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Abstract
The analysis of the continual gravitational contraction of a spherically symmetric
shell of charged radiation is extended to higher dimensions in Einstein–Gauss–Bonnet
gravity. The spacetime metric, which is of Boulware–Deser type, is real only up to a
maximum electric charge and thus collapse terminates with the formation of a branch
singularity. This branch singularity divides the higher dimensional spacetime into two
regions, a real and physical one, and a complex region. This is not the case in neutral
Einstein–Gauss–Bonnet gravity as well as general relativity. The charged gravitational
collapse process is also similar for all dimensions N ≥ 5 unlike in the neutral scenario
where there is a marked difference between the N = 5 and N > 5 cases. In the
case where N = 5 uncharged collapse ceases with the formation of a weaker, conical
singularity which remains naked for a time depending on the Gauss–Bonnet invariant,
before succumbing to an event horizon. The similarity of charged collapse for all higher
dimensions is a unique feature in the theory. The sufficient conditions for the formation
of a naked singularity are studied for the higher dimensional charged Boulware–Deser
spacetime. For particular choices of the mass and charge functions, naked branch
singularities are guaranteed and indeed inevitable in higher dimensional Einstein–
Gauss–Bonnet gravity. The strength of the naked branch singularities is also tested
and it is found that these singularities become stronger with increasing dimension, and
no extension of spacetime through them is possible.
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1 Introduction

One of the major successes of Einstein’s theory of general relativity is the diffeomor-
phism covariance of its construction which yields a generalised equivalence principle.
However, general relativity is an incomplete gravity theory. For example, it does not
anticipate the acceleration of the expansion of the universe due to dark energy, nor
does it explain the black hole information paradox which deals with the emission
of radiation from an isolated black hole. It is also noted that the solutions yielding
wormholes and white holes have yet to be accepted since these objects have not been
observed. It is for these reasons, among others, that modifications to general relativity
have become commonplace. One such modification is an imposition of a polynomial
form for the higher dimensional Lagrangian action

S =
∫

d N x
√−g

k∑
r=0

αrRr + Smatter, (1)

which gives rise to Lovelock gravity [1–3] where k is the order of the theory and N is
the dimension of spacetime. The topological Lovelock term is given as

Rk = 1

2k
δ

c1d1...ck dk
a1b1...ak bk

k∏
r=1

Rar br
cr dr ,

which consists of the generalised Kronecker delta, given as the antisymmetric product
δ

c1d1...ck dk
a1b1...ak bk

= (2k)!δc1[a1δ
d1
b1

· · · δck
ak δ

dk
bk] and the Riemann curvature tensor Rab

cd . The

coupling constants αr in the action (1) have dimensions of (length)2r−N . This is
the most general higher order and higher dimensional metric extension of general
relativity which preserves energy conservation, the above-mentioned diffeomorphism
covariance and beautifully, second order quasilinear equations of motion. Of these
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higher order corrections indicative of Lovelock gravity, the quadratic corrections R2

are of particular importance. It is well known that classical general relativity, or first
order Lovelock gravity, is the low-frequency limit of quantum gravity. It was shown
by Zwiebach [4] that a quadratic correction of the Gauss–Bonnet formR2 = LG B =
R2 + Rabcd Rabcd − 4Rcd Rcd must appear in lower energy limit of the heterotic
superstring E8×E8.Hence, secondorderLovelock gravity, orEinstein–Gauss–Bonnet
(EGB) gravity, appears in the lower energy limit of string theory. It is for this reason,
among others, that the EGB corrected postulate is a physically important modified
gravity theory to study.

In the EGB theory, the analogues of the Schwarzschild and Reissner-Nordström
solutions in higher dimensions were found and analysed in [5–7] and a thorough study
of the radiating versions of these radiating solutions can be found in [8–10]. It was
shown that the behaviour of these solutions was similar to the general relativistic
Vaidya solution counterparts. This notion, however, is not the case when analysing the
gravitational collapse of null radiatingmatter. The collapse dynamics of theBoulware–
Deser solution, whether charged or neutral, was studied in detail by [10–14]. It was
shown that for neutral matter in five dimensions, the minimum dimension of EGB
gravity, collapse ceases with the formation of an initially naked and weaker conical
singularity, before eventually succumbing to an event horizon at a later time depending
on the Gauss–Bonnet coupling constant α. This is a behaviour unique only to the five
dimensional case. With an increase in spatial dimension, this central singularity is no
longer necessarily nude initially, nor is it conical.1 The situation with charge is, again,
very different. The end state of gravitational collapse for charged null radiation is a
singularity which acts as a branch separating the physical spacetime from a complex
metric [10]. This singularity is covered by two horizons, a Cauchy (inner) horizon and
the outer event horizon. Remarkably, unlike the neutral scenario, collapse proceeds
in a similar fashion for all dimensions N ≥ 5. The minimum dimensional case is no
different to higher dimensions. Both charged and uncharged collapse in EGB gravity
differ in a significant manner to the limiting case of Einstein, i.e. charged or neutral
Vaidya collapse [15–21].

Another aspect of collapse to consider is the nature of singularity formation. It
is well known that the existence of trapped surfaces as well as the preservation of
causality are two circumstances which, along with the theorems of singularity for-
mation, guarantee spacetime singularities post collapse [22, 23]. The nature of these
singularities, however, are not accounted for in the above-mentioned theorems. The
cosmic censorship conjecture (CCC), divided into both the weak (WCCC) and strong
(SCCC) categories, was founded by Penrose [24] to prevent naked singularities from
forming. The WCCC states that for any initial generic data, a complete future null
infinity is held by the maximal Cauchy development. The SCCC states that for any
initial generic data which is asymptotically flat or compact, the maximal Cauchy

1 In five dimensions the central singularity is conical because themetric functions arewell behaved at r = 0,
however, the quadratic diffeomorphism invariants of Riemann, Ricci and Weyl, respectively Rabcd Rabcd ,
Rab Rab and Cabcd Cabcd diverge at this point.
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development is inextendible, locally, as a regular Lorentzian manifold, i.e. singulari-
ties are not timelike, but generically null or spacelike.2 As it stands, there is no proof
of the conjecture in the literature. Moreover, there exist several treatments presenting
different physical models that oppose the CCC, see for example [19–21, 25–31]. A
comprehensive review3 of spacetime singularities and the various consequences with
regards to geodesic incompleteness/completeness and cosmic censorship can be found
in a recent expository article by Landsman [32].

