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Abstract 

 

Competitive pressure on the software industry encourages organizations to examine 

the effectiveness of their software development and evolutionary processes. 

Therefore it is important that software is measured in order to improve the quality. 

The question is not whether we should measure software but how it should be 

measured.  Software measurement has been in existence for over three decades and it 

is still in the process of becoming a mature science. The many influences of new 

software development technologies have led to a diverse growth in software 

measurement technologies which have resulted in various definitions and validation 

techniques. 

 

An important aspect of software measurement is the measurement of the design, 

which nowadays often means the measurement of object oriented design.  Chidamer 

and Kemerer (1994) designed a metric suite for object oriented design, which has 

provided a new foundation for metrics and acts as a starting point for further 

development of the software measurement science. 

 

This study documents theoretical object oriented cohesion metrics and calculates 

those metrics for classes extracted from a sample of open source software packages.  

For each open source software package, the following data is recorded: software size, 

age, domain, number of developers, number of bugs, support requests, feature 

requests, etc.  The study then tests by means of association rules which theoretical 

cohesion metrics are validated hypothesis: that older software is more cohesive than 

younger software, bigger packages is less cohesive than smaller packages, and the 

smaller the software program the more maintainable it is. 

 

This study attempts to validate existing theoretical object oriented cohesion metrics 

by mining open source software data with association rules. 
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Glossary of Terms 

 

Attribute: - A data item encapsulated in a class. Other names include instance 

variable, data member, and state variable   

 

Class: - A term that denotes the encapsulation of data and behavior into a 

single package or unit.  Class is the template from which many objects 

are instantiated. 

 

 

Independent Variables: -  Variables that do not depend on one another 

 

Measurement: - The process by which numbers or symbols are assigned 

to attributes of entities in the real world according to 

clearly defined rules 

 

Methodology: - Comprehensive guidelines to follow for completing an 

activity including specific models, tools and techniques 

 

Methods: - How behaviors are implemented in object oriented 

languages.  Similar to functions found in other 

languages. 

 

Metrics: - The aspect being measured. 

 

Private Methods: - Methods that are accessible only within the body of a 

class. 

 

Public Methods: -  Methods with no access limitation. 

 

Object: - Instance of a class. 
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Object Orientation  

Approach: - An approach to system development that views a 

program as a collection of interacting objects that work 

together to accomplish required tasks.   

 

Variables:  The representation of an area in the computer memory 

in which a value of a particular data type can be stored. 

 

List of Acronyms 

CAMC: -  Cohesion among methods in a class 

CBO: -  Coupling between objects 

GNU: -  Not Unix 

Co: -  Connectivity 

CVS: -  Concurrent versioning system 

GQM: -  Goal question metrics 

Ich: -  Information – flow based cohesion 

Lcc: -  Loose class cohesion 

Lcom: -  Lack of cohesion Metrics 

MNC: -  Number of methods in a class 

NAS: -  Number of associations 

OO: -  Object Oriented 

OSS: -  Open source software 

RFC: -  Response for a class 

Tcc: -  Tight class cohesion 

TCO: -    Total cost of ownership 
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Chapter One - Introduction 

 

1.1 Background 

 

Software engineering is the process of developing software through successive phases 

in a methodical way. This process includes the groundwork of the user requirements 

definition and analysis, the design of what is to be coded, the actual writing of 

software code, and the testing of the developed software to ensure that it meets the 

requirements.  Before systems development methods came into being, the 

development of new systems or products was often carried out using the experience 

and intuition of management and technical personnel. Among systems development 

methods, object oriented programming within the unified model is the state of the art 

software development model. It is difficult to perform measurements on proprietary 

software due to its closed nature, but the emergence of Open Source Software has 

opened new opportunities to measure software features. One of theses features is 

software quality.  But software quality must be considered in the broader context of 

the software project’s scope.   

 

1.1.2 Software Project Scope 

 

A project scope encompasses these three concepts: quality, cost and time. 

1.1.2.1 Quality 

 

While it is obvious that determining what truly represents software quality in the 

customer’s view can be elusive, it is equally apparent that the number and regularity 

of problems and defects associated with a software product are inversely proportional 

to the quality of the software. Software problems and defects are among the few 

direct measurements of software processes and products. Flora (1996) states that 

“Problem and defect measurements are also the basis for quantifying several 

significant software quality attributes, factors, and criteria-reliability, correctness, 

completeness, efficiency, and usability among others” .   
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1.1.2.2 Cost and Maintenance 

 

The amount of rework is an important cost factor in software development and 

maintenance. The number of problems and defects connected with the product are 

direct contributors to this cost. Measurement of defects can assist one to realize where 

and how the problems and defects arise, provide an insight to methods of fault 

detection, fault prevention, and fault prediction, and keep expenditure under control. 

Maintenance of software is also considered an immense cost in the software 

development process. 

It is difficult to measure the quality of software code but evaluating why code is 

difficult and time consuming to maintain is very important.  According to Wise 

(2005) maintenance problems fall into one of the following categories: poor 

specifications, complex design and bad code.  

a) Poor specification 

Poor specification is usually a result of poor planning and communication 

between the users/management and the developer/architect.  

b) Complex Design 

When the code is required to do really complicated things, its structure and 

reliability also become complex.  

c) Bad code 

Bad code seems to be linked to programming experience. The following 

questions are used when it comes to bad coding.  Are the developers not 

following coding standards?  Do developers have a fundamental 

misunderstanding of how to write clean code?  Are they junior developers 

who are performing tasks for the first time? 

 The above categories (a, b, c) have an impact on the maintenance of software code. 
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1.1.2.3 Schedule 

 

The primary driver of projects schedules is the tracking of workload, people and 

processes. But it is also useful to measure defects in tracking project progress in order 

to identify process inefficiencies, and to forecast obstacles that can jeopardize 

scheduled commitments. 

 

If software development is no longer seen as an ‘art’, but as a craft or a science, then 

we must be able to measure the characteristics of a software product.  We can pursue 

this by using metrics.  Metrics can provide the feedback we need during the software 

life cycle in order to evaluate software complexity, and to avoid its inherent 

consequence which is defective software.   

 

1.1.3 Object Oriented Programming  

 

Currently, software development environments quite often form a methodological 

and technical framework for the realization of complex software systems.  Because of 

the demand for tool integration, tool management, communication support, and 

process modeling, etc., the conception and realization of such development 

environments becomes quite a difficult undertaking.  A distinct software process is 

required to provide organizations with a reliable framework for performing and 

improving their work.  An overall modeling framework simplifies the task of 

producing process models, permits them to be customized to particular requirements, 

and facilitates process evolution.  It is often claimed that the object oriented 

programming paradigm allows a faster development pace and higher quality of 

software.  A number of metrics have been proposed to measure object oriented 

systems.  Chidamber and Kemerer (Chidamber et al, 1994) made one of the first 

attempts at developing software metrics for object oriented systems.  They proposed a 

set of six oriented design metrics.  Object oriented systems development is one of the 
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major aspects of modern software engineering. 

 

Certain aspects of object orientation require a fundamental reconsideration of basic 

concepts of development environments as well as their technical realization.   

Emphasis is placed on a realistic consistent object oriented software development 

environment and on the concepts for integrating an object oriented generic process 

model into a software development environment. 

 

1.1.4 Open Source Software 

 

Open Source software is a system whose source code is freely available to the general 

public for use and/or modification from its original design. Open source code is 

usually produced as a collaborative attempt in which programmers enhance upon the 

code and disclose the changes. The open source definition denotes that the origins of 

a product are freely available in part or in full. 

 

1.1.5 Software and Cohesion Metrics 

 

A metric is defined as a process by which numbers are assigned to attributes of 

entities in the real world to describe them according to clearly defined rules (Fenton, 

1994). There are relatively new metrics, called ‘object oriented’ metrics and the older 

metrics, which are now referred to as “traditional” or “conventional” metrics.  Then 

there is another distinction, namely, there are metrics that measure the written code, 

and there are metrics for software design.  

 

The study of metrics was established in the 1960s and developed further in the 1970s.  

The earliest software metric is the measure LOC (lines of code) (Park, 1992).  This 

metric was subjected to lots of criticism for the reason that the program length is not a 

good way to determine program characteristics like reliability and ease of 

maintenance. 
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That criticism gave birth to a great deal of metrics and measurement ideas. For 

example, the metrics proposed by McCabe (1989) and Halstead (1997) were created 

in the middle of the 1970s, and are still heavily discussed today. In (McCabe, 1989), 

cyclomatic metric is presented; it uses graph theory to measure software complexity. 

It looks at a program’s control flow graph and determines the minimum number of 

paths in that graph. McCabe argued that this number determines the complexity 

(cyclomatic complexity) of a program. Halstead devised a metric, which is based on 

two quantities: the number of distinct operators in the program and the number of 

distinct operands in the program. From these numbers one can construct the “Halted 

Length” which is the measure of the complexity of a program.  Usually the “Halted 

length” is calculated after the code is written but is also used for the measurement of 

programming effort. McCabe and Halstead complexity measures were deemed to be 

inconsistent due to the following: 

a) The measure is independent on physical size. 

b) The measure fails to distinguish between different kinds of control flow structure. 

c) The measure does not account for the level of nesting of various control structures 

and for this measure three loops in succession and three nested loops are 

equivalent.  Such nesting however, may affect the psychological complexity of 

the program.   

d) The cyclomatic complexity increases with each application of structuring 

transformation like node splitting. 

 

These inconsistencies urged different researchers to improve the science of metrics.  

Weyuker (1998) proposed her desirable properties for metrics; these properties are 

discussed and elaborately explained by Misra and Misra (2007). Weyuker properties 

are accepted by numerous authors as been very robust.  

 

Recent works by Chidamber and Kemerer (1994) outline the most important Object 

oriented metrics. These metrics are summarized by Briand, Daly, and Wust (1999). 
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1.1.6 Data Mining  

Data mining, also known as knowledge discovery, is the practice of analyzing data 

from diverse perspectives and summarizing it into constructive information. Data 

mining software is an analytical tool for analyzing data. It allows users to analyze 

data from many diverse dimensions or angles, categorize it, and summarize the 

relationships recognized. Data mining is the process of finding correlations or 

patterns among thousands of fields in large relational databases. 

1.1.6.1 Data Mining Algorithms 

 

Frequent item set mining (FIM) has only being in existence from 1993 according to 

Agrawal, Imielienski and Swami (1993). These authors describe and explain the way 

association rules works when mining databases with a large number of item sets. 

Agrawal, Imielinski and Swami (1993) introduced an algorithm called AIS. Later 

Agrawal and Srikant (1994) proposed two new algorithms, called Apriori and 

AprioriTid that are fundamentally different from the previous one. The algorithms 

achieved significant improvements over AIS and became the core of many new 

algorithms for mining association rules.  

 

Cheung (1996) proposed an algorithm called FUP (Fast Update Algorithm) for 

finding the frequent item sets. The word item set was invented specially for data 

mining and it means a set of items, a group of elements that represents together a 

single entity. The major idea of the FUP algorithm is to reuse the information of the 

old frequent item sets and to integrate the support information of the new frequent 

item sets in order to reduce the pool of candidate item sets to be re-examined. Along 

with the item sets, a negative border, proposed by Toivonen (1996) was maintained. 

A negative border consists of all the item sets that are candidates of the Apriori 

algorithm that do not have sufficient support. 

 

Another approach to incremental mining of frequent item sets was presented by 

Thomas et al (1997). The algorithm that was introduced required only one database 
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pass and was applicable not only for expanded but also for reduced databases. Nag 

(1999) introduced the issue of interactive mining of association rules and the concept 

of knowledge cache was introduced. The cache was designed to hold frequent item 

sets that were discovered while processing other queries. Several cache management 

schemas were proposed by Aggarwal and Yu (1998), Han (1998) and Hidber (1999) 

and their integration with the Apriori algorithm was analyzed. An important 

contribution as stated by Nag (1999) was an algorithm that used item sets discovered 

for higher support thresholds in the discovery process for the same task, but with a 

lower support threshold. The notion of data mining queries or knowledge discovery 

in databases was introduced by Imielinski and Mannila (1996). The need for 

Knowledge and Data Management Systems (KDDMS) as second generation data 

mining tools was expressed. The ideas of application programming interfaces and 

data mining query optimizers were also mentioned. Several data mining query 

languages that are extensions of SQL were proposed by Ceri, Meo and Psaila (1996), 

Han et al (1996), Imielinski and Mannila (1996) and Morzy, Wojciechowski z and 

Zakrzewicz (2000).  

