In this regard, the energy conditions for realistic matter fields pertaining to any relevant theory of
gravity become important, as does their connection to the spacetime dimension. In the context of
general relativity, the energy conditions have been described comprehensively for Type I, II, III and
IV matter distributions by Hawking and Ellis [6]. Of these, the Type III and Type IV matter tensors
are not physically viable matter distributions, especially for astrophysical models such as radiating
stars, since they violate the null energy condition [7]. The physical model we have in mind is a
radiating star in general relativity. The interior matter distribution is a Type I fluid and the exterior
matter distribution can be taken to be a Type II fluid. Therefore, for the purposes of this paper, only
the former Type I and Type II fluids will be addressed.

The energy conditions have been studied in the context of both cosmology and astrophysical
applications. Santos et al. [8] used type Ia supernovae observations for attractive gravity and cosmic
acceleration to study the energy conditions. Xiong and Xhu [9] showed that the appearance of
a quantum geometry potential strengthened the violation of the strong energy condition in small
volume regions, in loop quantum cosmology. In modified gravity, Nashed [10] studied the validity of
the energy conditions of built-in inflation models in f (T ) gravity, formulating the system of equations
by assuming a Friedmann–Robertson–Walker (FRW) universe for both the flat and non-flat cases.
Various features of energy conditions were investigated by Martín-Moruno and Visser [11–15]. With
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regards to relativistic astrophysics, the energy conditions are paramount in describing physically
reasonable static stars in general relativity [16–19] as well as radiating stars [20–28]. In some of
these treatments, the systems of equations generated for the energy conditions contain errors. Kolassis
et al. [29] first considered the energy conditions for a Type I inhomogeneous fluid distribution with
a radial heat flow and undergoing dissipation. The matching conditions for a radiating star in general
relativity were found by Santos [30] for a shear-free matter distribution; an interior matter distribution
which was barotropic in nature and containing a radial heat flow was matched across a surface to
the Vaidya atmosphere. It was found that the pressure at the boundary was balanced by the heat flux
emanating from the core of the star.

It is important to highlight the role of the spacetime dimension in the generation of the energy
conditions. For example, in the framework of higher dimensions Paul [31] showed that the upper
bound for the mass–radius limit in a constant density star varies as the dimension changes. As the
number of spacetime dimensions are vital in the modeling of higher-dimensional radiating spheres
and stars, the discovery of the higher-dimensional version of the Santos boundary condition became
the prelude point for further development of relativistic stellar theories in higher dimensions. Bhui et
al. [32], Shah et al. [33] and Banerjee and Chaterjee [34] analogously considered the interior matter
to be shear-free which matches the higher-dimensional Vaidya exterior. Chaterjee and Banerjee [35]
extended the C-field cosmology of Hoyle and Narlikar [36] to higher dimensions and obtained
closed form solutions for a five-dimensional homogeneous spacetime. The energy conditions were
then tested for these solutions. More recently, Maeda and Martínez [7] studied the energy conditions
for Type I, II, III and IV Hawking–Ellis energy momentum tensors in higher-dimensional general
relativity. The most general canonical forms of the four types of matter tensors were derived in higher
dimensions and it was shown that the Type I and Type II matter tensors were the most physically
relevant. These were then applied to various matter fields.

Our objective is to show that composite matter fields that arise in the modeling of radiating stars
yield energy conditions in a simple form for the matter variables involving Type I fields in the
interior and Type II fields across the boundary of the star. We aim to generate the energy conditions
for a higher-dimensional composite Type I matter distribution. This matter field contains viscous
matter, anisotropy, a null dust and a null string energy density. The junction conditions for the
matching of an internal composite fluid distribution to the exterior generalised Vaidya spacetime in
four dimensions were given by Maharaj and Brassel [37]. It was found that the pressure at the surface
of the radiating star was proportional to the heat flux, the internal null string energy density and the
anisotropy. This was further extended to include an electromagnetic field in Ref. [38] where the
interior charge distribution became an added component in the aforementioned boundary condition.
This boundary condition, containing the heat flux, internal null string, anisotropy and the charge, is
the most generally known. That work was extended to higher dimensions in Ref. [39]. It was shown
that the role of dimension in the dynamics is critical. The energy conditions for a composite matter
distribution in four dimensions were completed in Ref. [40]. The present treatment is an extension
of that work to arbitrary dimensions in order to unravel further the interplay between dimension and
gravitational dynamics.

The basis of this paper is to find the energy conditions for a generalised higher-dimensional com-
posite fluid, and a null dust and null string fluid. This result will be applicable to various cosmological
and astrophysical models in both general relativity as well as any other modified gravity theory. We
assume that the spacetime has the general spherically symmetric metric. The fluid distribution is
a composite, containing a barotropic fluid, null dust and a null string energy density. The energy
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conditions are found for the composite matter distribution as a general system of six equations; this
composite fluid can be Type I, Type II or Type IV. We determine the effect of the higher dimensions
on the resulting energy conditions. A higher-dimensional null dust and null string matter field is
considered and the energy conditions are presented.