In any physical theory, including gravity and its various modifications (which pre-
serve energy conservation), the notion of dimension is a crucial one. The dimension
of spacetime indeed affects its own geometry and due to the invariance properties
of general relativity and, for this article, Lovelock gravity, the implication is that the
underlying physics will also be affected; this idea is embedded in the field equations.
The classical spacetimes of general relativity were studied in higher dimensions by
[33–36]; the dimension affects not only the form of themetric functions, but the result-
ing field equations. The stability of compact astrophysical objects is also affected by
the spacetime dimension, for example see [37–39].With regards to higher dimensional
radiating stars, the Santos [40] matching conditions were extended to arbitrary dimen-
sions by [41–43] where it was shown that the presence of these higher dimensions
drastically alters the gravitational dynamics of these objects as well as their evolution.
The notion of positive energy is also a fundamental one in classical field theories of
gravity and the energy conditions generalise this idea. These conditions were thor-
oughly studied in the context higher dimensions by [44, 45]. The energy conditions
turn out to have a different analytical structure in higher dimensionswhich is not seen in
the conventional four dimensional spacetime. This becomes very important not only in
general relativity, but specifically higher dimensional modified gravity theories where
these effects will then become obviously apparent. In conventional Einstein gravity,
it has been shown that an increase in spacetime dimension may prevent naked sin-
gularity formation as demonstrated in [20]. Various families of mass functions under
certain conditions yielded collapse scenarios where horizon formation did indeed take
place and a black hole formed; this was not prevalent in four dimensions. It must be
emphasised that increasing the spacetime dimension need not prevent naked singular-
ities. Some treatments of naked singularities in higher dimensions were analysed by
[46–48], and this will be the basis of this paper.

In this article we study the full gravitational collapse of a higher dimensional geom-
etry in EGB gravity in the presence of an electromagnetic field. We discuss branch
singularity formation in neutral and charged collapse, and the physical constraints of
their existence. It turns out the branch singularities are inherent in Lovelock gravity
for all orders equal to and above two.We then consider the nature of singularity forma-
tion for the higher dimensional charged Boulware–Deser solution. We will prove an
existence result; for a particular choice of the mass function and charge benefaction,

2 A stronger version of the SCCC asserts that the regular Lorentzian manifold is also continuous;
singularities are generically spacelike in nature.
3 This article begins with an analysis of Roger Penrose’s original 1965 paper and expands upon his ground-
breaking singularity theorem. The discrepancy between the theorem’s physical repercussions and its actual
statement is conceptually discussed in fine detail, making accessible the technical nature of the original
manuscript.
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Table 1 Gravitational constant
and unit surface area values

Dimension Gravitational constant Surface area

N κN AN−2

N = 4 κ4 = 8π A2 = 4π

N = 5 κ5 = 3π2 A3 = 2π2

N = 6 κ6 = 32
9 π2 A4 = 8

3π2

N = 7 κ7 = 5
4π3 A5 = π3

N = 8 κ8 = 32
25π3 A6 = 16

15π3

N = 9 κ9 = 7
18π4 A7 = 1

3π4

N = 10 κ10 = 256
735π4 A8 = 32

105π4

N = 11 κ11 = 3
32π5 A9 = 1

12π5

a naked singularity is inevitable in Einstein-Gauss–Bonnet-Maxwell (EGBM) gravity
for all arbitrary higher dimensions. This will extend the results obtained in [14]. The
effects of both the electric charge and the dimension of spacetime prove crucial in this
analysis.

2 EGBM gravity in higher dimensions

In this treatment we will assume a geometry which is spherically symmetric and
that the Lorentzian signature of spacetime is (−,+,+, . . . ,+). In higher dimensions,
Einstein’s coupling constant and the surface area of the unit (N −2)-sphere are written
in terms of the gamma function respectively as

κN = 2(N − 2)π
N−1
2

(N − 3)�
( N−1

2

) , (2a)

AN−2 = 2π
N−1
2

�
( N−1

2

) . (2b)

The values of these quantities for various dimensions are presented in Table 1. In fact,
from (2) it can be observed that Einstein’s coupling constant and the surface area are
related by

κN =
(

N − 2

N − 3

)
AN−2.

This is to say that the value of Einstein’s coupling constant κN , as it appears in the
field equations, is affected not only by the form of the energy momentum tensor but
by the geometry of the (N − 2)-sphere. The Gauss–Bonnet action can be obtained
from (1) and is written in arbitrary dimensions as
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S =
∫

d N x
√−g(α0 + α1R + α2R2) + Smatter, (3)

where α0 is the cosmological constant, α1 (equal to unity) is the constant attached to
the action (R = R) of Einstein gravity, and α2 = α > 0 is the EGB coupling constant.
The EGB Lagrangian (or second order Lovelock term) is given by

R2 = LG B = R2 + Rabcd Rabcd − 4Rcd Rcd , (4)

which is in terms of the curvature tensors of Riemann and Ricci, as well as the Ricci
scalar. In four dimensions this term (4) is merely a quadratic surface term. When
N < 4, by the Chern–Gauss–Bonnet theorem [49, 50], the quantity (4) identically
vanishes. We have that Smatter is the action for the matter content.

The EGBM field equations can be obtained by use of the variational principle on
(3) and are written as

Gab − 1

2
αHab = κN (Tab + Eab), (5a)

F[ab;c] = 0, (5b)

Fab;b = AN−2 J a . (5c)

The tensor Gab is that of Einstein, Tab is the energy momentum tensor and Eab is the
electromagnetic energy tensor, defined in general as

Eab = 1

AN−2

(
Fa

c Fbc − 1

4
Fcd Fcd gab

)
, (6)

which is in terms of the Faraday tensor Fab = �b;a −�a;b, the N -dimensional electric
gauge potential �a and the surface area AN−2 of the unit (N − 2)-sphere.4 We have
that J a is the current. The new higher order curvature contribution in the form of the
Gauss–Bonnet tensor Hab is written as

Hab = gab LG B − 4R Rab + 8Rac Rc
b + 8Racbd Rcd − 4Racde Rb

cde. (7)

We now make the following points:

• The critical dimensions of EGB gravity are N = 5 and N > 5.
• The Gauss–Bonnet tensor has zero divergence, i.e. Hab;b = 0. This is such that(

Gab − 1
2αHab

)
;b = 0 = T ab;b.