 

1.2 Problem Statement  

 

Cohesion metrics intend to measure software quality, but they only apply to software 

classes. Ideas have been put forward as to how to derive the cohesion of a software 

package from the cohesion of its classes but the validity of those ideas is still to be 

proven. 

 

The concept of class cohesion provides an interesting link between object oriented 

programming and software metrics, but it is even more interesting to study that link 

in the specific context of open source software.   

 

These are possible research ideas that can exhibit the contribution of object oriented 

programming, open source software and software metrics (cohesion) to software 

quality. 
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1.3 Research Questions 

 

The relationship between software quality, object oriented programming, software 

metrics, and open source software, calls for several questions.  

 

For example one may want to examine the correlation between software quality as 

measured by cohesion metrics and software attributes such as software size, software 

domain, software age and the number of developers. What is the correlation between 

these independent variables and cohesion? Can software metrics conclusively 

measure software quality? 

 

Since object oriented cohesion metrics are only defined for classes, how can the 

cohesion of a software package be calculated? 

 

This research is an attempt to answer the above questions. 

 

1.4 Research objective  

 

The objective of this study is to design a methodology to test the validity of software 

cohesion metrics.  

 

In pursuing the above-defined objective, the following tasks must be completed. 

 

a) Document existing metrics within the object oriented development 

environment. 

b) Develop software that calculates cohesion metrics for a sample of open source 

software. 

c) Data Mine these metrics to test the hypothesis as outlined in this study. 
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1.5 Rationale 

 

The Linus's law states, "Given enough eyeballs, all bugs are shallow". More formally:  

 

"Given a large enough beta-tester and co-developer base, almost 

every problem will be characterized quickly and the fix obvious to 

someone" (Torvalds, 2003). 

The driving force of Linus' Law is less about security than it is the general process of 

assuring quality in software. This certainly resonates with the existing deliberation 

amongst open source advocates, that having source code accessible for analysis and 

audit helps make certain that potentially unsafe bugs are more easily neutralized. 

This law states that the greater number of people to view the developed code that is 

developed the easier it is to discover bugs and problem areas.  With proprietary 

software only the testing team has access to test the source code therefore some 

problems may not be unearthed.  Due to open source software being available to all 

eyes, this software can be revised until it is deemed perfect by all associated parties.   

This study can contribute to the testing the validity of the Linus Law in the sense that 

it assesses open source software quality based on the calculation of cohesion metrics 

of open source software. Threats to validity include construct validity, External 

validity and internal validity. 

 

Construct Validity is defined as the extent to which the independent variables and 

dependent variables precisely measure the concept they intend to measure. 

Internal Validity is defined as the degree to which conclusion can be drawn about the 

causal effect of the independent variables on the dependent variables. 

External validity is defined as the degree to which the results of the research can be 

generalized to the population under study and other research settings.  

 

The study focuses on construct validity since cohesion values are compared to 

independent variables e.g. age, size, category, programming language, etc.  
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1.6. Research Methodology 

 

The research methodology comprises of the research method, research population and 

research sample. 

 

1.6.1 Research method 

 

It is important to know that the present study is a survey.  The population and 

sampling of the survey is defined below. 

1.6.2 Research population 

  

The research population is made up of open source software. All necessary data can 

be gathered and downloaded from the url http://www.Sourceforge.org. The size of 

the population of open source software packages as at December 2006 was 65549 and 

these increases daily. 

1.6.3 Sampling  

 

Data gathering for the sample is performed on historical data available from open 

source software that is on the Internet within software categories. The reason for this 

is to prove the theory of Linus’ Law as stated in the rationale. The sampling method 

and sample size is defined below. 

1.6.3.1 Sampling Method 

 

The sampling method used is randomization within a stratified group. The population 

referred to above has been stratified into 13 different domains; the sample in each of 

these domains is randomly chosen. Each software domain is considered as a strata. 

For example the category “software development” is a strata; Software packages 

from this category is randomly selected and downloaded.  This method is used for the 

entire sample. 



- 11 -  

1.6.3.2 Sampling Size 

 

The size of the sample used to test the hypothesis is 68 i.e. 68 software packages are 

downloaded and their data form the basis of the study. The calculation of the sample 

size is given in chapter 3. 

1.6.4 Data processing  

 

In chapter 4, software data from the 68 software packages is mined using association 

rules in order to determine the correlation between cohesion and software 

independent variables.   

1.6.5 Hypothesis  

 

The following hypotheses are assumed. 

 

a) There is a correlation between software size, software support requests, 

software feature requests, software patches and cohesion. 

b) Software cohesion does not depend on the software domain. 

c) Highly cohesive software contains few errors. 

 

 1.7 Scope and constraints  

 

There are different metrics for object oriented design e.g. depth of inheritance tree, 

weighted average method per class, coupling, lines of code, etc. This study deals 

exclusively with cohesion metrics, especially the one defined by Chidamber and 

Kemerer. While the study does discuss cohesion metrics in general, it does however 

exclusively focus on the cohesion metrics proposed by Chidamber and Kemerer 

(1994).  Software written in a traditional programming language is excluded since 

this study is based on the object oriented software paradigm. 

 

Another limitation is on the data collected.  Data is solely collected from open source 
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software. The reason for choosing Open source software is because proprietary 

software or off the shelf software is expensive and their code is not available. 

 

All software studied is written in programming languages in the .net environment 

(Example C#.net, J#.net, Visual Basic.net, etc) 

 

1.8 Conclusion 

A cohesive program is one in which the modularisation of functionality is performed 

‘correctly'. More precisely, a cohesive module or function should perform only 

closely related tasks. The principle is mirrored in object-oriented programming by the 

concept of encapsulation: well-encapsulated objects contain all necessary data and 

function members within themselves. 

The motivation for measuring and assessing the cohesiveness of programs rests upon 

claims that highly cohesive code is easier to maintain, modify and reuse.  

Open source software is relevant in today’s ever-changing world of information 

technology and we need to know if the millions of open source code available can be 

trusted for deployment. One way of measuring whether this open source software 

code is reliable is through the measurement of quality. One measurement of software 

quality used today is software cohesion. Cohesion can confirm if software quality is 

high, medium or low and if software reuse is a dependable approach.  

This study comprise of five chapters and is broken down into 3 three sections. In the 

first section, which is chapters one and two, an overall context for the study is 

provided, as well as an in-depth literature review on the mining of software 

engineering data.  

In the second section, which comprises chapter three, a description of the research 

methodology is given with the aim of explaining the entire research process from the 

data collection to the production of association rules. The design of software 

programs is written for the calculation of cohesion metrics are presented.  



- 13 -  

Finally, in chapter four, the association rules are analyzed and the results of that 

analysis are presented and interpreted. Chapter five concludes the study. 



- 14 -  

Chapter Two - Literature review 

 

2.1 Introduction  

 

Validation of software measures and prediction models are based on the following 

questions documented by Zeus (1991): 

a) Is it possible to predict the error-proneness of a system using                

software measures from its design phase?  

b) Is it possible to extract quantitative features from the 

representation of a software design to enable us to predict the 

degree of maintainability of a software system?  

c) Are there any quantifiable, key features of the program code of a 

module that would enable us to predict the degree of difficulty 

of testing for that module, and the number of residual errors in 

the module after a particular level of testing has occurred?  

d) Is it possible to extract quantifiable features from the 

representation of a software design to enable us to predict the 

amount of effort required to build the software described by that 

design?  

e) What properties of software measures are required in order to 

determine the quality of a design?  

f) Are there features in order to predict the size of a project from 

the specification phase?  

g) What are appropriate software measures to underlie the software 

quality attributes of the ISO 9126 norm by numbers?  

h) What are the criteria for the internal and external validation of 

software measures? What are the criteria for prediction models?  

These questions may form the basis of a software measurement theory whose 

importance according to Zeus will become more and more obvious with time.  
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Metrics is not just important in software development but imperative since metrics 

can measure different aspects of a software program, like quality. Cohesion metrics 

measures software quality by measuring how closely related classes are in a software 

package. This is known as cohesion of a software package. 

 

The Lcom metric was one of the six metrics proposed in a draft suite of 

measurements theory based software metrics in 1991 by Chidamber and Kemerer.  

The metric was interpreted by Li and Hendry (1993, 1995), which was later refined 

by Hitz and Montazeri(1996).  Chidamber and Kemerer (1994) also later proposed a 

revised definition for Lcom.  The multiple interpretations of the Lcom metrics can 

result in different values for a particular class (Hitz and Montazeri, 1996) (Etzkorn, 

Davis and Li, 1998).  However, in spite of its many definitions, the Lcom metric is 

still currently the most widely used metric for measuring cohesiveness of a class.  

The Lcom metric uses class data attributes access patterns to compute the lack of 

cohesion.  The metrics determines the set of methods that have one or more attibute 

access in common in the implementation of the methods of a class. The number of set 

of non-overlapping attributes gives the Lcom measure of a class.  Using the 

Chidamber and Kemerer revised definition, the Lcom value for completely cohesive 

classes is zero and can be as high as (2
n 
)  for a class with “n” methods.  With the Li 

and Hendry (1993) interpretation, the Lcom provides a number that indicates the 

number of classes with which a non-cohesive class should be replaced with.  In an 

article (Etzkorn, Davis and Li, 1998) which compares the various implementations of 

Lcom by Chidamber and Kemerer and the extensions made by Li and Hendry provide 

the best interpretation of lack of cohesion in methods of a class.  A framework for the 

measurement of cohesion was agreed upon by several authors, this framework is used 

to test the validity of cohesion metrics in this study (Briand, Daly and Wust, 1998).  

 

“In the future, theory building (hypotheses about reality) becomes 

more and more important.  The axiom systems of measurement 

theory can help here to get a better understanding of what’s behind 

software quality and cost.” – [Zeus, 1989; 24] 
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2.2 Software Measurement  

Many object-oriented metrics have been proposed over the last decade. A few of 

these metrics have undergone empirical validation, and in reality metrics are being 

used by corporations as functional effort to manage software quality. Accurate 

prediction of fault prone modules in software development process enables effective 

discovery and detection of defects. Such prediction models are valuable for 

comprehensive systems, where verification experts need to focus their attention and 

resources to problem areas in the system under development. The assessment of the 

changeability of software systems is of concern for purchases of the huge systems 

found in fast-moving domains.  An approach to this problem is to examine the 

dependency between the changeability of the software and its design, with the 

purpose of discovering design properties that can be used as changeability indicators. 

The usage of metrics in the analysis and design of object oriented (OO) software can 

aid designers make improved decisions is gaining relevance in software measurement 

area. Moreover, the necessity of having early indicators of external quality attributes, 

such as maintainability, based on early metrics is growing.  

2.2.1 Prediction of fault-proneness 

 

Basili, Briand and Melo (1996) experimentally investigated the suite of Object 

Oriented (OO) design metrics introduced by (Chidamber and Kemerer, 1994), with 

the aim of assessing if metrics can predict fault-prone classes.  Data on the 

development of average-sized information management systems based on evenly 

balanced requirements were collected and a controlled study was run over four 

months. Data was also collected on defects found in Object-Oriented classes from 

graduate students.  The students were randomly grouped into eight teams.  Each team 

developed medium-sized management information systems that support the 

rental/return process of a hypothetical video rental business with a customer and 

video database.   Based on this data it was confirmed experimentally how much fault-

proneness is influenced by internal (e.g., size, cohesion) and external (e.g., coupling) 
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design characteristics of OO classes. From the results, five out of the six Chidamber 

and Kemerer’s OO metrics are effective to forecast class fault-proneness during the 

initial phases of the life-cycle. This empirical validation presents some empirical 

evidence indicating that the majority of these metrics can be effective quality 

indicators. In addition the results show these metrics to be complementary. 