2. Preliminaries

In higher dimensions, it is important to consider units carefully. In this treatment we assume G = c =
1 and the N -dimensional spacetime manifold has local Lorentzian signature (−, +, +, +, . . . , +).
The Einstein coupling constant in higher dimensions is derived from Poisson’s equation, and is given
by

κN = 2(N − 2)π(N−1)/2

(N − 3) {[(N − 1)/2] − 1}! , (1)

in terms of the factorial function. In four dimensions κ4 = 8π .
The shear tensor σab is defined in N dimensions as

σab = u(a;b) + A(aub) − 1

N − 1
�(gab + uaub), (2)

where u represents the N -velocity vector, Aa is the acceleration vector, and � is the expansion scalar.
We can write

Aa = ua;bub, � = ua
;a,

in N dimensions. The semicolon indicates covariant differentiation and the round brackets represent
symmetrisation about the indices. For a viscous fluid, the anisotropic stress tensor πab has the form

πab = ησab, (3)

and η ≥ 0 is the shear viscosity.
The N -dimensional Einstein field equations are given by

Gab = κN Tab, (4)

where Gab = Rab − (1/2)Rgab is the Einstein tensor and Tab is the energy momentum tensor.
Observe that the field equations depend critically on the dimension N of spacetime due to Einstein’s
gravitational constant κN . When N = 4, then κ4 = 8π and

Gab = 8πTab, (5)

which is the usual form in four dimensions.

2.1. Composite fluids

The interior of a stellar body can be described by a generalised inhomogeneous composite matter
distribution. Such a distribution takes the form

Tab = (μ + p⊥)uaub + p⊥gab + (p|| − p⊥)XaXb + qaub + qbua − 2ησab

+ εlalb + (ρ + P)(lanb + lbna) + Pgab, (6)
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where μ is the energy density, p|| is the radial pressure, p⊥ is the tangential pressure, X is a N -vector
along the radial direction and q is the heat flux vector measure relative to the fluid velocity u. Also,
ε is the energy density of the null dust, ρ is the null string energy density and P is the pressure of
the null string fluid. The two quantities l and n are null vectors. The vectors u, q, X, l and n obey
the following restrictions:

uaqa = 0, XaX a = 1, uaua = −1,

lala = nana = 0, lana = −1, laua = −1.

When ρ = P = 0, the matter tensor (6) reduces to the viscous matter field with a null dust, as
studied by Di Prisco et al. [41]. For the case where ε = ρ = P = 0, Eq. (6) reduces to the
purely viscous/barotropic matter field, studied by [20–23] and others. We note that the above energy
momentum tensor (6) is a mixture of a Type I fluid, a Type II fluid and a Type IV fluid in the
Hawking–Ellis classification. Note that Eq. (6) can be Type IV depending on the values of the heat
flow vector q or the shear viscosity η; if these quantities are large enough, the tensor (6) can be Type
IV. Our interest is Type I and Type II fluids, on physical grounds. Note that the composite distribution
is a Type I fluid if and only if the matrix of eigenvalues can be diagonalised. If one eigenvector is
timelike and the comoving eigenvectors are spacelike, then the energy momentum tensor T(ij) in the
tetrad basis is diagonalisable (see Appendix A.1). When μ = p|| = p⊥ = q = η = 0, we then have
a Type II fluid [7].

2.2. Null and string fluids

The energy momentum tensor for the Hawking–Ellis Type II matter distribution admits one eigen-
vector which is doubly null; thus two of the eigenvalues will be identical. The matter tensor for a
Type II fluid is given by

Tab = νLaLb + (ρ̃ + P) (LaNb + LbNa) + Pgab, (7)

where we note that

T (I )
ab = νLaLb,

T (II )
ab = (ρ̃ + P) (LaNb + LbNa) + Pgab

are the null dust fluid and the additional null string fluid, respectively. Here, ν is the energy density
of the null dust, ρ̃ is the energy density of the null string and P is the pressure of the null string. In
the above, the vectors L and N are null. The null vector L is a double null eigenvector of the energy
momentum tensor (7). The vectors L and N satisfy

LcLc = Nc
c = 0, LcN c = −1. (8)

We note that when ρ̄ = P = 0, the matter tensor (7) reduces to null dust.

3. Energy conditions

In order for any relativistic Hawking–Ellis energy momentum tensor to be deemed physically rea-
sonable, it should obey the null, weak, dominant and strong energy conditions [6,29,42]. There is in
fact a weaker, nontrivial form of the above conditions that is worth noting. The resulting condition
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is called the flux energy condition. If v is a timelike velocity vector, then Fa = T a
bvb can be inter-

preted as the energy momentum flux as measured by an observer moving with velocity v [43]. If it is
assumed that this flux is timelike or null (that is, it is causal in its very nature), then this corresponds
to mass–energy flowing at speeds less than the speed of light, but without any assumption that the
energy densities be positive. This freedom makes the flux energy condition significantly weaker than
the dominant energy condition [43,44]. When considering an N -dimensional spacetime manifold,
obtaining the energy conditions involves solving an N th degree polynomial, a difficult endeavour
in general. If the matrix of eigenvalues is diagonalisable, then the energy momentum tensor is that
of a Hawking–Ellis Type I fluid. If the eigenvalue matrix is not diagonalisable, the matter tensor is
Hawking–Ellis Type II, III or IV. In this paper, we are concerned only with Types I and II, as these
correspond to realistic matter, specifically for describing astrophysical objects.

The general definitions for the energy conditions are given by:

(i) The null energy condition: For any future-pointing null vector k, the total energy density must
obey Tabkakb ≥ 0.