• If N < 5, the Lovelock tensor Hab = 0 will vanish identically; general relativity
is attained in four dimensions.

4 The geometry of the (N − 2)-sphere has a profound effect on the electromagnetic field strength. From
Table 1 it can be seen that for N > 9 the surface area of the unit sphere begins to decrease with increasing
dimension. The implication of this feature is the fact that the electromagnetic field (6) will begin to increase
dramatically as the dimension of spacetime increases beyond N = 9. For N ∈ {4, . . . , 9} the field strength
decreases with increasing N .
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• When α → 0, general relativity will be regained in N dimensions.

It is also interesting to note that via a complete gauge invariance byNoether’s theorem,
linearisedEGBgravity can be shown to be connected to classical electrodynamics [51].

3 Boulware–Deser–Wiltshire solution

The N -dimensional generalised Boulware–Deser solution [5] is given by

ds2 = − f (v, r)dv2 + 2dvdr + r2d�2
N−2, (8)

which is written in terms of ingoing Eddington-Finkelstein coordinates
(v, r , θ1, . . . , θN−2). The metric for the unit (N − 2)-sphere is of the form

d�2
N−2 =

N−2∑
i=1

⎛
⎝
⎡
⎣i−1∏

j=1

sin2(θ j )

⎤
⎦ (dθi )

2

⎞
⎠ ,

which accounts for the spherical symmetry. The function is given by

f (v, r) = 1 + r2

2α̂

(
1 −

√
1 + 4α̂

N − 3

(
2M(v, r)

r N−1

))
, (9)

which contains the generalised mass function M(v, r) [8] and where we have set
α̂ = α(N −3)(N −4) for brevity. The energy momentum tensor for a two-component
fluid distribution of type II is given by

Tab = μlalb + (ρ + P)(lanb + lbna) + Pgab, (10)

which is a combination of a null dust with energy density μ which moves along the
null hypersurfaces v = const. and a null string fluid with energy density and pressure
ρ and P , respectively which moves along trajectories which are timelike in nature.
The null vectors take the forms

la = δ0a, na = 1

2
f (v, r)δ0a + δ1a, (11)

with the restrictions lclc = ncnc = 0, lcnc = −1. The higher dimensional generalised
EGB field equations are then

κN μ = (N − 2)Mv

(N − 3)r N−2 , (12a)

κN ρ = (N − 2)Mr

(N − 3)r N−2 , (12b)

κN P = − Mrr

(N − 3)r N−3 , (12c)
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after lengthy calculations5 and where we have that

Mv = ∂ M

∂v
, Mr = ∂ M

∂r
, Mrr = ∂2M

∂r2
.

In five dimensions, the above system reduces to that studied in [10, 14]. We nowmake
the selection for the generalised mass function

M(v, r) = M(v) − κN Q(v)2

2(N − 2)AN−2r N−3

= M(v) − Q(v)2

2(N − 3)r N−3 , (13)

where we have used the system (2). The electromagnetic energy contribution (6) is
then engrained into this above selection (13) for the mass. The tensor Fab is analogous
to the result in [52] and is given by,

Fab = Q(v)

r N−2 (δ0aδ1b − δ1aδ0b), (14)

which depends on dimension. The function Q = Q(v) is the charge contribution for
EGBM gravity. The function (9) along with the selection (13) then gives the higher
dimensional charged radiating solution

ds2 = − f (v, r)dv2 + 2dvdr + r2d�2
N−2, (15a)

f (v, r) = 1 + r2

2α̂

⎛
⎝1 −

√
1 + 4α̂

N − 3

[
2M(v)

r N−1 − Q(v)2

(N − 3)r2N−4

]⎞
⎠ . (15b)

The vacuum form of the above solution was found by Wiltshire [6, 7]. The above
system (15) reduces to the higher dimensional charged Vaidya (or Vaidya-Bonner)
solution [53, 54]

ds2 = −
(
1 − 2M(v)

(N − 3)r N−3 + Q(v)2

(N − 3)2r2N−6

)
dv2 + 2dvdr + r2d�2

N−2, (16)

in the general relativity limit. Using the system (12) along with (13) we can write the
EGBM field equations as

κN μ = N − 2

N − 3

(
Mv

r N−2 − Q Qv

(N − 3)r2N−5

)
, (17a)

κN ρ = κN P = (N − 2)Q(v)2

2(N − 3)r2N−4 . (17b)

5 The Einstein and Lovelock tensor components, while complicated in nature, combine in such a manner
where significant simplification takes place, yielding system (12). This happens for all orders of Lovelock
gravity.
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In the four dimensional general relativity limit, these equations reduce to those found
in [52]. The null, weak, strong and dominant energy conditions [44, 45, 55] for a null
and string fluid combination imply that the energy density μ ≥ 0 and so the following
two conditions must hold:

Mv ≥ Q Qv

(N − 3)r N−3 , (18a)

Q(v) ≥ 0. (18b)

It can be seen that the condition (18a) is undefined at r = 0 and hence is violated
in this region. This is due to the singular nature of the metric function (15b) as well
as an unavoidable branch singularity in the spacetime manifold, which we discuss in
the following section. We can also see from equation (18a) that there exists a critical
radius rc > 0 for which μ ≥ 0. This is given by

rc = Q Qv

(N − 3)Mv

. (19)

When r < rc we have that μ < 0 and the energy conditions are violated. For the case
of a collapsing distribution, the N -momenta of particles vanish on the hypersurface
r = rc due to the repulsive Lorentz force as indicated in four dimensions in [52, 56].
Therefore the region r < rc is realistically unattainable to any particles, resulting in
the preservation of the energy conditions.

4 Branch singularities in EGB gravity

We begin by noting that branch singularities are generic for neutral and charged col-
lapse in EGB gravity [57, 58]. A branch singularity can be described as an interface
separating a physical spacetime region from a complex (or non-real) region defined
by a particular metric function in the line element. For example, metric functions
containing surds yield such scenarios for negative values under the radicals. Branch
singularities of this kind are inherent in all orders (above one) of Lovelock gravity;
this notion can be seen in the EGB solutions [10, 14] as well as the radiating solution
of third order Lovelock gravity found by [59]. For our purposes we will consider both
the neutral and charged EGB cases separately.