 

Benlarbi, Emam and Goel (1999) investigated the empirical validation of object-

oriented metrics by assessing each metric (Weighted Method Per Class, Coupling 

Between Objects, RFC, LCOM) against class fault-proneness. Data was collected 

from 174 classes in a C++ system. The method of analysis used was logistic 

regression.  The results showed that size can have an important confounding effect on 

the validity of object-oriented metrics.   

2.2.2 Prediction of changeability 

Kabaili et al (2001) goal was to validate cohesion metrics as changeability indicators. 

LCC and LCOM were chosen as cohesion metrics. Data was collected about these 

metrics on three different industrial systems. For each metrics minimum, maximum, 

mean, median and standard deviation statistics were collected, to test the relationship 

between cohesion and the coupling metrics.  The Pearson correlation coefficient was 

used to measure the degree of relationship between variables. Investigation of classes 

that was weakly cohesive showed that the metrics used do not capture all the facets of 

class cohesion. The conclusion was that cohesion metrics such as LCC and LCOM 

should not be used as changeability indicators. 

 

Esperanza, Genero and Piattini (2003) used three controlled experiments to ascertain 

if any correlation exists between the structural complexity and the size of UML class 

diagrams and their maintainability, using eight metrics for measuring the structural 

complexity of class diagrams and three metrics to measure their size. The obtained 

results show that the metrics related to associations, aggregations, generalizations and 

dependencies, are validated whilst those related to size seem to be redundant. The 

result also shows a strong relationship between maintainability and principal 

components (Independent Variables).   
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In an Empirical study by Bhadri and Bhadri (2004), the main goal of the research was 

to validate the introduced criterion which focuses on interactions between class 

methods and their approach for class cohesion assessment. The results showed clearly 

that based on a combination of the proposed criteria, there are more pairs of 

connected methods than the existing cohesion metrics, particularly the ones implicitly 

taking into account the interactions between methods (such as Connectivity, Tight 

Class Cohesion and Loose Class Cohesion metrics). A cohesion measurement tool 

was developed for Java programs to automate the computation of the major existing 

class cohesion metrics presented by Chidamber and Kemerer (1991).  In order to 

demonstrate the effectiveness of the new criterion and the proposed metrics for class 

cohesion, a case study of more than 2000 Java classes was analysed. The results 

proved that their analysis constitutes an improvement of class cohesion assessment. 

Existing class cohesion metrics are essentially based on instance variables, this 

criterion is important but not sufficient to capture all the connections among members 

within a class according to Bhadri and Bhadri (2004).  In order to capture additional 

characteristics of classes and to better measure the cohesion property of classes, 

Bhadri and Bhadri (2004) introduced new class cohesion criteria, based on methods 

invocation.   

 

The goal of research by Muskens, Chaudron and Lange (2004) was to develop 

industry-proof software architecture and design metrics. They identified a number of 

problems that occur in computing software architecture and design metrics in 

industrial settings that were not encountered in computing source-code metrics. These 

problems include the absence of a single, unifying representation for architectures 

and they arise from the fact that architecture diagrams are used in an informal 

manner. They evaluated models based on the object oriented paradigm for 

representing architecture and the results documented that software architecture has 

significant impact on the quality, cost and development time of software projects; 

hence the quality of software architecture needs to be evaluated in the early stages of 

the development process.   
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Counsell, Swift and Turner (2006) attempted to clarify the contributing factors to an 

OO cohesive class.  Twenty four test subjects were used and 322 C++ classes were 

tested in their study to test if:- 

a) Smaller classes are more cohesive than larger classes  

b) Classes with relatively large number of comment lines are more cohesive than   

            those without and  

c) There is a relatively large difference in the rating of cohesion made by  

developers with IT experience and those developers without IT experience.   

 

The cohesion metric used in the study was Number of Methods in a class (NMC), 

Coupling between objects (CBO) and Number of Associations (NAS). The results 

showed that smaller classes are not more cohesive than larger classes and it is not true 

that classes with relatively large numbers of comment lines are generally deemed 

more cohesive than those with fewer comment lines.  There was not enough evidence 

to support the difference in rating between novice and experienced developers in IT. 

 

2.2.3 Independence of cohesion metrics  

 

Lethbridge and Anquetil (1998) applied cohesion metrics to various decomposition of 

a large system of about 4500 files.  The results revealed that no matter which method 

was used to compute similarity, roughly the same information about the coupling and 

cohesion subsystems were recorded. Results also recorded correlation between 

cohesion and coupling.  Thus Lethbridge and Anquetil believed that these metric 

should not be thought of as completely independent indicators of quality.     

 

Kabaili et al (2001) also looked at the correlation between cohesion and coupling 

metrics. The metrics used for the study was Coupling Between Objects (CBO) and 

Response For a Class (RFC). They experiment showed no correlation between 

cohesion and coupling metrics chosen.  Cohesion metrics used in their 

experimentation did not reflect the real cohesion of a class. An investigation carried 
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out using manual classes with low cohesion metric values were analysed and the 

results proved although some classes have low LCC and/or high LCOM values, these 

classes are actually cohesive.  Based on these results the authors concluded that 

cohesion metrics cannot be trusted as changeability indicators and further concluded 

that as measures, LCC and LCOM do not reflect the cohesion property of a class.  

2.2.4 Prediction of maintainability 

 

Li and Henry’s (1993) research implemented object oriented metrics to predict 

maintenance effort. This research used one dependent variable representing software 

change, and ten independent variables. Change is a measure of maintenance effort. 

All the independent variables are metrics values.  The metrics used were Depth of 

inheritance tree (DIT), Number of Children (NOC), Response for a class (RFC), Lack 

of cohesion of class (LCOM) and Weighted Method per class (WMC).  The study 

tested if there is a strong relationship between object oriented metrics and the 

maintenance effort as measured and if size has any correlation with maintainability.  

The results of their analysis proved that 

a) There is a strong relationship between metrics and the maintenance effort 

in the object oriented systems. Ninety-percent (90%) of the total variance 

in the maintenance effort is accounted for by metrics.  

b)  The maintenance effort can be predicted from the combinations of 

metrics collected from source code   

c) Size can account for a large portion of the total variance in the 

maintenance effort. 

d) Metrics are very useful predictors of maintenance.  

 

Bansiya et. al. (1998) compared the Lack of cohesion (LCOM) metrics with Coupling 

Among Methods of a Class (CAMC). CAMC is a metrics representing the cohesion 

among methods in a class. A sample size of 17 classes was used in the analysis.  As 

part of their study LCOM was statistically correlated with CAMC and the results 

proved that the CAMC metric shows significant potential as an early way to assess 
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the cohesiveness of classes in a design but it needs to be validated using a set of 

projects from various domains.    

 

In a paper by Harrison, Councell and Nithi (1998), two coupling metrics are 

analyzed: the metrics proposed by Chidamber and Kemerer’s (Coupling between 

Objects) and Number of Association between classes (NAS) metric developed 

through the use of the Goal-Question-Metrics.  Five systems were tested and the 

results showed a strong relationship between Chidamber and Kemerer’s metrics and 

NAS metrics, implying that only one of these metrics need be used to access systems 

design.     

 

 

2.3 Mining Software Data 

 

Inderpaul et al (1993) effectively introduced the attribute-focusing technique to the 

software engineering community. It discusses the use of association discovery for 

exploring defective software and process improvement. The authors discuss the 

results of their technique in an extensive case study which was executed at IBM. 

Inderpaul et al (1994) also present work on attribute focusing that is more oriented to 

software engineering practitioners. It focuses on the data analysis methodology and 

the lesson learned by the authors. The major lessons learned from Inderpaul et al. is 

that machine-assisted data exploration of classified defect data can readily lead a 

project team to improve their process during development. Such analysis focuses the 

team on the immediate experience of development and helps them correct process 

problems as well as to validate whether those problems have indeed been corrected. 

Such analysis can complement current practices of in-process improvements.   

 

De Oca and Carver (1998) describe data mining techniques as having been used 

previously, for identification of subsystems based on associations.  This approach 

provides a system abstraction up to the program level as it produces a decomposition 

of a system into data cohesive subsystems by detecting associations between 
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programs sharing the same files.   Results show that data mining can identify data 

cohesive subsystems without any previous knowledge of the subject system. 

Furthermore, data mining can produce meaningful results regardless of system size 

making this approach especially appropriate to the analysis of large undocumented 

systems. 

 

Manoel et al (1998) discusses two approaches for improving existing measurement 

and data analysis techniques in software organizations. The first approach works top-

down based on goal oriented measurement planning. The second approach works 

bottom-up by extracting new information from the legacy data already available in 

the organization. For the latter approach, the authors use association discovery to gain 

new insights into the data that is already present in the organization. These 

approaches were used to analyze the customer satisfaction (CUSTSAT) survey data 

at the IBM Software Solutions Division Laboratory. The CUSTSAT data are 

collected annually through surveys carried out by an independent party. Their 

purpose is to evaluate customer satisfaction with products of IBM's Software 

Solutions Division and competing products. IBM surveys a large number of 

customers from several different countries. All the data are stored in one database. 

Currently, this database stores CUSTSAT data collected over several years. The 

studies main objectives were: (1) better understanding of the user groups' needs with 

respect to the CUSTSAT measurement, and (2) better exploration of the data already 

stored in this database. The results showed that the Goal Question Matrix (GQM) - 

and AF-based approaches are complementary and can work in synergy. The GQM 

structures help us to choose and organize data for AF analyses. The new knowledge 

gained through the AF analyses can be fed back into the measurement goals and used 

to revise GQM structures.  

Data mining has appeared as one of the tools of choice to better explore software 

engineering data as described by Brand and Gerritsen (1998).   The constant increases 

in software and hardware infrastructures only increase the availability of data in 

software organizations. Brand and Gerritsen carried out analysis on data collected in 

telecommunications.  The results showed that association algorithms can only operate 
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on categorical data.  If non-categorical is used, the non-categorical data must be 

binned into ranges, and each range would have to represent an attribute. 

 

Rousidis and Tjortjis (2005) described clustering that is used to support software 

maintenance and systems knowledge discovery.  Rousidis and Tjortjis describe in a 

paper the method for grouping Java code elements together according to their 

similarity.  It focuses on achieving a high-level system understanding.   This method 

derives system structure and interrelationships, as well as similarities among systems 

components. This is done by applying cluster analysis on data extracted from source 

code in order to better understand similarities among program elements in support of 

software maintenance.  This methodology used an input model and a clustering 

algorithm.  It correctly recognized data about software packages, classes, methods 

and parameters.  A tool was developed to assess this fully automated approach, and 

the experimental results showed that the tool successfully revealed similarities among 

Java code elements.    

 

An approach for evaluation of dynamic clustering was presented by Xiao and Tzerpos 

(2005).  The scope of this work was to evaluate the usefulness of providing dynamic 

dependencies as input to software clustering algorithms.  This method was applied to 

Mozilla, a large open source software system with more than a four million lines of 

C-Sharp (c#) source code. In this experiment, the clustering produced by the dynamic 

process to the ones produced by the static one was compared. Results show that the 

static process performs usually better. However, there are cases where the dynamic 

clusterings are the ones with the higher quality. Also, the average difference between 

the static and dynamic clustering was less than 5%. 

 

Michail (2000) discussed how data mining could be used to discover reuse patterns in 

existing applications.  This work improves upon his earlier research using 

“association rules” by taking into account the inheritance hierarchy using 

“generalized association rules”. Michail explains by browsing generalized association 

rules, a developer can discover pattern in usage in a way that takes into account 
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inheritance relationships.  Michail’s research illustrated the approach using the tool, 

CodeWeb, by demonstrating characteristic ways in which applications reuse classes 

in the Knowledge Desktop Environment application framework. The results showed 

that some important rules would not have been found without taking into account the 

inheritance hierarchy. 