(ii) The weak energy condition: For any future-pointing timelike vector w, the total energy density,
at each event in the manifold, obeys Tabwawb ≥ 0. The the weak energy condition contains the
null energy condition.

(iii) The strong energy condition: For any future-pointing timelike unit vector w, the stresses of the
matter distribution are constrained by the condition (N − 2)Tabwawb + T ≥ 0, at each event in
the manifold, where T represents the trace of the energy momentum tensor T.

(iv) The dominant energy condition: For any future-pointing timelike or null vector w, the overall
energy density must obey Tabwawb ≥ 0 (this is the weak energy condition), and the four-
momentum density vector Tabwb must be null, or future-pointing and timelike, at each event in
the spacetime manifold (this is the flux energy condition). In other words, the mass–energy flow
is positive and less than the speed of light, according to any observer.

All four of these conditions should be obeyed in general if an astrophysical or cosmological model is
to be deemed physically relevant. Over and above this, the conditions of causality should be adhered
to, i.e. in any matter field, the speed of sound c2

s is constrained by the condition 0 < c2
s < 1 in our

units.

4. Higher-dimensional model

Any relativistic fluid moving along a patch of a spacetime manifold will incur a shear stress on the
manifold. Composite matter distributions containing shear stresses were studied in detail by Maharaj
and Brassel [39] in higher dimensions. We make use of the N -dimensional general spherically
symmetric metric

ds2 = −A2dt2 + B2dr2 + C2d
2
N−2, (9)

where A = A(r, t), B = B(r, t), C = C(r, t), and the (N − 2)-sphere is given by

d
2
N−2 =

N−2∑
i=1

⎡
⎣i−1∏

j=1

sin2(θj)

⎤
⎦ (dθi)

2. (10)
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The vectors u, X, q, l and n take the form

ua =
(

1

A
, 0, 0, ..., 0

)
, qa = (0, q, 0, ..., 0),

X a =
(

0,
1

B
, 0, ..., 0

)
, la =

(
1

A
,

1

B
, ..., 0

)
,

na =
(

1

2A
,

1

2B
, 0, ..., 0

)
, (11)

in N dimensions.
The expansion scalar evaluates to

� = 1

A

(
Ḃ

B
+ (N − 2)

Ċ

C

)
, (12)

and the shear tensor (2) has the N non-zero components

σ11 = N − 2

N − 1

{
B2

A

(
Ḃ

B
− Ċ

C

)}
, (13a)

σ22 = − 1

N − 1

{
C2

A

(
Ḃ

B
− Ċ

C

)}
, (13b)

σ33 = sin2 θ1σ22, (13c)

...

σN−1N−1 =
N−3∏
i=1

sin2 θiσ22, (13d)

where ˙ = ∂/∂t and
′ = ∂/∂r. When N = 4, Eqs. (12) and (13) reduce to the corresponding

four-dimensional expressions. We define the following scalar σ as

|σ | = ± 1

N − 1

1

A

(
Ḃ

B
− Ċ

C

)
, (14)

where σ 2 = 1/2σ abσab. We can then write

σ 1
1 = 1

B2 σ11 = (N − 2)|σ |, (15a)

σ 2
2 = 1

C2 σ22 = −|σ |, (15b)

σ 3
3 = 1

C2 sin2 θ1
σ22 = −|σ |, (15c)

...

σN−1
N−1 = 1

C2

N−3∏
i=1

1

sin2 θi
σ22 = −|σ |, (15d)

so that σ a
a = 0 and the shear tensor is trace-free.

The N non-vanishing components of the energy momentum tensor (6) become

T00 = A2(μ + ε + ρ), (16a)
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T01 = −AB2
(

q + 1

B
ε

)
, (16b)

T11 = B2 (p|| + ε − ρ − 2ησ 1
1
)
, (16c)

T22 = C2 (p⊥ + P − 2ησ 2
2
)
, (16d)

T33 = sin2 θ1T22, (16e)

...

TN−1N−1 =
N−3∏
i=1

sin2 θiT22, (16f )

for the spacetime (9).
The non-vanishing components of the Einstein tensor are

G00 = (N − 2)
ḂĊ

BC
+ (N − 2)(N − 3)

2

(
A2

C2 + Ċ2

C2

)

− A2

B2

[
(N − 2)

C ′′

C
+
(

(N − 2)(N − 3)

2

)
C ′2

C2 − (N − 2)
B′C ′

BC

]
, (17a)

G01 = (N − 2)

[
− Ċ ′

C
+ ḂC ′

BC
+ A′Ċ

AC

]
, (17b)

G11 = B2

A2

[
−(N − 2)

C̈

C
−
(

(N − 2)(N − 3)

2

)
Ċ2

C2 + (N − 2)
ȦĊ

AC

]

+
(

(N − 2)(N − 3)

2

)
C ′2

C2 + (N − 2)
A′C ′

AC

−
(

(N − 2)(N − 3)

2

)
B2

C2 , (17c)

G22 = −C2

A2

[
B̈

B
− ȦḂ

AB
+ (N − 3)

ḂĊ

BC
− (N − 3)

ȦĊ

AC
+ (N − 3)

C̈

C

]

+ C2

B2

[
A′′

A
− A′B′

AB
+ (N − 3)

A′C ′

AC
− (N − 3)

B′C ′

BC
+ (N − 3)

C ′′

C

]

−
(

(N − 3)(N − 4)

2

)(
Ċ2

A2 − C ′2

B2 + 1
)

, (17d)

G33 = sin2 θ1G22, (17e)

...