4.1 Unchargedmetric

If the charge Q(v) = 0 in (15) we have that the metric function is

f (v, r) = 1 + r2

2α̂

⎛
⎝1 −

√
1 + 8α̂M(v)

(N − 3)r N−1

⎞
⎠ . (20)
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Fig. 1 Plot indicating the behaviour of the uncharged metric function (20) for various dimensions. We note
that when N = 5, the function is well behaved at r = 0, however for all N > 5, the metric functions are
singular

The dynamics of the uncharged collapsing solution were analysed in detail by [11–
13]. We note that the above metric function is regular at r = 0 when the dimension of
spacetime is N = 5. Due to this and the fact that the Kretschmann invariant diverges
(in fact K = Rabcd Rabcd ∼ r−16), the spacetime has a singularitywhich is weaker and
conical in nature. In principle, spacetime can be extended through it. The spacetime
manifold with metric (20) is in a sense quasi-regular when N = 5. This is, however,
only the case in five dimensions. We illustrate this graphically in Fig. 1 where we have
used α = 1/2 and a positive value for the mass function.

If we consider (20), the mass function at the horizon f (v, r) = 0, r = rH can be
calculated as

MH (rH ) := N − 3

2
r N−5

H (r2H + α̂). (21)

In five dimensions this reduces to MH (rH ) = r2H + 2α (since α̂ = 2α when N = 5),
therefore there is a mass gap; the mass function does not vanish for a radius of zero
and is instead a function of the EGB coupling constant, i.e. MH (0) = 2α. So the
conical singularity at the centre of the collapsing distribution remains naked post
collapse for a time depending on α; the coupling constant α halts horizon formation
[12]. This situation is only prevalent in five dimensions. For all N > 5, we have that
MH (0) = 0 identically at the singularity r = v = 0, and the Kretschmann invariant
K ∼ r−4(N−1). We note now that in expression (20), a zero within the square root
also implies a singularity; this is a branch singularity. Solving for the mass function
in this scenario yields
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Fig. 2 Plot indicating the mass functions M = MH and M = Mb in five dimensions, with Q(v) = 0. It
can be seen that M = MH does not vanish when r = 0. A branch singularity appears for a negative mass
Mb and so does not hold on physical grounds

Mb(rb) := − (N − 3)

8α̂
r N−1

b , (22)

where the subscript b is merely a label indicating the value at the branch. We observe
that in this situation, i.e. neutral collapse, a branch singularity is only possible for a
negative mass. The domain of r is 0 < rb < r < ∞ if we have that rb is positive. We
illustrate these notions graphically in Fig 2 and 3.

Wehave again used the value ofα = 1/2. InFig. 2wehighlight themass functions at
the horizon and branch respectively for N = 5.Wenote that the MH (v) does not vanish
at v = r = 0 by (21). This is due to the fact that when N = 5, the metric function (20)
is regular at r = 0 and themass function M = MH depends on α. A branch singularity
appears when M(v) < 0 by equation (22) and so has no effect on the M(v) > 0 case.
The situation is different for N > 5 as shown in Fig. 3, where we have illustrated the
six and seven dimensional cases. The metric functions (20) are no longer regular in the
vicinity of the singularity r = 0 in higher dimensions and we have that Mr=0 = 0 as
emphasised earlier. Again, we observe that a branch singularity appears for M(v) < 0
but it has no affect on the positive M(v) situations. In Fig. 4 a null radiating distribution
of matter cascades into a five dimensional quasi-regular black hole of growing positive
mass. Within the region 0 ≤ v ≤ V0 there exists a conical singularity which is naked
due to the EGB coupling constant α delaying the formation of the apparent horizon.
The horizon eventually forms at v = V0 enclosing the trapped surfaces into a compact
region V0 ≤ v ≤ V1. At v = V1 the apparent and event horizons smoothly match as
a single trapping horizon, separating the five dimensional Boulware–Deser vacuum
from the trapped surfaces and singularity. Figure 5 depicts radiating null matter falling
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Fig. 3 Plot indicating the mass functions M = MH and M = Mb for dimensions N = 6, 7. We note that
M = MH = 0, when r = 0. We again note that branch singularities appear for a negative mass Mb for all
N > 5 and so are unphysical. This behaviour is similar for all N > 5

into a higher dimensional singular black hole. The formation of the apparent horizon
takes place at v = r = 0 containing all the trapped surfaces in a highly compact
region 0 ≤ v ≤ V0. This is unlike the situation in five dimensions, and will be the case
for all N > 5 [13]. The apparent and event horizons match smoothly at v = V0 to
form one single trapping horizon separating the higher dimensional Boulware–Deser
vacuum exterior from the trapped surfaces. Beneath this horizon of the black hole lies
the central curvature singularity.

4.2 Chargedmetric

We will now look at the situation of the electrically charged solution. We recall from
(15) that the higher dimensional metric function is of the form

f (v, r) = 1 + r2

2α̂

⎛
⎝1 −

√
1 + 4α̂

N − 3

[
2M(v)

r N−1 − Q(v)2

(N − 3)r2N−4

]⎞
⎠ . (23)

The collapse dynamics of the above metric for N = 5 were studied in [12, 14]. Unlike
the uncharged scenario, the metric functions are singular for all dimensions N ≥ 5,
resulting from the additional charge term in (23). Hence the behaviour of this function
is similar for all dimensions in EGBgravity; a fundamental difference to the uncharged
case. We present this graphically in Fig. 6 for the same value of α.
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Fig. 4 Spacetime diagram demonstrating possible uncharged null radiation collapse in five dimensions,
for a positive mass. There exists a weak and initially naked conical singularity which forms in the region
0 ≤ v ≤ V0, with families of trajectories γ1 and γ2 escaping to infinity in the future. The EGB coupling
constant α delays the formation of the apparent horizon which only forms in the region V0 ≤ v ≤ V1.
Nonspacelike trajectories γ3 emitted after the formation of the horizon can no longer escape now, falling
into the singularity. Null radiation collapses into the singularity and once this process has terminated, a
quasi-regular black hole results containing the conical singularity, covered by an event horizon separating
it from the external universe

Further to this notion, there is in fact no spacetime at r = 0. The electric charge
contribution Q(v) fundamentally changes the singularity type manifesting once col-

lapse has terminated. If we consider the term Q(v)2

(N−3)r2N−4 in (23), we note that it has a
minus sign, indicating that there exists a maximum charge for which the metric func-
tion will remain real. There is a fundamental branch singularity, which is independent
of the sign for the mass function, which separates the real and physical spacetime from
a complex metric. This branch singularity is indeed the curvature singularity of the
spacetime. If we consider the metric function (23), the horizon radius, i.e. f (v, r) = 0
yields