 

Recently Xie, Pei and Hassan (2007) presented in a tutorial the latest research in 

mining Software Engineering data, discusses challengers associated with mining 

software engineering, highlights software engineering mining success stories, and 

gives future direction of Data mining.  This paper outlines the types of Software 

Engineering data that is available to be mined,  which software engineering tasks can 

be helped using data mining and how are data mining techniques used in software 

engineering.  

 

Data mining can be effectively performed on open source software since open source 

software is transparent. 

 

2.4 Open Source Software  

The free software movement was launched in 1983. In 1998, a group of individuals 

advocated that the expression “free software” be replaced by open source software 

(OSS) as an expression which is less ambiguous and more comfortable for the 

corporate world (Raymond, 1998). Software developers want to publish their 

software with open source software license, so that any person can also cultivate the 

same software or understand how it functions. Open source software usually permits 

anyone to develop a new version of the software, port it to new operating systems and 

processor architectures and distribute it to others or promote it. The purpose of open 

source is to let the software developed be more understandable, modifiable, 

duplicatable, reliable or simply accessible, while it is still marketable. 

The open source software (OSS) model represents a disruptive paradigm in the 

software industry. Compared with traditional proprietary software development, OSS 

is a radically new paradigm (Moody, 2001; Raymond, 2005; Sharma, Sugumaran and 
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Rajagopalan, 2002). With OSS, software source code is freely available for anyone to 

view, download, modify and redistribute as long as it is under the same open source 

license. Most open source software projects rely entirely on the voluntary efforts of a 

community of developers (although some projects are coordinated and led by 

commercial entities). Such a voluntary community process keeps the cost of 

development and testing low. The nearly zero total cost of ownership (TCO) gives 

open source software a strong competitive edge. A few of the projects initiated by the 

OSS community, such as GNU, Linux, Apache, MySQL and PHP, have achieved 

extraordinary success. However, except for these few successful projects, the 

majority of the open source projects lack performance, with little development 

momentum behind them (Thomas et al, 2004). A Dutch Maastricht Economic 

research Institute (MERIT) in 2005 presented the results of an open source software 

survey at the O’Reilly open source Convention in Amsterdam.  A total of 955 

participants from twelve countries were consulted via phone and web- based survey.  

The study found that 49% of organizations are using open source software within 

their IT environments and about 70% of open source users wanted to increase their 

open source use.  Furthermore the results also showed that IT administrator’s efforts 

can be reduced by adopting open source software environments i.e. maintenance 

would be reduced considerably. 

2.4.1 Comparison of open source software and closed software 

 

A study by Samoladas et al. (2004) examined five active and popular open source 

software projects that comprised of 5,856,873 lines of code.  For each project the 

number of major releases was measured, obtaining a history of the evolution of the 

source code quality.  This was compared to closed source code (Proprietary Software) 

and the results showed that open source software code compared to be equal and in 

some cases better than the quality of closed source software code implementing the 

same functionality.  Results also showed that open source software code quality 

suffers the same problem as closed source software. Maintainability deterioration 

over time is a typical phenomenon and produces legacy closed source software 

systems. Similar behavior was exhibited with open source software projects as they 
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age: the open source systems approach will produce legacy systems in much the same 

way as closed source systems has done. 

 

Zhou and Davis (2005) collected data on bug tracking from eight popular open source 

software projects from sourceforge.org and investigated the time related bug 

reporting patterns from them.  The results indicate that along its development cycle, 

open source projects exhibit similar reliability growth pattern with that of closed 

source projects.  Bug arrivals of most open source projects will stabilize at a very low 

level, even though in comparison, no formal testing activities are involved.      

 

2.5 Cohesion of open source software  

 

Research carried out by Koch and Schneider (2000) into open source development 

was to use existing data on the projects available to the public.  Therefore the CVS-

repository of the GNOME project was used for the collection of data. The research 

aim was to identify if there was any correlation between Lines of Code and 

programming effort.   The results could not confirm any correlation. 

 

A paper written by Gyimothy, Ferenc and Siket (2005) on the validation of object 

oriented metrics on open source software for fault proneness aim was to calculate and 

validate the object oriented metrics suite given by Chidamber and Kemerer (1994) for 

fault prone detection from the source code suite of “Mozilla”.  Using the calculated 

metrics, Mozilla’s predicted fault proneness changed over seven versions covering 

one and a half years of development.  The results showed that the correctness of the 

LCOM metrics is good, but its completeness value is low.      

 

Koru, Zhang and Liu (2007) presented a paper on modeling the effect of Size on 

Defect Proneness for Open Source Software.  The objective of their study was to 

model the relationship between size and defect proneness while addressing the unique 

dynamic characteristics of Open Source Software.  Defect fixes made to C++ classes 

in open source projects were modeled.  Class size was measured in Lines of Code 
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excluding the blank and comment lines.  The results showed that when change in 

module size and addition and deletion of software modules over time was related to 

defect-proneness, the functional form of size was logarithmic. 

 

 

2.6 Conclusion 

 

Many object oriented metrics have been proposed over the last decade.  A few of 

these metrics have undergone empirical validation. 

 

Factors related to cohesion are fault-proness, changeability, maintainability and other 

independent variables (such as the number of developers, number of bugs, etc).   This 

chapter focused on the empirical validation of cohesion metrics as related to fault-

proness, changeability, maintainability and other independent variables.  The chapter 

starts with a review of existing literature on the empirical validation of cohesion 

metrics for software in general; a similar review for open source software is done. 
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Chapter Three - Research Design 

 

3.1 Introduction 

 

The purpose of this chapter is to present the methodology used for the assessment of 

validity of cohesion metrics with regard to the assumed hypothesis.  

 

This chapter defines the research method, the population, the sampling size and 

sampling methods. The research variables are also described and the design of a 

software program that calculates the values of cohesion is documented. The chapter 

ends on the presentation of suitable data mining techniques for the testing of the 

hypotheses.   

 

3.2 Research Method 

 

This study is based on a survey.  The purpose of the survey is to collect data on open 

source object oriented software packages. In the study the correlation between 

cohesion variables and other independent variables is tested. 

 

3.3 Research Population - Open Source Software 

 

The population of the survey is made of open source software packages.  It is a very 

large population but this study only focuses on software written within the dot net 

framework. Open source software was chosen because by definition the source code 

of proprietary software is very difficult to obtain but the source code of open source 

software is freely available.  The dot net framework is also becoming more popular 

for developers and analysts.   
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3.4 Data Sampling   

It is impractical and virtually impossible to study every occurrence of currently 

available open source software packages. The study therefore needs a sampling 

technique to get a large enough cross section of the population. Sample size must be 

calculated and a sampling method must be designed. 

3.4.1 Sample Size  

A simple and reliable formula for determining sample size is:-  

Sample size = 0.25 * (Certainty factor/Acceptable error)
 2 
obtained from 

Bentley and Whitten (2000).  

The certainty factor depends on how certain you want to be that the data sample will 

not include variations in the sample.  The certainty factor is calculated from tables 

obtained from industrial engineering texts or statistics. For this study a 90% certainty 

factor is assumed and an acceptable error rate of 10%. Acceptable error rate is the 

maximum error rate that should be accepted by the test process. Therefore the study 

sample would be: - 

Sample size = 0.25 (1.645 / 10)
 2 
= 68 

3.4.2 Stratification  

Stratification is a systematic sampling technique that attempts to reduce the variance 

of estimates by spreading out the sampling – for example, choosing open source 

software by category and not excluding any category.  

There are 14 categories (as at November 2006) that open source software belong to, 

and all 14 categories will be tested. The categories are as follows: - 

a) Enterprise software 

b) Clustering Software 

c) Multimedia software 
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d) Database software 

e) Financial software 

f) Networking software 

g) Desktop software 

h) Entertainment software 

i) Security software 

j) Development software 

k) Hardware software 

l) Systems Administration 

m) Storage software 

n) Voice over internet protocol software. 

3.4.3 Randomization 

This sampling method randomization is a technique characterized as having no 

predetermined pattern or plan for selecting sample data. This study selects open 

source software randomly within a specific category 

Within each of the above software categories, random sampling is used to select the 

packages on which the cohesion metrics software will be tested. 

The following table shows the different categories together with the number of open 

source programs in that category.  The percentage of programs is worked out in each 

category and the sample size determined from that. Since the sample size is a 

percentage it is not a whole number, the number is then rounded off to the nearest 

integer and the software downloaded according to the required sample. 
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Table 3.1 Open Source Software Population and sample. 

 

Domain Number % of total Total for 

sample 

Rounded off 

Total 

1) Enterprise software 1049 1.60 1.09 1 

2) Clustering Software 451 0.69 0.47 0 

3) Multimedia software 10482 15.99 10.87 11 

4) Database software 5962 9.09 6.18 6 

5) Financial software 1723 2.63 1.79 2 

6) Networking software 4397 6.71 4.56 5 

7) Desktop software 155 0.24 0.16 0 

8)Entertainment software 12351 18.84 12.81 13 

9) Security software 2876 4.38 2.98 3 

10) Development software 18845 28.75 19.55 20 

11) Hardware software 1627 2.48 1.69 2 

12) Systems Administration 3295 5.03 3.42 3 

13) Storage software 2017 3.08 2.09 2 

14) Voice over internet 

protocol software. 

319 0.49 0.34 0 

Total 65549 100 68 68 

 

As outlined in 3.1 above, open source software is classified into different domains. 

Data was obtained from Sourgeforge.net website in October/ November 2006. For 

each domain (e.g. Storage software), the number of recorded software packages for 

the domain is obtained (i.e. 2017 for storage software). This number is compared to 

the total size of open source software population recorded as 65549 (in November 

2006). The size of the population of each domain is then calculated (e.g. storage 

software has a proportion of 3.08 % of the total number of open source software 
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population. This percentage is then used to calculate the sample size for each domain 

knowing that the total sample size for the study is 68.  (E.g. storage software domain 

sample size is 2, that is 3.08% of 68). 

 

3.5 Independent Variables used in this study    

 

For each open source software package, the following data (3.5.1) is available from 

the sourceforge.net website. The following variables (3.5.2) are independent variables 

obtained from available information on open source software used in the study, which 

are compared to the values of cohesion. 

3.5.1 Souceforge.net data 

 

a) Name of Package 

This is the name of the software as baptized by its authors. 

 

b) Number of developers 

This is the number of people used for the development of the package. 

 

c) Category 

This is the category in which the package falls into; this category can be one of the 14 

categories listed under the domain column of table 3.1. 

 

d) Total number of bugs 

 This is the total number of bugs that were found in the package by the open source 

community. 

 

e) Total number of bugs still opened 

This is the total number of bugs not yet solved. 
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f) Total number of support requests 

 This is the total number of help requests from the users for the package as reported 

by the sourceforge.net administrators. 

 

g) Total number of support requests still opened 

This is the total number of help requests for the package, not yet been solved. 

 

h) Total patches and feature requests 

Patches are used to solve security issues and feature requests are requests that are 

used to enhance the functionality of the software package. This aspect deals with the 

number of patches and feature requests made by users. 

 

i) Total patches and feature requests still opened 

 It is the number of patches and feature requests not yet implemented. 

 

j) Number of messages in a public forum 

This is the number of messages posted by open source forum users about the 

package. 

 

k) Mailing lists 

The number of users in the packages mailing lists. 

 

l) CVS Repository Commits  

CVS stands for Concurrent Versions Systems. It is a tool used by many software 

developers to manage changes within their source code tree. CVS provides the means 

to store the current version of a piece of source code, and to record all changes (and 

who made those changes) that have occurred to that source code from its first version 

up to its current version.  CVS repository commits are permanent changes made to a 

software version by developers.  Here this study is interested in the total number of 

such commits. 
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m) CVS Repository Reads   

Is the same as the above except that now this study is now interested in the number of 

times such changes have been read. 

 

n) Size  

It is the amount of disk space occupied by the package (e.g. Bytes, Kilobytes, 

Megabytes, etc). 

 

o) Programming Language 

It is the dot net language in which the software package is written (e.g. C#, J#, 

VB.net) 

 

p) Age 

It is the number of days the project has been in existence. 