GN−1N−1 =
N−3∏
i=1

sin2 θiG22. (17f )

Using Eqs. (16) and (17) we can write the N -dimensional Einstein field equations as

κN (μ + ε + ρ) = (N − 2)

A2

ḂĊ

BC
+
(

(N − 2)(N − 3)

2

)(
1

C2 + Ċ2

A2C2

)

− (N − 2)

B2

[
C ′′

C
+
(

(N − 3)

2

)
C ′2

C2 − B′C ′

BC

]
, (18a)
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κN
(
p|| + ε − ρ − 2(N − 2)η|σ |) = (N − 2)

A2

[
− C̈

C
−
(

(N − 3)

2

)
Ċ2

C2 + ȦĊ

AC

]

+ (N − 2)

B2

[(
(N − 3)

2

)
C ′2

C2 + A′C ′

AC

]

−
(

(N − 2)(N − 3)

2

)
1

C2 , (18b)

κN (p⊥ + P+2η|σ |) = − 1

A2

[
B̈

B
− ȦḂ

AB
+ (N − 3)

ḂĊ

BC
− (N − 3)

ȦĊ

AC
+ (N − 3)

C̈

C

]

+ 1

B2

[
A′′

A
−A′B′

AB
+(N−3)

A′C ′

AC
−(N−3)

B′C ′

BC
+(N−3)

C ′′

C

]

−
(

(N − 3)(N − 4)

2

)(
1

C2

)(
Ċ2

A2 − C ′2

B2 + 1
)

, (18c)

κN

(
q + 1

B
ε

)
= −(N − 2)

AB2

[
− Ċ ′

C
+ ḂC ′

BC
+ A′Ċ

AC

]
, (18d)

for the N -dimensional spherically symmetric metric (9) and the composite matter distribution (6).
If we set C = rB then the shear vanishes and we regain the corresponding shear-free field equations
[32,37].

The four energy conditions for a matter field of Hawking–Ellis Type I in N dimensions are

(1) Null energy condition:

−λ0 + λi ≥ 0, (19)

(2) Weak energy condition:

−λ0 ≥ 0, −λ0 + λi ≥ 0. (20)

(3) Dominant energy condition:

−λ0 ≥ 0, λ0 ≤ λi ≤ −λ0. (21)

(4) Strong energy condition:

−(N − 3)λ0 +
N−1∑
i=1

λi ≥ 0, −λ0 + λi ≥ 0. (22)

In the above, i ∈ {1, 2, 3, . . . , N − 1}. The energy momentum tensor has eigenvalues λ which are the
roots of the equation

∣∣Tab − λgab
∣∣ = 0, (23)

which has to be satisfied in a general higher-dimensional spacetime.
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We can now generate the energy conditions for the higher-dimensional metric (9). Using Eqs. (6)
and (23) we acquire an N × N matrix Tab − λgab leading to the determinant equation∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A2(μ + ε + ρ + λ) −q̃AB 0 0 . . . 0

−q̃AB B2
(
p|| + ε − ρ 0 0 . . . 0

−λ − 2ησ 1
1
)

0 0 C2 (p⊥ + P 0 . . . 0
−λ − 2ησ 2

2
)

0 0 0
. . . 0

...
...

...
...

...

0 0 0 0 . . . C2
N−3∏
i=1

sin2 θi (p⊥ + P
−λ − 2ησ 2

2
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

with q̃ = qB + ε. Evaluating the determinant yields the following equation in λ:[
λ2 + (μ − p|| + 2ρ)λ + q̃2 − (μ + ε + ρ)(p|| + ε − ρ) + 2(μ + ε + ρ + λ)ησ 1

1
]

× (
p⊥ + P − λ − 2ησ 2

2
)N−2

(
−A2B2C2N−4

N−3∏
i=1

sin2 θi

)
= 0, (24)

which is an N th degree polynomial in λ. In the above,

− A2B2C2N−4
N−3∏
i=1

sin2 θi �= 0.

Thus, one solution of Eq. (24) is given by

λ2 + (μ − p|| + 2ρ)λ + q̃2 − (μ + ε + ρ)(p|| + ε − ρ)

+2(μ + ε + ρ + λ)ησ 1
1 = 0, (25)

which is a second-order polynomial in λ and yields the two roots

λ0 = −1

2

[
μ − p|| + 2ρ + 2ησ 1

1 + �
]

, (26a)

λ1 = −1

2

[
μ − p|| + 2ρ + 2ησ 1

1 − �
]

, (26b)

with

�2 = (
μ + p|| + 2ε − 2ησ 1

1
)2 − 4q̃2. (27)

The energy momentum tensor Tab is Type I in the region �2 > 0. When �2 = 0, we have that Tab

is a Type II fluid. When �2 < 0, the energy momentum tensor Tab becomes a Type IV fluid since
there will be two complex eigenvalues. The other solution of Eq. (24) is given by(

p⊥ + P − λ − 2ησ 2
2
)N−2 = 0,
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which gives the N − 2 repeated roots

λ2,3,...,N = p⊥ + P − 2ησ 2
2. (28)

In the system (26), we must have � ≥ 0 in order for these roots to be real. This implies∣∣∣∣μ + p|| + 2ε − 2ησ 1
1

∣∣∣∣− 2
∣∣q̃∣∣ ≥ 0. (29)

The above expression (29) appears in several treatments, for example models of dissipative radiating
stars in Refs. [25,29]. The difference in our analysis is the explicit appearance of the null dust term
ε arising from the more general form of the energy momentum tensor (6). We make the observation
that for very large q̃ = qB + ε, the second term in Eq. (29) will dominate and the matter field (6)
will then become Type IV, and all energy conditions will be violated. We also note that if the shear
viscosity η is large enough, the first term within the modulus sign may become negative, in which
case the matter field may also become Type IV.