MH (rH ) := N − 3

2
r N−5

H (r2H + α̂) + Q(v)2

2(N − 3)r N−3
H

, (24)
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Fig. 5 Spacetime diagram showing possible neutral null radiation collapse in higher dimensions, for a
positive mass function. The EGB coupling constant α no longer hinders the formation of the apparent
horizon which forms immediately in the region 0 ≤ v ≤ V0. Nonspacelike families of trajectories γ1 and
γ2 emitted after the formation of the horizon cascade into the singularity. A higher dimensional null dust
collapses into the curvature singularity and a black hole results once this process has ceased, with an event
horizon covering the central singularity

where we note the presence of the charge Q(v). When Q(v) = 0 we regain (21) from
earlier. We can clearly see that this function is undefined when r = 0 for the above-
mentioned reasons, and that the situation remains the same for all N ≥ 5, unlike in the
neutral scenario. If we consider the square root in the charged metric function (23),
equating this to zero yields

Mb(rb) := − N − 3

8α̂
r N−1

b + Q(v)2

2(N − 3)r N−3
b

. (25)

We observe here that the mass function can be either positive or negative, so regardless
of the physical situation, this branch singularity r = rb is inherent in the collapse;
it exists for all M . We illustrate, for the same values of the parameters, expressions
(24) and (25) graphically in Figs 7 and 8 for different dimensions. The domain of r
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Fig. 6 The behaviour of the charged metric function (23) for dimensions N ≥ 5. We can see that for all
N ≥ 5, the metric functions are singular unlike the uncharged case in Fig. 1

Fig. 7 Plot showcasing M = MH and M = Mb for the charged metric function (23) in five dimensions.
It can be seen that both MH and Mb coincide for values of r nearing the branch singularity r = rb > 0,
showing that this branch singularity is the curvature singularity of the spacetime. For all values below Mb ,
the spacetime is complex
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Fig. 8 Plot showing M = MH and M = Mb for the charged metric function (23) when N = 6, 7. It can
be seen that the behaviour is similar to the N = 5 case, highlighting that charged collapse is similar for all
EGB dimensions N ≥ 5. Again, for all values below Mb , the spacetime is complex

is 0 < rb < r1 ≤ r0 < ∞. There is no spacetime in the region 0 < rb. The inner and
outer horizons r1 and r0 form at rb > 0, v = 0. These notions as well as spacetime
diagrams depicting charged radiation collapse were discussed and provided in [10].
Consider the square root term in (23). If we have

√√√√1 + 4α̂

N − 3

[
2M(v)

r N−1
b

− Q(v)2

(N − 3)r2N−4
b

]
≥ 0, (26)

we can also write the following in terms of rb:

r2N−4
b + 8α(N − 4)M(v)r N−3

b − 4α

(
N − 4

N − 3

)
Q(v)2 ≥ 0, (27)

which is analogous to (25) and where we have utilised the fact that α̂ = α(N −3)(N −
4). This inequality admits (2N −4) solutions, two of which are real and one of which is
positive; the rest are complex. If Q(v) 	= 0, there exists a branch singularity r = rb(v)

which then separates the physical spacetime metric from the complex region. The
above equation (27) will become important for the analysis in the next section.

5 Higher dimensional gravitational collapsemodel

In this section we analyse the higher dimensional and charged gravitational collapse
of a shell of null radiation (15). If we consider an asymptotically flat and empty
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N -dimensional EGB universe at infinitely large distances, a thick radiation shell of
electrically charged matter collapses at the centre of symmetry.

5.1 Euler–Lagrange equations

Suppose that the tangent to nonspacelike geodesics is given by K a , where K a = dxa

dk .
We then have that for the affine parameter k that

K a ;b K b = 0, (28a)

gab K a K b = B, (28b)

whereB is a constantwhich describes classes of geodesics. IfB is negative, this implies
timelike geodesics and ifB vanishes, we then have null geodesics. The derivatives d K v

dk

and d K r

dk can be calculated by use of the Euler–Lagrange equations

∂L

∂xa
− d

dk

(
∂L

∂ ẋa

)
= 0. (29)

The Lagrangian L = 1
2gabẋa ẋb for the higher dimensional line element (15) is given

by

L = −1

2
f (v, r)v̇2 + v̇ṙ + 1

2
r2

N−2∑
i=1

⎛
⎝
⎡
⎣i−1∏

j=1

sin2(θ j )

⎤
⎦ θ̇2i

⎞
⎠ , (30)

where f (v, r) is the metric function (23). Therefore the relevant equations are
calculated as
v-component:

d K v

dk
+ 1

2
(K v)2 fv − r

N−2∑
i=1

⎛
⎝
⎡
⎣i−1∏

j=1

sin2(θ j )

⎤
⎦(

K θi
)2
⎞
⎠ = 0. (31)

r -component:

d K r

dk + [ 1
2 f (v, r)(K v)2 − K v K r

]
fr + (K v)2 fv

−r f (v, r)
N−2∑
i=1

([
i−1∏
j=1

sin2(θ j )

] (
K θi

)2
)

= 0. (32)

θi -components:

N−2∑
i=1

([
i−1∏
j=1

sin2(θ j )

]
d K θi

dk

)
+ 2r K r

N−2∑
i=1

([
i−1∏
j=1

sin2(θ j )

] (
K θi

))
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+r2
N−2∑
i=1

([∏i−1
j=1 sin(θ j ) cos(θ j )

] (
K θi

)2) = 0. (33)

Analogous to [26], we can define

K v = P

r
, (34)

for some arbitrary function P(v, r). Making use of (28b) as well as equations (31)
and (32), a tedious calculation then gives

K v = dv

dk
= P

r
, (35a)

K r = dr

dk
= f (v, r)

P

2r
+ Br

2P
− l2

2r P
, (35b)

where l is referred to as the impact parameter.