 

3.5.2 Class cohesion variables 

 

a) Lcom1  

Lcom1 counts methods implemented in a class that only reference attributes 

implemented in that class, therefore Lcom1 is the number of pairs of methods in the 

class using no attribute in common. 

 

b) Lcom2 

Lcom2 is the number of pairs of methods in the class using no attributes in common, 

minus the number of pairs of methods that do. If this difference is negative, however, 

Lcom2 is set to zero.  

 

c) Lcom3  

Lcom3 is defined as the number of connected components in a class. Values of 1 and 

greater are considered extreme lack of cohesion. 
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d) Lcom4  

A value of 1 indicates a good cohesive class (Highly Cohesive). Values of 2 and 

greater are considered bad (lack of cohesion). Such a class should be split. 

 

e) Lcom5  

Lcom5 Counts for each attribute, how many methods access the attribute. Only direct 

connections between methods and attributes are considered. In a completely cohesive 

class, each attribute is accessed by every method. 

 

f) Connectivity (Co)  

The value for Co can either be 0 or 1, where 0 means tightly cohesive and 1 means 

loosely cohesive.  

 

g) Tight Class Cohesion  

Besides methods using attributes directly (by referencing them), this measure 

considers attributes indirectly used by a method. Method m uses attribute a indirectly, 

if m directly or indirectly invokes a method which directly uses attribute a. Two 

methods are said to be connected, if they directly or indirectly use common attributes. 

TCC is defined as the percentage of pairs of public methods of the class, which are 

connected, i.e., pairs of methods which directly or indirectly use common attributes. 

 

h) Loose Class Cohesion (Lcc) 

Lcc is the same as Tcc, except that this measure also considers pairs of indirectly 

connected methods. If there are methods m1 m2,... mn, such that mi and mi+1 are 

connected for i=1,...,n-1, then m1 and mn are indirectly connected. LCC is the 

percentage of pairs of public methods of the class which are directly or indirectly 

connected.  

 

i) Information-flow-based cohesion (Ich)  

Ich for a method is defined as the number of invocations of other methods of the 

same class, weighted by the number of parameters of the invoked method. 

The Ich of a class is the sum of the Ich values of its methods. 
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3.5.3 Package cohesion variables 

 

a) Cohesion Value – Maximum 

This variable represents the maximum cohesion value among the classes of a 

package. 

   

b) Cohesion Value – Minimum 

This variable represents the minimum cohesion value among the classes of a software 

package. 

 

c) Cohesion Value – Average 

This variable represents the average cohesion value among the classes of a software 

package.  The average is the sum of cohesion values for each class divided by the 

number of classes in that package.   

 

d) Cohesion Value - Sum for package 

This variable represents the sum of the cohesion values among the classes of software 

package.  

 

3.6 Research Approach  

 

Because data is mined using association rules, and because association rules require 

qualitative data, this can be described as qualitative research.  However several 

variables above are described by quantitative data. There is therefore a need to 

convert quantitative data to qualitative data through data discretisation. 

3.6.1 Qualitative Data 

Only three variables have qualitative values namely package name, category of 

software and programming language. 
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3.6.2 Quantitative Data 

Except for package name, category of software and programming language all other 

variables contain quantitative values: i.e. class cohesion values, packaged cohesion 

values as defined above 

3.6.3 Data Discretisation 

As stated in the preceding paragraphs, almost all variables contain quantitative data 

but association rules require qualitative data.  This section explains how quantitative 

data is converted into qualitative data through the data discretisation process.  

 

Data discretisation is a strategy for data reduction.  Data reduction techniques are 

used in order to obtain a new representation of the data set that is much smaller in 

volume, but yet produces the same analytical results. 

 

The most common strategies for data reduction are: 

 

a)   Data cube aggregation 

b) Dimensionality reduction 

c) Numerocity reduction 

d) Concept hierarchy generation and 

e) Data discretisation 

 

Simply put, data discretisation is the conversion of quantitative data into qualitative 

data. The data discretisation algorithm used in this study is presented in the next 

section. 
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3.6.3.1 Data discretisation algorithm 

 

The method used here assists in dividing the range of each variable into five 

segments: one segment to locate the average value of the range, two segments to 

locate values below average and two segments for values above average.  

 

The division of the data range into segments is carried out according to the following 

algorithm. 

Figure 3.2 Data Discretisation Algorithm 

Variables 

B: Array [1 .. n] of Int. 

 

B=[3,1,2,8,4,1,1,3,1,2,1,1,1,1,1,1,1,1,11,2,1,3,1,4,1,1,1,2,1,2,1,1,1,1,1,1,2,1,1,1,1,13,1,

1,2,1,1,7,3,1,2,3,1,12,3,1,1,1,1,1,1,1,1,2,1,6,1,2] 

 

A: Set[1..m] of Integer  

 

E1,E2,E3,E4 : Integer; 

 

N1, N2, N3, N4 : Integer; 

 

Position_min1, Position_min2 , Postion_Ave1 , Position_Ave2 ,Position_Ave3 : Int; 

 

PMin1Plus, PMax1Plus, PositionAvePlus : Integer; 

 

Min1, Max1 :  Integer; 

 

Ave1, Ave2, Ave3 , AvePlus: Real;  

 

Segment1, Segment2, Segment3, Segment4, Segmen5, Segment6, SegmentX: Interval; 
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Pseudo code 

B=[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,

2,2,2,2,2,2,3,3,3,3,3,3,4,4,6,7,8,11,12,13] 

A = {1,2,3,4,6,7,8,11,12,13} 

Min1 = A[1]; 

Position_min1; 

Max1 = A[n]; 

Positionmax1 = n; 

Ave1 = average of  B[1..n]  

E1 = Biggest element of A less than Ave1  

PositionAve1 =Position in A of E1; 

Ave2 = average of B[PositionMin1..PositionAve1] = Average of B[1..2]  

E2 = Biggest element of A less than Ave2 

Position_Ave2 = Position in A of E2 = 1  

Ave3 = average of B[PositionAve1+1 ..PositionMax1] 

E3 = Biggest element of A less than Ave3  

Position_Ave3 = Position in A of E3 ; 

Segment 1 = [PositionMin1 .. PositionAve2] 

Segment 2 = ]PositionAve2 .. PositionAve1]  

Segment 3 = ]PositionAve1 .. PositionAve3]  

Segment 4 = ]PositionAve3 .. PositionMax1]  

Calculate N1, N2, N3, N4; 

SegmentX = Most populated non singleton segment from Segment 1, 2, 3, 4  

PMin1Plus = Beginning of SegmentX  

PMax1Plus = End of SegmentX  

AvePlus = average of B[PMin1Plus..Pmax1Plus]  

E4 = Biggest element of A less than AvePlus  

PositionAvePlus = Position in A of E4   

Segment 5 = [PMin1Plus .. PositionAvePlus]  

Segment 6 = ]PositionAvePlus..Pmax1Plus]  
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The following section runs the data discretisation algorithm for the variable 

representing the number of developers. The dataset for the variables representing the 

number of developers is given below: 

B={3,1,2,8,4,1,1,3,1,2,1,1,1,1,1,1,1,1,11,2,1,3,1,4,1,1,1,2,1,2,1,1,1,1,1,1,2,1,1,1,1,13,

1,1,2,1,1,7,3,1,2,3,1,12,3,1,1,1,1,1,1,1,1,2,1,6,1,2} 

 

Figure 3.3 Example of data discretisation: (Number of Developers)  

Variables 

B: Array [1 .. n] of Int. 

 

B=[3,1,2,8,4,1,1,3,1,2,1,1,1,1,1,1,1,1,11,2,1,3,1,4,1,1,1,2,1,2,1,1,1,1,1,1,2,1,1,1,1,13,

1,1,2,1,1,7,3,1,2,3,1,12,3,1,1,1,1,1,1,1,1,2,1,6,1,2] 

 

A: Set[1..m] of Integers  

 

E1,E2,E3,E4 : Integer; 

 

N1, N2, N3, N4 : Integer; 

 

Position_min1, Position_min2 , Postion_Ave1 , Position_Ave2 ,Position_Ave3 : Int. 

 

PMin1Plus, PMax1Plus, PositionAvePlus : Integer; 

 

Min1, Max1 :  Int. 

 

Ave1, Ave2, Ave3 , AvePlus: Real;  

 

Segment1, Segment2, Segment3, Segment4, Segmen5, Segment6, SegmentX: 

Interval; 
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Pseudo code 

B=[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,

2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,6,7,8,11,12,13] 

A = {1,2,3,4,6,7,8,11,12,13} 

Min1 = A[1];                                          Positionmin1 = 1; 

Max1 = A[n] = 13;                                Positionmax1 =13; 

Ave1 = average of  B[1..n] = 2.1618 

E1 = Biggest element of A less than Ave1 = 2 

PositionAve1 =Position in A of E1  = 2; 

Ave2 = average of B[PositionMin1..PositionAve1] = Average of B[1..2] = 1.1852 

E2 = Biggest element of A less than Ave2 = 1 

Position_Ave2 = Position in A of E2 = 1  

Ave3 = average of B[PositionAve1+1 ..PositionMax1]= Ave of B[3.. 13] = 5.9286 

E3 = Biggest element of A less than Ave3 = 4 

Position_Ave3 = Position in A of E3 = 4 ; 

Segment 1 = [PositionMin1 .. PositionAve2] = [1..1] 

Segment 2 = ]PositionAve2 .. PositionAve1] = ]1..2] 

Segment 3 = ]PositionAve1 .. PositionAve3] = ]2..4] 

Segment 4 = ]PositionAve3 .. PositionMax1] = ]4..13] 

N1 = 44;   /* But segment 1 is a singleton i.e only made up of the element 1 */ 

N2 = 10; /* But segment 2 is a singleton i.e only made up of the element 2 */ 

N3 = 8;  /* But segment 3 is not a singleton i.e  made up of the elements  3 and 4 */ 

N4 = 6;  /*But segment 4  is not a singleton i.e  made up of the elements  

6,7,8,11,12,13 */ 

SegmentX=Most populated non singleton segment from Segment 1,2,3,4 = Segment 3 

PMin1Plus = Beginning of SegmentX = 3 

PMax1Plus = End of SegmentX = 4 

AvePlus = average of B[PMin1Plus..Pmax1Plus] = Average of B[3..4] = 3.3 

E4 = Biggest element of A less than AvePlus = 3 

PositionAvePlus = Position in A of E4 = 3  

Segment 5 = [PMin1Plus .. PositionAvePlus] = ]3..3] 

Segment 6 = ]PositionAvePlus..Pmax1Plus] = ]3..4] 
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Table No 3.3: Number of Developers – 

(Part of the data columns from the study) 

 

3 Average Minus 

1 very low 

2 Low 

8 High 

4 Average Plus 

11 High 

13 Very high 

7 High 

12 High 

6 High 

 

 

Data discretisation will be performed on all numeric rows in the study. 

 

3.7 Data Processing Techniques 

 

Data mining is the data processing technique used in this study. There are several 

data mining techniques e.g. Classification Trees; Association Discovery Techniques; 

Clustering Techniques; Artificial Neural Networks; Optimized Set Reduction and 

Bayesian Belief Networks 

 

Classification or decision trees are induction techniques used to discover 

classification rules for a chosen attribute of a data set by systematically subdividing 

the information contained in this data set. They are one of the tools of choice for 

building classification models in the software engineering field. Association 

discovery extracts information from coincidences in the data set. Knowledge 

discovery takes place when these coincidences are previously unknown, non-trivial, 

and interpretable by a domain expert.  
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Clustering is group data records with similar attributes together so information can be 

abstracted.  Neural networks have been one of the tools of choice for building 

predictive software engineering models. They are heavily interconnected networks of 

simple computational elements. Optimized Set Reduction (OSR) is a technique that 

was specifically developed in the realms of software engineering data analysis. Its 

approach is to determine what subset of data records provides the best 

characterization for the entities being assessed. 