We make the observation that classical matter fields do not lead to Type IV fluids. However, such
fluids may be related to renormalised expectation values of evaporating black holes [45], the Unruh
vacuum far from the horizon [46] and massless conformal scalars in the Unruh state [47].

It is important to emphasise the physical importance of equation (29). It relates the physical
quantities of energy density μ, the radial pressure p||, the null dust energy density ε, the shear viscosity
η and the heat flux q. We have demonstrated that the result holds in four and in N dimensions. It is of
particular interest in the modeling of radiating stars in general relativity, and in dissipative relativistic
fluids in general.

In four dimensions, a 4th-degree polynomial arises for a Type I fluid in the energy conditions,
yielding two repeated roots and two distinct roots. We observe that the main difference for the
energy conditions in N dimensions, when compared with the composite fluid in four dimensions,
is that an N th degree polynomial equation in λ arises. The resulting equation in λ has N real roots:
there are two distinct roots, λ0 and λ1, and N − 2 repeated roots, λ2,3,...,N .

4.1. Null energy conditions

Making use of Eqs. (15) and (19) with the solutions (26) and (28), the null energy conditions (NEC)
become

μ + p|| + 2ε − 2(N − 2)η|σ | + � ≥ 0 (30a)

μ − p|| + 2ρ + 2Nη|σ | + 2 (p⊥ + P) + � ≥ 0, (30b)

� > 0. (30c)

These are similar to the conditions in four dimensions [40]. However, the components now depend
on N .

4.2. Weak energy conditions

Using Eqs. (15) and (20) along with Eqs. (26) and (28), the weak energy conditions (WEC) become

μ − p|| + 2ρ + 2(N − 2)η|σ | + � ≥ 0, (31a)

μ − p|| + 2ρ + 2Nη|σ | + 2 (p⊥ + P) + � ≥ 0, (31b)

� > 0. (31c)
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These conditions are similar in form to the four-dimensional case, but note the presence of N . These
weak conditions imply the null energy conditions (30).

4.3. Dominant energy conditions

Using Eq. (15) together with the solutions (26) and (28), along with the dominant energy conditions
(DEC; Eq. 21), we have the following expressions:

μ − p|| + 2ρ + 2(N − 2)η|σ | ≥ 0, (32a)

μ − p|| + 2ρ + 2Nη|σ | + 2 (p⊥ + P) + � ≥ 0, (32b)

μ − p|| + 2ρ + 2(N − 4)η|σ | − 2 (p⊥ + P) + � ≥ 0, (32c)

� > 0. (32d)

Again, the conditions are similar in form to their four-dimensional counterparts. The comment about
the dependence on dimensions for the components, made above, also applies. We also note the
presence of the 2(N − 4)η|σ | term in Eq. (32c), which is absent in four dimensions.

4.4. Strong energy conditions

Making use of Eq. (15) and the roots, Eqs. (26) and (28), and evaluating the sum with i ∈ {1, 2, ..., N −
1} in Eq. (22), the strong energy conditions (SEC) can be written as

(N − 4)
(
μ − p|| + 2ρ + 2(N − 2)η|σ |)

+2(N − 2) (p⊥ + P + 2η|σ |) + (N − 2)� ≥ 0, (33a)

μ − p|| + 2ρ + 2Nη|σ | + 2 (p⊥ + P) + � ≥ 0, (33b)

� > 0. (33c)

In this case the parameter N for dimensions appears explicitly in Eq. (33a). We also note the first
term containing N − 4, which is not present in four dimensions. For all the energy conditions, we
have

� =
√(

μ + p|| + 2ε − 2(N − 2)η|σ |)2 − 4q̃2, (34)

with q̃ = qB + ε. In the above conditions we have replaced the components σ 1
1 and σ 2

2 with the
shear scalar |σ |.

We note that when � = 0, the energy momentum tensor (6) will become a Hawking–Ellis Type
II fluid [7]. This is true because, with a local Lorentz boost, the energy momentum tensor T(ij) in
Appendix A.1 with � = 0 may be transformed into the canonical form (A.6). The above energy
conditions will then change accordingly; in summary, they will become the following:

◦ NEC:

μ + p|| + 2ε − 2(N − 2)η|σ | ≥ 0, (35a)

μ − p|| + 2ρ + 2Nη|σ | + 2 (p⊥ + P) ≥ 0. (35b)
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◦ WEC:

μ − p|| + 2ρ + 2(N − 2)η|σ | ≥ 0, (36)

in addition to system (35).
◦ DEC:

μ − p|| + 2ρ + 2(N − 4)η|σ | − 2 (p⊥ + P) ≥ 0, (37)

in addition to system (35).
◦ SEC:

(N − 4)
(
μ − p|| + 2ρ + 2(N − 2)η|σ |)+ 2(N − 2) (p⊥ + P + 2η|σ |) ≥ 0, (38)

in addition to system (35).