6 Conditions for a locally naked singularity

We reiterate that for the charged solution (15) the branch singularity r = rb is the
curvature singularity of the spacetime; there is no metric spacetime in the vicinity
0 < rb. We will now determine whether the final fate of higher dimensional charged
radiation collapse is a black hole or a naked singularity. It was shown by Brassel et al
[14] that there indeed exists functional forms for the mass and electric charge, which
guarantees naked singularity existence. The basis of this section is to reveal whether a
similar notion is possible in higher dimensions. The motivation for this also lies in the
fact that in dimensions N > 5 the geometry of the spacetimewithmetric (23) is wholly
different. Given an electrically charged radiation shell of matter in higher dimensions
with a mass which is large enough, this singularity branch forms at rb = v = 0 and
extends into the future. If future directed families of trajectories exist, reaching some
observer at infinity in the higher dimensional spacetime, the branch singularity under
question is then naked. If such families of trajectories do not exist, the result is a black
hole covered by two horizons concealing the branch singularity inside [10].

6.1 Outgoing nonspacelike geodesics: existence

If we allow X0 ∈ (0,∞) to be the tangent to the radial geodesic, id est the limiting
value at rb = v = 0 on any geodesic which is singular, this limiting value’s nature is
written as

X0 = lim
rb=v→0

X = lim
rb=v→0

v

rb
. (36)

Making use of this above equation (36), a form for X0 can be calculated which will
vividly describe null geodesic behaviour in the vicinity of the singularity rb. We recall
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expression (27) which is given by

r2N−4
b + 8α(N − 4)M(v)r N−3

b − 4α

(
N − 4

N − 3

)
Q(v)2 ≥ 0.

Differentiating this expression and simplifying yields

drb
dv

+
[
8αMv

2N−4

]
1

r N−2
b

+
[
8α(N−3)(N−4)M

2N−4

]
1

r N−1
b

drb
dv

−
[
8α(N−4)Q Qv

(N−3)(2N−4)

]
1

r2N−5
b

≥ 0. (37)

For the existence of a well defined tangent at the singularity rb, the mass and charge
functions must take the forms

M(v) = λvN−1, Q(v) = βvN−2, (38)

where the constants λ and β must be positive. We make these specific choices6 in
order to employ (36) in equation (37). Expression (37) then becomes

drb

dv
+ 4αλ(N − 1)(N − 4)

N − 2

(
v

rb

)N−2

+
[
4αλ(N − 3)(N − 4)

N − 2

](
v

rb

)N−1 drb

dv

−4αβ2(N − 4)

(N − 3)

(
v

rb

)2N−5

≥ 0.

The above expression then reduces to

X2N−4
0 − 2(N − 3)λ

β2 X N−1
0 − N − 3

4(N − 4)αβ2 ≥ 0. (39)

We make note of the presence of the dimension N in the above expression. When
N = 5, this reduces to the result obtained in [14]. In order to surmise the nature
of the branch singularity, the expression (39) needs to be solved. The occurrence of
a black hole or a naked singularity depends on the causal behaviour of the trapped
surfaces which develop within the collapsing spacetime. The apparent horizon is the
boundary of the region containing these trapped surfaces. Utilising the system (35),
for the metric (23), the equation for null geodesics is

X N = K v

K r
= dv

dr
= 2

f (v, r)
. (40)

This is also known as the equation for the slope of the apparent horizon. This simplifies
to the trivial result

X N = 2, (41)

6 It is indeed possible that other functional choices can be made in this situation, however resolving (37)
may become more complicated. Our choice of functions imply an existence result for a naked singularity.
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in the vicinity of the region rb = v = 0.

6.2 Sufficient conditions

We are now in a position to state the sufficient conditions which determine whether the
branch singularity is naked locally for a higher dimensional and electrically charged
collapsing Boulware–Deser spacetime.

Proposition 6.1 Consider an electrically charged Boulware–Deser spacetime of dif-
ferentiability class C2 from a regular epoch, with mass and charge functions M(v) =
λvN−1 and Q(v) = βvN−2 respectively. If the following conditions hold at the branch
singularity:

1. The derivatives ∂ M
∂v

and ∂ Q
∂v

exist and are continuous at the singularity,
2. There must exist at least one positive and real root X0 to the expression

X2N−4
0 − 2(N − 3)λ

β2 X N−1
0 − N − 3

4(N − 4)αβ2 ≥ 0,

3. This positive and real root must be less than the slope

X N = 2,

then the singularity is locally naked and there exist outgoing C1 radial null geodesics
escaping to infinity in the future.

7 Cosmic censorship violation

We now demonstrate that naked singularities are indeed possible for higher dimen-
sional charged collapse. Consider the expression (39). It can be shown via mathemat-
ical induction that for positive values of α, β and λ, this expression always admits two
real roots and (2N −6) complex roots. As it stands we cannot explicitly present all the
roots without specifying the dimension N as well as the above-mentioned parameters
α, β and λ, due to the complicated nature of this polynomial. If we choose7 α = 1/2
and β = λ = 2 the expression (39) can be written as

X2N−4
0 − (N − 3)X N−1

0 − N − 3

8(N − 4)
≥ 0. (42)

For a specified N , if the positive roots to this equation are less than X N = 2, the
branch singularity r = rb will be naked.

InTable 2wepresent the above equation for the parametersα = 1/2 andβ = λ = 2
for several dimensions. It can clearly be seen that the positive real roots are always
less than X N , guaranteeing naked singularity formation. Therefore, Proposition 6.1

7 Note that any positive choices for these parameters is sufficient.
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Table 2 Equations for tangents X0 to singularity curve and cosmic nudity for the parameters α = 1/2 and
β = λ = 2

Dimension Equation for the tangents Positive real root Naked singularity
N X0 < X N (= 2)

N = 5 X6
0 − 2X4

0 − 1
4 ≥ 0 X0 = 1.4349 Yes

N = 6 X8
0 − 3X5

0 − 3
16 ≥ 0 X0 = 1.4467 Yes

N = 7 X10
0 − 4X6

0 − 1
6 ≥ 0 X0 = 1.41604 Yes

N = 8 X12
0 − 5X7

0 − 5
32 ≥ 0 X0 = 1.3806 Yes

N = 9 X14
0 − 6X8

0 − 3
20 ≥ 0 X0 = 1.3485 Yes

N = 20 X36
0 − 17X19

0 − 17
128 ≥ 0 X0 = 1.1814 Yes

is always satisfied. We also notice that as the dimension increases, the value of X0
decreases, tending to unity. We can now state the following existence results.

Lemma 7.1 For the positive values of α = 1/2, β = λ = 2, the real and positive root
X0 of the expression (39) is always less than that of the null geodesic equation (41),
i.e.