3.7.1 Data Mining 

 

Generally, data mining (sometimes called data or knowledge discovery) is the process 

of analyzing data from different perspectives and summarizing it into useful 

information - information that can be used to increase revenue, cut costs, or both. 

Technically, data mining is the process of finding correlations or patterns among 

fields in large databases.  

 

One of the ways of finding these patterns is through association rules. Data mining 

software is one of a number of analytical tools for analyzing data. It allows users to 

analyze data from many different dimensions or angles, categorize it, and summarize 

the relationships identified.  

3.7.2 Association Rules 

 

Association rules mining finds interesting associations and/or correlation among large 

sets of data items. Association rules shows attribute value conditions that occur 

frequently together in a given dataset. Algorithms for discovering large item sets 

make multiple passes over the data. In the first pass support of individual items is 

counted and those that are large i.e. have required minimum support are identified.  

Each subsequent pass starts with a seed set of item sets found to be large in the 

previous pass. This seed set is used for generating new potentially large item sets, 

called candidate item sets, and count the actual support for these candidate item sets 

during the pass over the data. At the end of the pass, the larger candidate item sets are 

determined, and they become the seed for the next pass.  
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This process continues until no new large item sets are found.  The market basket 

analysis is one way in which association rules are used. 

 

Market basket analysis is possibly the largest application for algorithms that discover 

association rules. These days, purchased items have bar codes that enable retail 

organizations to track the sale of items and if a retail organization issues 'loyalty 

cards' the organization can track the purchases made by customers. A typical 

customer will revisit the same supermarket many times throughout the year. A 

transaction refers to a single visit and associated with each transaction is a purchase 

date and the items purchased.  

 

The term 'basket data' is used to refer to such transaction data. By analyzing basket 

data, retail organizations can extract information to drive their marketing strategy. 

For example, the data may show that customers who purchase baby products have a 

tendency to purchase ready-made meals. This information can then be used for target 

marketing (e.g., send promotional offers for take-away meals to customers who 

purchase baby products) (Agrawal and Srikant, 1994). 

 

The application of association rules is not restricted to market basket analysis. The 

following section explains the Apriori algorithm as published by Agrawal, Imielinski 

and Swami (1993). 

3.7.2.1 The Apriori Algorithm  

 

The algorithm is given by the following pseudo code. 

 

The Apriori Algorithm: Pseudo code 

Ck: Candidate itemset of size  

Lk: frequent itemset of size k 



- 45 -  

 

Join Step: Ck is generated by joining Lk-1with itself 

Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-

itemset 

L1= {frequent items}; 

 

One way to explain the algorithm is to run it with an example. Consider a database 

consisting of six records. 

Table 3.4:  Package Database  

Package No of developers No of Bugs Size 

Package 1 High Large Very big 

Package 2 Low Small Very Small 

Package 3 Low Small Very Small 

Package 4 High Medium Very Big 

Package 5 High Large Very Big 

Package 6 Low Small Very Big 

 

 

Suppose the sequential minimum support is 2, meaning only associations supported 

by least 2 records will be considered. Let the minimum required confidence be 70%.  

The percentage of the confidence factor is according to how correct one wants the 

information to be. 
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Firstly, the large itemset called L1 in the algorithm has to be determined.  L1is simply 

the list of all attributes values satisfying the required minimum support. 

 

Table 3.5: Frequent Itemsets 

Package Item Set 

Package 1 High, Large, Very big 

Package 2 Low, Small, Very Small 

Package 3 Low, Small, Very Small 

Package 4 High, Medium, Very Big 

Package 5 High, Large, Very Big 

Package 6 Low, Small, Very Big 

 

    

Table 3.6: Attribute Values 

 

 

 

 

 

 

  

 

 

 

 

 

In the algorithm it is said that C2 = aprior_gen (L1). 

In other words the algorithm uses L1 cross-tabulate L1 to generate a candidate set of 

2-itemsets, C2. 

Cross tabs are frequently used because: 

Item Set Sup Count 

{high} 3 

{large} 2 

{very big} 4 

{low} 3 

{small} 3 

{very small} 2 

{medium} 1 

Item Set Sup Count 

{high} 3 

{large} 2 

{very big} 4 

{low} 3 

{small} 3 

{very small} 2 

L1 Attribute Values 
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� They are easy to understand. They appeal to people that do not understand the 

most sophisticated measures.  

� They can be used with any level of data: nominal, ordinal, interval, or ratios 

cross tabs treat all data as if it is nominal.  

� A table can provide greater insight than single statistics.  

� It solves the problem of empty or sparse cells.  

� They are simple to conduct.  

Therefore, it can be said that: C2 = L1 * L1 

Where the * represents cross tabulation. 

 

Table 3.7: Itemsets 

 

 

 

 

C2 = L1 * L1 

    

   

   

 

 

 

C2 

 

 

 

 

L2 is made of C2 items with the require minimum support 

Now moving on to C3 = L2 * L2   

Where * means the Join 

 

{high, large} 2 

{high, very big} 3 

{high, low} 0 

{high, small} 0 

{high , very small} 0 

{large, very big} 2 

{large, low} 0 

{large ,small} 0 

{large, very small} 0 

{very big, low} 1 

{very big, small} 1 

{very big, very small} 0 

{low, small} 3 

{low, very small} 2 

{small , very small} 2 
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Table 3.8: Items with minimum support  

 

  

  

   

 

  

 

 

 

 

     

 

 

 

 

 

 

 

Table 3.9 : - 3-Itemset 

 

 

 

 

 

 

 

L3 

Now moving on to C4 = L3 Join L3 

The two items in L3 do not have a common value, so L3 Join L3 = 0 therefore C4 = 0 

and the algorithm stops.  So the largest frequent item set is in L3.   

 

Item Set Support 

Count 

{high, large} 2 

{high, very big} 3 

{large, very big} 2 

{low, small} 3 

{low, very small} 2 

{small , very small} 2 

3 – Itemset Support 

Count 

{high, Large, Very 

Big} 

2 

{Low, Small, Very 

small} 

2 

3 – Itemset Support 

Count 

{high, Large, Very 

Big} 

2 

{Low, Small, Very 

small} 

2 

L3 
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It is now time to generate associations from the largest itemset according to the 

following procedure. 

 

Procedure: 

 

For each frequent itemset “I”, which generate all nonempty subsets of l. 

For every nonempty subsets s of I, output the rule “s →(I-s)” if Support (I)/ 

Support(s) >= minimum support confidence. 

Let’s look at the example again. 

For I = (Low, Small, Very Small) and I = {High, Large, very big} 

 

If s = {Low} then l- s is (Small and very small) 

 

Support (I) = 2 

Support (s) = 3  

Support (I) / Support (I - S) = 2/3 = 67%  

That implies that if the number of developers is low then the number of bugs is small 

and the size is very small. 

 

If s = {small} then 1-s is {Low, very small} 

That implies that if number of bugs is small then the no of developers is low and the 

size is very small 

 

If s = {very small} then 1-s is {Low, small} 

That implies that if Size is very small then the no of developers is low and no of bugs 

is small. 

 

If s = {High} then 1-s is {Large, very big} 

That implies that if no. of developers is high then No. of bugs is Large and Size is 

very big. 
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If s = {Large} then 1-s is {High, very big} 

That implies that if the number of bugs is large then the number of developers is high 

and the Size is very big. 

 

If s = {very big} then 1-s is {High, Large} 

That implies that if the Size is very big then number of developers is high and the 

number of bugs is large. 

 

From the above this is the final set of association rules: 

a) That if the number of developers is low then the number of bugs is small and 

the size is very small. 

 

b) That if number of bugs is small then the no of developers is low and the size 

is very small 

 

c) That if Size is very small then the no of developers is low and no of bugs is 

small. 

 

d) That if no. of developers is high then No. of bugs is Large and Size is very 

big. 

 

e) That if the number of bugs is large then the number of developers is high and 

the Size is very big. 

 

f) That if the Size is very big then number of developers is high and the number 

of bugs is large. 
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3.8 Program Design 

 

The purpose of this section is to explain the architectural design of the program used 

for the computation of the cohesion values of a package classes. 

 

A package is made of different classes. There exists a C # structure that represents all 

the types of classes in a package. That structure is the assembly structure. 

 

The different classes in the class diagram below can be constructed with their main 

attributes and methods as indicated in fig 3.1, 3.2, and 3.3. 

3.8.1 Class Diagram  

Below are the classes that are designed to write the program.  

 

A class is made of attributes (fields) and methods (operations).  In return, an attribute 

belongs to given class type and a method also accesses attribute.  The user interacts 

with the program using a form. (See fig. 3.1) 

 

Fig 3.1: System Class Diagram 

 

 

 

The class type and assembly belong to C#.  The main methods for type are 

getMethods and getFields.  The main method for assembly is getTypes. 

type  
(C#) 

Field 

(Attribute) 

Class Method 

Package 
Form 
(I/O class) 

Assembly 
(C#) 
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Fig. 3.2 Package outline 

 

 

 

 

 

 

 

 

 

Fig 3.3  Class Outline 

 

 

 

 

 

 

    

 

Fig 3.4 Lcom1 outline for class c 

 

 

Fig 3.4 Lcom Outline for class c 

 

 

 

 

 

 

Class Package 

 

fileName : String 

classes: List of Class 

assembly:  Assembly 

 

Package (filePath):  Constructor 

fileName = FilePath 

Classes = 0  

assembly = Create New Assembly for the path “filepath” 

For each type_ in Assembly.getTypes 

{c = newclass(type_); Add c to classes} 

 

class Class 

type : Type /* C# data structure */ 

methods: List of Methods 

fields: List of Fields 

Class (type): Constructor 

 type = type_ 

methods = type.getMethods 

fields = type.getFields 

 Lcom1  

 

  /* See algorithm in the next figure */ 

 

L = 0 

for each methodI in c.Method 

for each methodJ in c.Method 

  fieldI = methodI. getReferenceFields 

  fieldJ = methodJ. getReferenceFields 

  L= L + (fieldi – fieldj) 

Lcom1 = L 
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3.8.2 Sequence Diagram 

A system sequence diagram is used to show the flow of messages in the designed 

program. Diagram in figures 3.5 and 3.6 is a systems sequence diagram of the 

program design  

 

Suppose a user wants to calculate the cohesion of all classes inside a package located 

in the file c:\xmas\solar.exe.  A form is presented to the user from which he / she can 

locate the file c:\xmas\solar.exe.  The form has an instance of a package but at this 

stage, that instance is not yet created.  The form can now create the instance by 

passing to it the file name for which an assembly is created inside the package.  This 

creation of that instance means that a list of instances of classes has been created for 

each type in the assembly of the package.  Now that the package has been fully 

constructed, the calculation of cohesion values for each class in the package can now 

proceed, and the results of those calculations are output on the form. 

 

3.8.3 Use Case Diagram 

 

Once a user selects a package, the user can then request for the cohesion values of 

that package to be calculated.  The program calculates the cohesion of each class of 

the selected package and displays the results. (Fig 3.6) 
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Fig.  3.5  System Sequence Diagram 
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Fig 3.6 Lcom1 – Sequence Diagram 

 

c:class methodI::Method methodJ::Method

ReferenceFields

fieldsI

ReferenceFileds

fieldJ

For each (methodI, methodJ)

in (method x method) 

L = L + (fieldI - filedJ)

L = 0

LCom1 = L

 
 

 

3.9 Conclusion  

 

Chapter three described the research design for the rest of the study and for the 

program that has been written to test cohesion. Data mining and data mining 

techniques were discussed and in particular association rules which is used to 

determine correlation between different values. 
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The research design uses a survey of 68 randomized open source software programs 

within a stratified group. Each independent variable used in the study is compared to 

cohesion. All variables are presented as either being quantitative or qualitative. Data 

discretisation was performed on all collected data and the method of discretisation 

was explained using an example from the study.  Data mining and the algorithm 

known as Apriori was discussed and explained using an example from the collected 

data.   

 

The program design of classes is discussed to show how classes of the written 

software program are compiled.  