Equations (30)–(33) and (35)–(38) highlight the role of the dimension N in a transparent fashion.
Brassel et al. [40] found the energy conditions for a composite fluid in four-dimensional general
relativity. These energy conditions are a generalisation to N dimensions for a composite fluid with
viscous barotropic matter, null dust and a null string. When N = 4, we regain the energy conditions
of Ref. [40]. We have established in this paper that the dimension N is a critical component in the
energy conditions. We can now state the following theorems:

Theorem 1 Consider an N-dimensional time-oriented Lorentzian manifold M with the general
spherically symmetric metric (9) and a Type I matter field (since � > 0) comprising a combination
of an anisotropic viscous barotropic fluid, null dust and a null string fluid. The null, weak, dominant
and strong energy conditions are satisfied when the composite fluid distribution satisfies the energy
conditions in Eqs. (30), (31), (32) and (33).

Theorem 2 Consider an N-dimensional time-oriented Lorentzian manifold M with the general
spherically symmetric line element (9) and a Type II matter field (since � = 0) comprising a
combination of an anisotropic viscous barotropic fluid, null dust and a null string fluid. The null,
weak, dominant and strong energy conditions will be satisfied when the composite fluid distribution
satisfies the conditions in Eqs. (35), (36), (37) and (38).

Note the appearance of the terms (N − 4)η|σ |, 2(N − 4)η|σ |, 2(N − 2)η|σ | and 2Nη|σ | in the
energy conditions (30)–(33) and (35)–(38), which are all related to the shear scalar and viscosity. The
particular terms 2(N −4)η|σ | in the dominant energy conditions and (N −4)

(
μ − p|| + 2ρ + 2η|σ |)

in the strong energy conditions are new components that do not appear in four dimensions. It is a
consequence of the geometry of the (N −2)-sphere (10) playing a role in all of the energy conditions.
With regards to the spherically symmetric metric (9), for N > 4, these (N − 4)-terms appear as
a result of the higher-dimensional geometry of the (N − 2)-sphere, hence their appearances in the
G22, G33, . . . , GN−1N−1 terms (17d)–(17f). Thus, the energy conditions have a new structure in higher
dimensions which is not evident in four dimensions. We have shown that there is a deep connection
between the spacetime geometry, represented by the (N − 2)-sphere, and the energy conditions in
N dimensions. This connection becomes transparent when N > 4 and is not as apparent in four
dimensions.
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5. Energy conditions for a null dust and null string fluid in higher dimensions

For any massive astrophysical body undergoing gravitational contraction, the radiative processes and
fluid pressure must contribute to this dynamical process. In this regard, the spacetime that closely
mirrors this scenario of collapse is the generalised Vaidya spacetime, the Hawking–Ellis energy
momentum tensor of which is a combination of a Type I fluid and a Type II matter field (which has
double null eigenvectors). Such matter distributions are important as they describe the exterior of a
radiating star in general relativity. The aim of this section is to generate the energy conditions for
this Type II fluid in higher dimensions and to show that, under certain restrictions, these reduce to
the energy conditions pertaining to the Type I fluid discussed earlier.

The generalised Vaidya metric in higher dimensions is given by

ds2 = −
(

1 − 2m(v, r)
(N − 3)rN−3

)
dv2 + 2εdvdr + r2d
2

N−2. (39)

In the above, d
2
N−2 is the (N − 2)-sphere given by Eq. (10), and we have

ε =
{

1, Collapsing radiation,

−1, Outgoing radiation.
(40)

The function m(v, r) is regarded as the higher-dimensional Misner–Sharp mass [48,49] containing
the gravitational energy within the given radius r.

The Einstein tensor components become

G0
0 = G1

1 = − (N − 2)mr

(N − 3)rN−2 , (41a)

G1
0 = (N − 2)mv

(N − 3)rN−2 , (41b)

G2
2 = G3

3 = . . . = GN−1
N−1 = − mrr

(N − 3)rN−3 , (41c)

for the N -dimensional generalised Vaidya metric (39). The null vectors L and N are given by

La = (1, 0, 0, . . . , 0),

Na =
(

1

2

[
1 − 2m(v, r)

(N − 3)rN−3

]
, −ε, 0, . . . , 0

)
,

in higher dimensions. Therefore the non-vanishing energy momentum tensor components (7)
representing the Type II fluid in higher dimensions are

T 0
0 = T 1

1 = −ρ̄, (42a)

T 1
0 = 1

ε
ν, (42b)

T 2
2 = T 3

3 = . . . = T N−1
N−1 = P, (42c)

for the metric (39).
The Einstein field equations Ga

b = κN T a
b are then written as

κN ν = (N − 2)mv

ε(N − 3)rN−2 , (43a)
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κN ρ̄ = (N − 2)mr

(N − 3)rN−2 , (43b)

κN P = − mrr

(N − 3)rN−3 , (43c)

for the metric spacetime (39). This system of equations (43) describes gravitational dynamics of the
combination of null radiation and the additional Type II null string fluid. The energy momentum
tensor (7) is a generalisation of the Vaidya solution in higher dimensions.

We introduce the vectors

E
a
(0) = La + N a

√
2

, (44a)

E
a
(1) = La − N a

√
2

, (44b)

E
a
(2) = 1

r
δa

2, (44c)

E
a
(3) = 1

r sin θ
δa

3, (44d)

...