X0 < X N = 2, ∀N ≥ 5.

This is to say that, for a positive and real C2 mass function M(v) = λvN−1 and
electric charge Q(v) = βvN−2, naked singularity formation is inevitable.

Lemma 7.2 If α = 1/2 and β = λ = 2, the positive and real root X0 tends to one as
the dimension becomes infinitely and countably large, i.e.

lim
N→∞ X0 = 1, ∀N ≥ 5.

The main result of this paper can now be stated in full.

Theorem 7.1 Consider a gravitationally collapsing and electrically charged
Boulware–Deser spacetime in N dimensions given by (15) from a regular epoch.
If there exists a positive and real C2 mass function M(v) = λvN−1 and charge contri-
bution Q(v) = βvN−2, satisfying the energy conditions in the entire spacetime, then
for all α = 1/2, β = λ = 2, the final outcome of collapse is a branch singularity
which is locally naked for all time.

Figure 9 depicts the gravitational collapse scenario for a charged radiation shell
of matter, which begins from an initially flat space (that of Minkowski). The electric
charge addition to the metric function (23) implies a splitting of the spacetime into two
distinct regions, a complex and unphysical space and the real collapsing geometry. The
branch singularity r = rb acts as the boundary of this interface; there is no physical
spacetime for 0 < rb. By Theorem 7.1 the naked singularity forms at v = rb(0) = 0
and stretches into infinity. At some later time v = V0 the process of collapse will
terminate and what is left is the naked singularity which will remain visible to all
external observers residing in the charged background exterior spacetime.
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Fig. 9 Spacetime diagram showcasing possible higher dimensional null radiation collapse in the presence of
an electromagnetic field. There is a naked branch singularity r = rb which begins to form at v = rb(0) = 0
and then extends into the future separating the complex metric from the physical collapsing spacetime. An
injected flow of charged and radiating null matter with M = M(v) and Q = Q(v), beginning with the
first null ray at v = 0, is focused into the singularity of increasing mass. Families of geodesic C1 null
trajectories are able to escape to infinity. Post collapse the naked branch singularity rb is visible to external
observers in the higher dimensional background

8 Strength of the singularity

The strength of a curvature singularity is a measure of its destructive capacity. In
essence, no object falling into a strong singularity can arrive at this point fully intact
[60]; it is ripped apart by the strong gravitational effects in the region of the singularity
and then crushed to a zero volume at the singularity itself [61]. One way to understand
the strength of a singularity is by considering an affine parameter k̂ which is null. We
can calculate the singularity strength by considering null geodesics parametrised by k̂,
ending at the near central branch singularity rb = v = k̂ = 0. Following the approach
of Tipler, Clarke and Królak [61–63], if the expression holds true

lim
k̂→0

k̂2η = lim
k̂→0

k̂2Rab K a K b > 0, (43)
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where Rab is the Ricci curvature tensor, then the singularity is strong. If the above
condition does not hold, then we cannot say anything about singularity strength from
this alone. In the EGB theory, five dimensional neutral collapse yields a conical singu-
larity which is indeed weaker, for any mass, than what occurs in the N ≥ 6 cases [12].
However, whether such singularities for N ≥ 6 in EGB gravity are weaker/stronger
than the general relativity counterparts, for other mass functions has not yet been anal-
ysed in detail; it is likely that this will need to be done on a case by case basis. For
the charged solution (15) and the choices of the mass and charge functions (38), the
scalar η = Rab K a K b can be written as

η =
(

N − 2

3 − N

)⎡
⎣

(
N−2
N−3

)
β2

(
v
r

)2N−5 − (N − 1)λ
(

v
r

)N−2

√
1 + 8(N − 4)αλ

(
v
r

)N−1 − 4(N−4)
N−3 αβ2

(
v
r

)2N−4

⎤
⎦
(

P

r

)2

,

(44)

after a lengthy calculation. Therefore,

k̂2η =
(

N − 2

3 − N

)⎡
⎣

(
N−2
N−3

)
β2

(
v
r

)2N−5 − (N − 1)λ
(

v
r

)N−2

√
1 + 8(N − 4)αλ

(
v
r

)N−1 − 4(N−4)
N−3 αβ2

(
v
r

)2N−4

⎤
⎦
(

Pk̂

r

)2

,

(45)

and evaluating the limit as the null affine parameter k̂ → 0 gives

lim
k̂→0

k̂2η =
(

N − 2

3 − N

)⎡
⎣

(
N−2
N−3

)
β2X2N−3

0 − (N − 1)λX N
0√

1 + 8(N − 4)αλX N−1
0 − 4(N−4)

N−3 αβ2X2N−4
0

⎤
⎦ , (46)

which depends on the dimension N , the Gauss–Bonnet constant α, the real root X0
and the positive parameters β and λ. Thus, we must have for a positive and real root
X0 that the condition

lim
k̂→0

k̂2η =
(

N − 2

3 − N

)⎡
⎣

(
N−2
N−3

)
β2X2N−3

0 − (N − 1)λX N
0√

1 + 8(N − 4)αλX N−1
0 − 4(N−4)

N−3 αβ2X2N−4
0

⎤
⎦ > 0,

(47)

holds, in order for the singularity to be considered strong. In Table 3 we present the
values for the condition (47) using the positive and real roots calculated in Table 2.
It can clearly be seen that the values are all positive therefore indicating that the
singularities are strong. In fact, as the dimension increases, the value of (47) increases
as well indicating that strong singularities are guaranteed for all dimensions N ≥ 5
for our values of the parameters.