 

In Chapter four the results obtained from the association rules of data mining using 

the Apriori algorithm will be discuss and analysed.  In addition, the difficulties and 

future work for the study are then discussed. 
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Chapter Four - Results 

 

4.1 Introduction  

 

This chapter analyses and interprets the association rules obtained from the data 

collected.  The chapter starts with a short definition of association rules. 

 

The list of all association rules obtained from the data is then presented.  That list is 

then cleaned with the view of eliminating meaningless rules once the criterion for 

rule selection has been defined.  The chapter ends with a classification of the selected 

rules in accordance with the research hypothesis defined in the previous chapters. 

 

4.2 Association Rules 

 

Maqbool et al (1995) describes association rules as attributes value conditions that 

occur frequently together in a given dataset. Association rules provide information of 

this type in the form of "if-then" statements. These rules are computed from the data 

and, unlike the if-then rules of logic, association rules are probabilistic in nature. In 

addition to the antecedent (the "if" part) and the consequent (the "then" part), an 

association rule has two numbers that express the degree of uncertainty about the 

rule. The antecedent and consequent are sets of items (called itemsets) that are 

disjoint (do not have any items in common).  

The legitimacy of each association with regard to the values in the whole dataset is 

described by two metrics: the support and the confidence. 

The support represents the number of transactions whose attributes match both the 

antecedent and consequent parts of the rule.  

Confidence of rule "B given A" is a measure of how much more likely it is that B 

occurs when A has occurred. It is expressed as a percentage, with 100% meaning B 

always occurs if A has occurred. Statisticians refer to this as the conditional 

probability of B given A. When used with association rules, the term confidence is 
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observational rather than predictive. (Statisticians also use this term in an unrelated 

way. There are ways to estimate an interval and the probability that the interval 

contains the true value of a parameter is called the interval confidence. So a 95% 

confidence interval for the mean has a probability of .95 of covering the true value of 

the mean.) (Two Crows Corporation, 2005) 

 

4.3 Rules obtained from independent variables and cohesion values.  

 

Having in mind the data set described in the previous chapter, it is now time to 

present the association rules obtained from the data.  The rules are listed according to 

the following protocol.  Rules with no mention of a cohesion variable are put in one 

section.  Rules with mention of single cohesion variables are grouped under another 

section specific to those cohesion variables. Rules with mention of many cohesion 

values are not listed because the correlation between cohesion values is not studied 

here.  The entire set of rules can be viewed in Appendix B 

 

4.4 Criteria for rule selection 

 

The criteria for the selection of rules are based on the hypothesis. If a rule confirms 

the hypothesis, then that rule is chosen. If a rule does not support any hypothesis then 

that rule is disregarded. 

 

For example, if a rule states that the cohesion value is high when the software 

package size is small, then that rule is selected since it is in line with the studies 

hypothesis.   

 

If a rule states the cohesion value is low for a software package easily maintainable, 

then that rule is discarded because it is not in line with this hypothesis.  If a rule 

supports one hypothesis and that rule contradicts another hypothesis than that rule is 

discarded. The following rules are selected from the appendix of rules on the basis of 

the selection criteria.  
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4.5 Selected Rules 

 

4.5.1  Rules with no cohesion variables. 

 

Selected Rule 1 (Rule 67,69,71,73,81,1006,1012,1016, 1022,1029,1035 )  

Total no. of Support Requests=very_low_Plus 56 ==> Support requests still 

opened=very_low 56    conf:(1) 

 

Selected Rule 2 (Rule 68, 70, 72, 74, 79, 82, 1004, 1009, 1014, 1020, 1026, 1033,) 

Total patches and Feature Requests=very_low 56 ==> Total patches and Feature 

Requests still opened=very_low 56    conf:(1) 

 

Selected rule 1 and 2 are obtained by mining Lcom1 with all independent variables, 

Lcom2 with all independent variables, Lcom3 with all independent variables, Lcom4 

with all independent variables, Tcc with all independent variables, Lcc with all 

independent variables and Ich with all independent variables 

 

Selected Rule 3 (Rule 76, 80, 83, 88)  

Support requests still opened=very_low Total patches and Feature 

Requests=very_low 55 ==> Total patches and Feature Requests still 

opened=very_low 55    conf :(1) 

 

Selected rule 3 is obtained by mining Tcc with all independent variables, Ich with all 

independent variables and Lcc with all independent variables. 

Remark: Selected rule 3 summarizes selected rule 1 and selected rule 2 but the 

support is slightly different. 

 

Selected Rule 4 (Rule 77, 86)  

No of Bugs still opened=very_low 56 ==> Support requests still opened=very_low 55    

conf:(0.98) 
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Selected rule 4 is obtained by mining Tcc with all independent variables and Lcc with 

all independent variables. 

 

Selected Rule 5 (Rule 78)  

Total no. of Support Requests=very_low 60 ==> Support requests still 

opened=very_low 58    conf:(0.97) 

 

Selected rule 5 is obtained by mining Tcc with all independent variables. 

 

Selected Rule 6 (Rule 84)  

No of Bugs still opened=very_low Total no. of Support Requests=very_low_Plus 51 

==> Support requests still opened=very_low 51    conf:(1) 

Remark: Selected rule 6 summarizes selected rule 4 and selected rule 5 but the 

support is different.  

 

Selected rules 6 is obtained by mining Ich with all independent variables 

 

Selected Rule 7 (Rule 85)  

Total no. of Support Requests=very_low_Plus Total patches and Feature Requests 

still opened=very_low 51 ==> Support requests still opened=very_low 51    conf:(1) 

 

Selected rules 7 is obtained by mining Ich with all independent variables 

 

Selected Rule 8 (Rule 87)  

Total patches and Feature Requests still opened=very_low 58 ==> Total patches and 

Feature Requests=very_low 56    conf:(0.97) 

 

Selected rules 8 is obtained by mining Ich with all independent variables 

 

Selected Rule 9 (Rule 89)  

No of Bugs still opened=very_low Support requests still opened=very_low 53 ==> 

Total no. of Support Requests=very_low_Plus 51    conf:(0.96) 
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Selected rules 9 is obtained by mining Ich with all independent variables 

 

Selected Rule 10 (Rule 90)  

Total patches and Feature Requests still opened=very_low 58 ==> Support requests 

still opened=very_low 55    conf:(0.95) 

 

Selected rules 10 is obtained by mining Ich with all independent variables 

Remark: Contained in selected rule 7 but the support is different. 

 

Selected Rule 11 (Rule 1003) 

Total No of bugs=very_low 46 ==> No of Bugs still opened=very_low 46    conf:(1) 

 

Selected rule 11 is obtained by mining Lcom1 with bugs 

 

Selected Rule 12 (Rule 1005, 1010, 1015, 1021, 1034) 

Total patches and Feature Requests still opened=very_low 58 ==> Total patches and 

Feature Requests=very_low 56    conf:(0.97) 

 

Selected rule 12 is obtained by mining Lcom1 with total patches and feature requests, 

Lcom2 with total patches and feature requests, Lcom3 with total patches and feature 

requests, Lcom4 with total patches and feature requests and Ich with total patches and 

feature requests 

 

Selected Rule 13 (Rule 1007, 1011, 1017,1023, 1030, 1036) 

Support requests still opened=very_low 61 ==> Total no. of Support 

Requests=very_low_Plus 56    conf:(0.92) 

Selected rule 13 is obtained by mining Lcom1 with support requests, Lcom2 with 

support requests, Lcom3 with support requests, Lcom4 with support requests, Tcc 

with support requests and Ich with support requests 
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Selected Rule 14 (Rule 1008, 1018, 1024, 1027, 1031, 1037) 

CVS Repository - Commits=very_low 50 ==> CVS Repository - Read=very_low 49    

conf:(0.98) 

 

Selected rule 14 is obtained by mining Lcom1 with CVS Repository , Lcom3 with 

CVS Repository , Lcom4 with CVS Repository, Lcc with CVS Repository, Tcc with 

CVS Repository and Ich with CVS Repository  

 

Selected Rule 15 (Rule 1013, 1019, 1025, 1028, 1032) 

Total No of bugs=very_low 46 ==> No of Bugs still opened=very_low 46    conf:(1) 

 

Selected rule 15 is obtained by mining Lcom3 with Bugs, Lcom4 with Bugs, Lcc 

with Bugs , Tcc with Bugs and Ich with bugs 

 

4.5.2  Rules with one cohesion variable 

4.5.2.1 Mining one cohesion variable against all independent variables 

 

Obtained by mining Lcom1 with all independent variables 

Selected Rule 16 (Rule 3) 

Support requests still opened=very_low 61 ==> Lcom1 Value Minimum=high 60    

conf:(0.98) 

 

Selected Rule 17 (Rule 5) 

Total patches and Feature Requests still opened=very_low 58 ==> Lcom1 Value - 

Minimum=high 57    conf:(0.98) 

 

Selected Rule 18 (Rule 6) 

Total no. of Support Requests=very_low_Plus 56 ==> Lcom1 Value - 

Minimum=high 55    conf:(0.98) 
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Selected Rule 19 (Rule 7)  

Total patches and Feature Requests=very_low 56 ==> Lcom1 Value - 

Minimum=high 55    conf:(0.98) 

 

Selected Rule 20 (Rule 8) 

Total no. of Support Requests=very_low_Plus Support requests still 

opened=very_low 56 ==> Lcom1 Value - Minimum=high 55    conf:(0.98) 

 

Obtained by mining Lcom3 with all independent variables 

Selected Rule 21 (Rule 17) 

CVS Repository - Read=very_low 55 ==> Lcom3 Value - Minimum=high 55    

conf:(1) 

 

Selected Rule 22 (Rule 20)  

Support requests still opened=very_low 61 ==> Lcom3 Value - Minimum=high 59    

conf:(0.97) 

 

Selected Rule 23 (Rule 22)  

Total patches and Feature Requests still opened=very_low 58 ==> Lcom3 Value - 

Minimum=high 56    conf:(0.97) 

 

Selected Rule 24 (Rule 23)  

Total no. of Support Requests=very_low_Plus 56 ==> Lcom3 Value - 

Minimum=high 54    conf:(0.96) 

 

Selected Rule 25 (Rule 24)  

Total patches and Feature Requests=very_low 56 ==> Lcom3 Value - 

Minimum=high 54    conf:(0.96) 
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4.5.2.2 Mining one cohesion variable against one independent variable 

 

Obtained by mining Lcom1 with Bugs  

Selected Rule 26 (Rule 93) 

No of Bugs still opened=very_low 56 ==> Lcom1 Value - Minimum=high 53    

conf:(0.95) 

 

Obtained by mining Lcom1 with Age 

Selected Rule 27 (Rule 100) 

Age=new 17 ==> Lcom1 Value - Minimum=high 17    conf:(1) 

 

Obtained by mining Lcom1 with Category 

Selected Rule 28 (Rule 110) 

Category=Development_software 20 ==> Lcom1 Value - Minimum=high 20    

conf:(1) 

 

Obtained by mining Lcom1 with Number of Developers 

Selected Rule 29 (Rule 120) 

Number of Developers=very_low 44 ==> Lcom1 Value - Minimum=high 43    

conf:(0.98) 

 

Obtained by mining Lcom1 with Mailing Lists 

Selected Rule 30 (Rule 130) 

Mailing Lists=low 53 ==> Lcom1 Value - Minimum=high 52    conf:(0.98) 

 

Obtained by mining Lcom1 with number of messages in a public forum 

Selected Rule 31 (Rule 140) 

No. of messages in public forums=very_low_Minus 18 ==> Lcom1 Value - 

Minimum=high 18    conf:(1) 
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Selected Rule 32 (Rule 141) 

No. of messages in public forums=very_low_Plus 30 ==> Lcom1 Value - 

Minimum=high 29    conf:(0.97) 

 

Obtained by mining Lcom1 with total patches and feature requests 

Selected Rule 33 (Rule 150) 

Total patches and Feature Requests still opened=very_low 58 ==> Lcom1 Value - 

Minimum=high 57    conf:(0.98) 

Selected Rule 34 (Rule 154) 