E
a
(N−1) = 1

r

N−3∏
i=1

1

sin θi
δa

N−1, (44e)

to form a tetrad basis {Ea
(0), E

a
(1), . . . , Ea

(N−1)}. The derivation of the tetrad basis for Type I and Type
II fluids is given in the Appendix. Projecting the energy momentum tensor (7) to the orthonormal
basis using the above null vectors gives

T(ij) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν
2 + ρ̃ ν

2 0 0 . . . 0

ν
2

ν
2 − ρ̃ 0 0 . . . 0

0 0 P 0 . . . 0

0 0 0 P . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . P

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (45)

where it is evident that two eigenvalues are identical; the above matrix cannot be diagonalised. This
follows because one vector is doubly null; details are given in Hawking and Ellis [6]. The energy
conditions for a Type II fluid in higher dimensions are then given by

(1) NEC:

ν ≥ 0, ρ̃ + P ≥ 0. (46)

(2) WEC:

ν ≥ 0, ρ̃ ≥ 0, ρ̃ + P ≥ 0. (47)
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(3) SEC:

ν ≥ 0, ρ̃ + P ≥ 0, (N − 4)ρ̃ + (N − 2)P ≥ 0. (48)

(4) DEC:

ν ≥ 0, ρ̃ ≥ |P|(≥ 0). (49)

Note that these conditions will hold for any reasonable choice of the mass function m(v, r) in any
dimension, and ν �= 0.

When the mass is a function only of the retarded time coordinate, m = m(v), the model reduces
to the pure Vaidya metric and the energy conditions reduce to the single relation

ν ≥ 0. (50)

If m = m(r), we have that ν = 0 and the energy momentum tensor becomes a diagonal matrix of
the eigenvalues, which is a Type I fluid. The energy conditions then have the form

(1) NEC:

ρ̃ + P ≥ 0. (51)

(2) WEC:

ρ̃ ≥ 0, ρ̃ + P ≥ 0. (52)

(3) SEC:

ρ̃ + P ≥ 0, (N − 4)ρ̃ + (N − 2)P ≥ 0. (53)

(4) DEC:

ρ̃ ≥ 0, −ρ̃ ≤ P ≤ ρ̃. (54)

Note the explicit presence of the higher dimensions N in the SEC as this case corresponds to a Type
I fluid. These conditions are analogous with Eqs. (19), (20), (21) and (22).

6. Discussion

We generated the energy conditions pertaining to a higher-dimensional generalised composite
Hawking–Ellis matter tensor which we showed to be of Type I. This field consisted of viscous
barotropic matter, null dust, null string energy density, anisotropy and the shear. The metric utilised
was the general higher-dimensional spherically symmetric geometry. Obtaining the energy condi-
tions involved solving an N th degree polynomial for the eigenvalues λ, which is a difficult task in
general. The resulting equation in λ had N real roots, two of which were distinct and the other N − 2
roots were repeated. The energy conditions were then found as a system of six equations which
would need to hold for any physically reasonable study in cosmology or relativistic astrophysics. It
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is important to highlight the effect of the higher dimensions on these energy conditions. We note that
the energy conditions also possess a different analytic structure and form in N dimensions which is
not present when N = 4. This is evident particularly in the energy conditions, with the appearance
of the additional term (N − 4)η|σ | (in addition to (N − 4)

(
μ − p|| + 2ρ + 2η|σ |), 2(N − 4)η|σ |,

2(N − 2)η|σ | and 2Nη|σ |) which arises because of the geometry of the (N − 2)-sphere. All pre-
vious treatments in four and higher dimensions are contained in our analysis for both shearing and
shear-free spacetime geometries. The higher-dimensional Type II fluid distribution with the general
mass function m(v, r) was then addressed, and it was observed that the energy conditions for this
type of matter distribution are affected by an increase in dimension. However, under certain con-
ditions, namely when m = m(r), these reduce to the Type I matter field. This work can be applied
to stellar astrophysics in the general relativistic setting. For example, the junction conditions for a
higher-dimensional radiating composite star were found in Refs. [37,39], where a Type I composite
matter interior was matched across a stellar boundary to the higher-dimensional exterior atmosphere
which consisted of a Hawking–Ellis Type II fluid. This provides a realistic physical scenario for
application of higher-dimensional energy conditions. There are many other situations in relativistic
astrophysics and cosmology where the energy conditions play an important role.
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A. Appendix
A.1. Orthonormal basis: composite fluid

In an orthornormal basis all the vectors are unit and orthogonal to each other. The N -tetrad (or verbien)
is given by {E0, E1, E2, E3, . . . , EN−1} with the components (E

(0)
a , E(1)

a , E(2)
a , E(3)

a , . . . , E(N−1)
a ) so

that

ηij = gabE
a
(i)E

b
(j). (A.1)

Equation (A.1) relates the vector components of the tetrad and the metric gab to Minkowski space
ηij. Projection of the energy momentum tensor Tab into the tetrad basis can be affected by using the
expression

T(ij) = E
a
(i)E

b
(j)Tab, (A.2)

which relates the null vectors of the tetrad to the energy momentum tensor.
Using the expression (A.1) together with the metric (9) generates the following vectors

E
a
(0) = 1

A
δa

0,

E
a
(1) = 1

B
δa

1,

E
a
(2) = 1

C
δa

2,
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E
a
(3) = 1

C sin θ
δa

3,

...