We now consider the diffeomorphism (or curvature) invariants which are important
quantities used to classify spacetime manifolds. For a metric of the form (15a) all
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Table 3 Singularity strength
Dimension Root limk̂→0 k̂2η
N X0 (> 0)

N = 5 X0 = 1.4349 26.48253

N = 6 X0 = 1.4467 56.36964

N = 7 X0 = 1.41604 92.5129

N = 8 X0 = 1.3806 132.99097

N = 9 X0 = 1.3485 177.85399

N = 20 X0 = 1.1814 955.10751

diffeomorphism invariants are calculated for various increasing dimensions and then
via use of mathematical induction on the dimension N giving

Rabcd Rabcd = f 2rr + 2(N − 2)

r2
f 2r + 2(N − 2)(N − 3)

r4

(
f (v, r) − 1

)2

, (48a)

Rab Rab = 1

2r2

(
r frr + (N − 2) fr

)2

+ N − 2

r4

(
(N − 3) (1 − f (v, r)) − r fr

)2

,

(48b)

CabcdCabcd = N − 3

(N − 1)r4

(
r2 frr − 2(r fr + f (v, r) − 1)

)2

, (48c)

where it can clearly be seen that these scalars will diverge8 as r → 0 in (48). The
rate of divergence can be determined when f (v, r) is known. Let’s now consider the
Kretschmann scalar K = Rabcd Rabcd from (48a). If this diffeomorphism invariant
diverges at the origin, the spacetime manifold intrinsically has a curvature singularity.
Another means of understanding the strength of a singularity is by observing how
K diverges. It is well known that in general relativity the gravitational collapse of
the generalised Vaidya spacetime (and hence the pure and charged subcases) yields
strong curvature singularities [19–21, 64]. For the higher dimensional pure Vaidya
spacetime, the Kretschmann scalar diverges as K ∼ r−2(N−1) and for the charged
Vaidya solution, K ∼ r−4(N−2). We will now demonstrate that in EGB gravity, the
divergences of the scalar K are more profound, showcasing that these singularities are
indeed strong, not only by condition (47), but in the purely geometric sense.

For the metric function (23), we have that K diverges as

K ∼ 1

α2r2N−4
(

r2N−4 + 8α(N − 4)M(v)r N−3 − 4α
(

N−4
N−3

)
Q(v)2

)3 , (49)

after some calculation. From the above expression we can determine that K ∼
r−8(N−2) which is a rapid divergence for any N ≥ 5, indicating the singularity is
inherently destructive. This is consistent with the five dimensional case studied in

8 There indeed may exist a function which could be of a form that allows for regular invariants.
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Table 4 Kretschmann scalar divergences for various dimensions in both general relativity (GR) and EGB
gravity

Dimension GR GR EGB EGB

N Q = 0 Q 	= 0 Q = 0 Q 	= 0

K ∼ r−2(N−1) K ∼ r−4(N−2) K ∼ r−4(N−1) K ∼ r−8(N−2)

N = 5 K ∼ r−8 K ∼ r−12 K ∼ r−16 K ∼ r−24

N = 6 K ∼ r−10 K ∼ r−16 K ∼ r−20 K ∼ r−32

N = 7 K ∼ r−12 K ∼ r−20 K ∼ r−24 K ∼ r−40

N = 8 K ∼ r−14 K ∼ r−24 K ∼ r−28 K ∼ r−48

[10]. For neutral collapse we have that K ∼ r−4(N−1). We also emphasise in the
above expression, that the term in the bracket is identical to (27) further showing that
the bracketed term is the branch singularity of the spacetime; the scalar K will diverge
as this term vanishes. We note that if the energy conditions are satisfied, and a naked
singularity forms as an end point of collapse, this naked singularity is always strong
[19]. In Table 4 we present the divergence properties of the Kretschmann invariant
for various dimensions in both the general relativity and EGB gravity cases. It can be
seen that for all N ≥ 5, the divergences in the EGB cases are more profound than
their general relativity counterparts. In the presence of an electromagnetic field, we
note that in both cases, the divergences of K are more severe. We make the point that
these more rapid divergences in EGB gravity do not imply that the singularities are
necessarily stronger than those occurring in general relativity, we are merely remark-
ing that the singularities appearing in EGB gravity are indeed strong, specifically for
the charged scenario, in both the Tipler sense and the curvature invariance sense.

Figure 10 depicts the behaviour of the Kretschmann scalars for N = 5, 6 in
EGB gravity. We note that the divergences are more profound for the cases where
Q 	= 0 which is again due to the form of the metric function (23). We again mention
that five dimensional EGB gravity is, remarkably, the only dimensional case where the
unchargedmetric functions are regular and so, alongwith thediverging K , the resulting
singularity is conical in nature; spacetime can, in principle, be extended through it.
For dimensions N ≥ 6, this is no longer the case; strong curvature singularities occur.
Unlike the uncharged scenario, in the presence of the electromagnetic field, there is
no difference between the N = 5 and N > 5 cases; collapse proceeds similarly
for all N ≥ 5. This emphasises, again, that the effect of the electric charge and the
Gauss–Bonnet corrections on gravitational collapse cannot be understated, in any
dimension.

9 Conclusion

In this paper we have analysed the gravitational contraction of a higher dimensional
radiation shell of matter surrounded by an electromagnetic field in EGB gravity. The
charged analogue of the Boulware–Deser metric is studied in higher dimensions and
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Fig. 10 Log-log plot showing the behaviour of the Kretschmann invariants for neutral and charged matter
in EGB gravity, in five and six dimensions. The charged cases (dashed lines) have a more severe divergence
than their neutral counterparts. This behaviour is consistent for all N ≥ 5

it is shown that the collapse dynamics are similar for all dimensions N ≥ 5, unlike
in the neutral scenario where the N = 5 case yields significantly different physics to
the higher dimensional cases, and is thus special. The notions of branch singularity
formation were discussed in detail. In EGB gravity and more generally in higher order
Lovelock gravity, branch singularities are generic. In our case, for neutral collapse
the branch singularity only forms for a negative mass, and thus has no effect on the
process. Collapse proceeds in the conventional sense yielding a singularity which is
conical in nature, due to the regularity of the spacetime metric, coupled with a diverg-
ing Kretschmann invariant. The charged situation is different however; the branch
singularity is unavoidable and is indeed the curvature singularity of the spacetime.
The implication is that there exists a section of this spacetime which will be complex,
separated from the real and physical spacetime, by this branch singularity r = rb;
there is no real spacetime at r = 0. We then considered the nature of this branch
singularity for the higher dimensional charged Boulware–Deser solution. We consid-
ered the sufficient conditions for locally naked singularity formation and have shown
that for a particular choice of the mass and charge functions, a naked singularity is
inevitable in EGBM gravity for all arbitrary higher dimensions; cosmic censorship is
violated in EGBM gravity for all dimensions N ≥ 5. We also proved that the naked
branch singularities are strong. The effects of the electric charge, the dimension of
spacetime and the Gauss–Bonnet corrections crucially affect the dynamics of collapse
and the nature of these branch singularities, and the nature of spacetime in the vicinity
of these singularities.
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