E
a
(N−1) = 1

C

N−3∏
i=1

1

sin θi
δa

N−1.

Projection on to the energy momentum tensor (6), with the help of Eq. (A.2), gives

T(ij) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ + ε + ρ −B
(
q + 1

Bε
)

0 . . . 0

−B
(
q + 1

Bε
)

p|| + ε − ρ 0 . . . 0
−2ησ 1

1

0 0 p⊥ + P . . . 0
−2ησ 2

2

...
...

...
. . .

...

0 0 0 . . . p⊥ + P
−2ησ 2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

in the N -dimensional orthonormal basis. This above matrix has off-diagonal components; however,
it can be diagonalised with certain restrictions. To prove this we perform a local Lorentz boost in the
(01)-plane such that we have the following:

Ē
a
(0)

∂

∂xa :=
(

cosh αE
a
(0) − sinh αE

a
(1)

) ∂

∂xa = cosh α
1

A

∂

∂t
− sinh α

1

B

∂

∂r
,

Ē
a
(1)

∂

∂xa :=
(

cosh αE
a
(1) − sinh αE

a
(0)

) ∂

∂xa = cosh α
1

B

∂

∂t
− sinh α

1

A

∂

∂r
,

where we have the parametrisation

cosh α = 1√
1 − v2

, sinh α = v√
1 − v2

.

We then arrive, with the new basis vectors, at

T(00) = − 1

v2 − 1

(
1

A2 T00 − 2v
1

A

1

B
T01 + v2 1

B2 T11

)
, (A.3a)

T(01) = 1

v2 − 1

(
v

1

A2 T00 − (1 + v2)
1

A

1

B
T01 + v

1

B2 T11

)
, (A.3b)

T(11) = − 1

v2 − 1

(
v2 1

A2 T00 − 2v
1

A

1

B
T01 + 1

B2 T11

)
. (A.3c)

When T(01) = 0 we have the following condition for v:

v = 1

2T01
AB

(
1

A2 T00 + 1

B2 T11 ± �

)
. (A.4)
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In the above,

�2 =
(

1

A2 T00 + 1

B2 T11

)2

− 4
(

1

A2

1

B2

)
T 2

01

= (
μ + p|| + 2ε − 2ησ 1

1
)2 − 4q̃2,

where q̃ = qB + ε. We note that T(ij) is Type I only when −1 < v < 1. We have that T(ij) is Type II
in the region v = ±1. If |v| > 1, then two eigenvalues will become complex and T(ij) is then a Type
IV fluid. Substituting Eq. (A.4) into Eqs. (A.3a) and (A.3c) gives

T(00) = 1

2

(
1

A2 T00 − 1

B2 T11 ∓ �

)

= 1

2

(
μ − p|| + 2ρ + 2ησ 1

1 ∓ �
)
,

T(11) = −1

2

(
1

A2 T00 − 1

B2 T11 ± �

)

= −1

2

(
μ − p|| + 2ρ + 2ησ 1

1 ± �
)
. (A.5)

We now have that

T(ij) = diag
(
T(00), T(11), T(22), . . . , T(N−1N−1)

)
,

and so T(ij) has been diagonalised. Therefore the inequalities (19)–(21) for the Type I energy
conditions may be used.

A.2. Orthonormal basis: null dust and null string fluid

Transforming to an orthonormal basis for a Type II fluid is more complicated than for a Type I fluid.
Projection of the energy momentum tensor (7) into the orthonormal basis can be achieved using Eq.
(A.2). We obtain

T(ij) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν
2 + ρ̃ ν

2 0 0 . . . 0

ν
2

ν
2 − ρ̃ 0 0 . . . 0

0 0 P 0 . . . 0

0 0 0 P . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . P

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.6)

as in Eq. (45). This projection requires the N null vectors

E
a
(0) =

(−1√
2

,
−1√

2

(
1 − 1

2

(
1 − 2m

(N − 3)rN−3

))
, 0, . . . , 0

)
,

E
a
(1) =

(
1√
2

,
−1√

2

(
1 + 1

2

(
1 − 2m

(N − 3)rN−3

))
, 0, . . . , 0

)
,

18/20

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/10/103E01/6364202 by U

N
IVER

SITY KW
AZU

LU
-N

ATAL user on 08 O
ctober 2021



PTEP 2021, 103E01 B. P. Brassel et al.

E
a
(2) =

(
0, 0,

1

r
, 0, . . . , 0

)
,

E
a
(3) =

(
0, 0, 0,

1

r sin θ
, 0, . . . , 0

)
,

...

E
a
(N−1) =

(
0, 0, 0, . . . ,

1

r

N−3∏
i=1

1

sin θi

)
.

The above system can then be simplified using Eq. (7) together with the null vectors La and N a, to
find the basis vectors

E
a
(0) = La + N a

√
2

, (A.7a)

E
a
(1) = La − N a

√
2

, (A.7b)

E
a
(2) = 1

r
δa

2, (A.7c)

E
a
(3) = 1

r sin θ
δa

3, (A.7d)

...

E
a
(N−1) = 1

r

N−3∏
i=1

1

sin θi
δa

N−1, (A.7e)

in the tetrad basis. The Hawking–Ellis Type II energy momentum tensor in the orthonormal basis is
not diagonalisable.
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