Total patches and Feature Requests=very_low 56 ==> Lcom1 Value - 

Minimum=high 55    conf:(0.98) 

Selected Rule 35 (Rule 156) 

Total patches and Feature Requests still opened=very_low 58 ==> Total patches and 

Feature Requests=very_low Lcom1 Value - Minimum=high 55    conf:(0.95) 

 

Obtained by mining Lcom1 with Programming Language 

Selected Rule 36 (Rule 157) 

Programming Language=C# 45 ==> Lcom1 Value - Minimum=high 44    conf:(0.98) 

 

Obtained by mining Lcom1 with Size 

Selected Rule 37 (Rule 166) 

KiloBytes=very_low_Plus 19 ==> Lcom1 Value - Minimum=high 19    conf:(1) 

Selected Rule 38 (Rule 167) 

KiloBytes=very_low_Minus 24 ==> Lcom1 Value - Minimum=high 23    conf:(0.96) 

 

Obtained by mining Lcom1 with Support Requests 

Selected Rule 39 (Rule 176)  

Support requests still opened=very_low 61 ==> Lcom1 Value - Minimum=high 60    

conf:(0.98) 
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Selected Rule 40 (Rule 179)  

Total no. of Support Requests=very_low_Plus Support requests still 

opened=very_low 56 ==> Lcom1 Value - Minimum=high 55    conf:(0.98) 

 

Selected Rule 41 (Rule 180) 

Total no. of Support Requests=very_low_Plus 56 ==> Lcom1 Value - 

Minimum=high 55    conf:(0.98) 

 

Obtained by mining Lcom1 and CVS Repository 

Selected Rule 42 (Rule 183) 

CVS Repository - Commits=very_low 50 ==> Lcom1 Value - Minimum=high 50    

conf:(1) 

Selected Rule 43 (Rule 184) 

CVS Repository - Commits=very_low CVS Repository - Read=very_low 49 ==> 

Lcom1 Value - Minimum=high 49    conf:(1) 

Selected Rule 44 (Rule 188) 

CVS Repository - Read=very_low 55 ==> Lcom1 Value - Minimum=high 54    

conf:(0.98) 

 

Obtained by mining Lcom3 with Bugs 

Selected Rule 45 (Rule 302) 

Total No of bugs=very_low 46 ==> No of Bugs still opened=very_low Lcom3 Value 

- Minimum=high 43    conf:(0.93) 

 

Obtained by mining Lcom3 with number of developers 

Selected Rule 46 (Rule 325)  

Number of Developers=very_low 44 ==> Lcom3 Value - Minimum=high 43    

conf:(0.98) 

 

No rules were selected for Lcom2 
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Obtained by mining Lcom3 with mailing lists 

Selected Rule 47 (Rule 335) 

Mailing Lists=low 53 ==> Lcom3 Value - Minimum=high 52    conf:(0.98) 

 

Obtained by mining Lcom3 with number of lists in a public forum 

Selected Rule 48 (Rule 345) 

No. of messages in public forums=very_low_Plus 30 ==> Lcom3 Value - 

Minimum=high 30    conf:(1) 

 

Obtained by mining Lcom3 with total number of patches and feature requests 

Selected Rule 49 (Rule 355) 

Total patches and Feature Requests=very_low 56 ==> Total patches and Feature 

Requests still opened=very_low Lcom3 Value - Minimum=high 54    conf:(0.96) 

Selected Rule 50 (Rule 356) 

Total patches and Feature Requests=very_low Total patches and Feature Requests 

still opened=very_low 56 ==> Lcom3 Value - Minimum=high 54    conf:(0.96) 

Selected Rule 51 (Rule 358) 

Total patches and Feature Requests=very_low 56 ==> Lcom3 Value - 

Minimum=high 54    conf:(0.96) 

Selected Rule 52 (Rule 360) 

Total patches and Feature Requests still opened=very_low 58 ==> Total patches and 

Feature Requests=very_low Lcom3 Value - Minimum=high 54    conf:(0.93) 

Selected Rule 53 (Rule 361) 

Total patches and Feature Requests still opened=very_low 58 ==> Lcom3 Value - 

Minimum=high 56    conf:(0.97) 

 

Obtained by mining Lcom3 with Programming Language 

Selected Rule 54 (Rule 363) 

Programming Language=C# 45 ==> Lcom3 Value - Minimum=high 43    conf:(0.96) 
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Obtained by mining Lcom3 with Size 

Selected Rule 55 (Rule 373) 

KiloBytes=very_low_Minus 24 ==> Lcom3 Value - Minimum=high 24    conf:(1) 

 

Obtained by mining Lcom3 with Support Requests 

Selected Rule 56 (Rule 384) 

Support requests still opened=very_low 61 ==> Lcom3 Value - Minimum=high 59    

conf:(0.97) 

Selected Rule 57 (Rule 385) 

Total no. of Support Requests=very_low_Plus 56 ==> Support requests still 

opened=very_low Lcom3 Value - Minimum=high 54    conf:(0.96) 

Selected Rule 58 (Rule 386) 

Total no. of Support Requests=very_low_Plus Support requests still 

opened=very_low 56 ==> Lcom3 Value - Minimum=high 54    conf:(0.96) 

Selected Rule 59 (Rule 387) 

Total no. of Support Requests=very_low_Plus 56 ==> Lcom3 Value - 

Minimum=high 54    conf:(0.96) 

 

Obtained by mining Lcom3 with CVS Repository 

Selected Rule 60 (Rule 391) 

CVS Repository - Read=very_low 55 ==> Lcom3 Value - Minimum=high 55    

conf:(1) 

Selected Rule 61 (Rule 392) 

CVS Repository - Commits=very_low 50 ==> Lcom3 Value - Minimum=high 50    

conf:(1) 

Selected Rule 62 (Rule 393) 

CVS Repository - Commits=very_low CVS Repository - Read=very_low 49 ==> 

Lcom3 Value - Minimum=high 49    conf:(1) 

Selected Rule 63 (Rule 397) 

CVS Repository - Commits=very_low 50 ==> CVS Repository - Read=very_low 

Lcom3 Value - Minimum=high 49    conf:(0.98) 
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Obtained by mining Lcom4 with Category 

Selected Rule 64 (Rule 414) 

Category=Development_software 20 ==> Lcom4 Value Maximum=very_low 20    

conf:(1) 

 

Obtained by mining Lcom4 with number of Developers 

Selected Rule 65 (Rule 424) 

Number of Developers=very_low 44 ==> Lcom4 Value -Maximum=very_low 44    

conf:(1) 

 

Obtained by mining Lcom4 with Mailing Lists 

Selected Rule 66 (Rule 434) 

Mailing Lists=low 53 ==> Lcom4 Value -Maximum=very_low 53    conf:(1) 

 

Obtained by mining Lcom4 with number of messages in a public forum 

Selected Rule 67 (Rule 444) 

No. of messages in public forums=very_low_Plus 30 ==> Lcom4 Value -

Maximum=very_low 30    conf:(1) 

 

Obtained by mining Lcom4 with total number patches and feature requests 

Selected Rule 68 (Rule 454) 

Total patches and Feature Requests still opened=very_low 58 ==> Lcom4 Value -

Maximum=very_low 58    conf:(1) 

 

Obtained by mining Lcom4 with programming Language 

Selected Rule 69 (Rule 464) 

Programming Language=C# 45 ==> Lcom4 Value -Maximum=very_low 45    

conf:(1) 

 

The selected rules obtained for Lcom4 is discarded because it does not match the 

hypothesis outlined in chapter 1. For example if selected rules 48 and 67 was 
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compared, a contradiction would have resulted.  Therefore, the one that does not 

match the hypothesis, in this case it is selected rule 67, would have to be discarded. 

 

No rules were selected for Lcom5, Co, Lcc, Tcc and Ich 

 

4.6. Rules Interpretation  

 

Lets interpret one of the above listed rules, for example, Selected Rule 2. Total 

patches and Feature Requests = very_low 58 ==> Total patches and Feature Requests 

still opened = very_low 58    conf :(1) 

This rule means:-  If the total patches and feature requests is very low that implies the 

total patches and feature requests that are still not resolved are also very low with a 

confidence factor of 100%, 58 records from the 68 records matched this rule. All the 

other rules can be interpreted in a similar way. 

 

4.7 Results  

 

The following results were obtained from the association rules. 

4.7.1 Independence of variables 

 

The following positive conclusion can be reached by the study with the rules that 

contained no cohesion variables 

 

a)  There is a correlation between the total number of support requests and the 

total number of support requests still opened.  There is also a correlation 

between the total number of patches and feature requests, and the total 

number of patches and feature requests still opened.  This is validated by 

selected rules 1, 2, 3, 5, 7, 8, 10, 12, 13.  There is a correlation between the 

total number of bugs in a software program and the number of bugs in a 

program yet to be solved.  This is validated by selected rule 11 and 15.  A 

correlation exists between the CVS repository commits and the CVS 

repositories read.  This is validated by selected rule 14. 
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b)  A correlation exists between the number of bugs and the number of support 

requests.  This is validated by selected rules 4, 6, 9 

 

4.7.2 Validity of cohesion formulas  

 

The following positive conclusion can be reached by the study with the rules that 

contained one cohesion variable against all independent variable. 

 

There is empirical evidence that Lcom1 and Lcom3 are valid formulas for the 

calculation of cohesion when testing independent variables.  This is validated by 

selected rules 16 to 69 

 

4.7.3 Correlation between independent variable and cohesion 

 

Bugs, Age, Number of Developers, Mailing Lists, number of messages in a public 

forum, total patches and feature requests, Programming Language, Size, Support 

requests and CVS Repository can be used as predictors of software cohesion when 

that cohesion is calculated using Lcom1 or Lcom3. This is validated by selected rules 

16 to 64 

 

4.7.4 Calculation of the cohesion of a package 

 

There is empirical evidence that the cohesion of a package (set of classes) can be 

calculated as the minimum value for all cohesion values of the classes in the set. 

 

 

4.7.5 Negative Results 

 

The following negative conclusions are determined by the study.  
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a) There is no empirical evidence that Lcom2, Lcom4, Lcom5, Lcc, Tcc, Ich and 

connectivity (Co) must be used for the evaluation of software cohesion. 

b) There is no empirical evidence that sum, maximum, and average must be used 

for the evaluation of software package cohesion. 

 

 

4.8 Conclusion  

 

An overview of all cohesion measures shows that the minimum value of cohesion for 

Lcom1 and Lcom3 are measurements that can be trusted. The measurement for 

Lcom2, Lcom4, Lcom5, Co, Lcc, Ich and Tcc cannot be validated as true refection of 

cohesion measurements. 

 

The correlation between Lcom1 and Lcom3 and the independent variables of the 

study was proven to be successful when measuring cohesion.  It was concluded that 

independent variables i.e.  Support requests, Total patches and feature requests, Bugs, 

Age, Category, Number of Developers, Mailing Lists, messages in a public forum, 

patches and feature requests, programming language, size and CVS Repository  used 

in study can be used as indicators of cohesion in any software program. 

 

 It is assumed that since cohesion is a measure of quality, the more cohesive a 

package is the higher the package quality.  If a package is of a high quality then that 

package is easier to maintain. 
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Chapter 5 Conclusion and Recommendations 

 

5.1  Comparisons with existing Literature 

 

The objective of this study is to test the empirical validity of software cohesion 

metrics based on the mining of open source software data. 

 

5.1.1 Software Size 

 

The research reveals empirical evidence that smaller software is more cohesive than 

bigger software when Lcom1 and Lcom3 are used for the calculation of cohesion.  

That result complements a result found by Benlarbi, Eman and Goel (1999) in the 

same sense that both results are similar but on different types of software (proprietary 

software (for Benlarbi, Eman and Goel) versus open source software (that is used in 

this study)).  Moreover, the results find differences in the behavior of the different 

cohesion metrics (Lcom1, Lcom2, Lcom3, Lcom4, Lcom5, Co, Tcc, Lcc and Ich) but 

Benlarbi, Eman and Goel results looks at Lcom as its research took place before the 

categorization of Lcom by many different authors.  The methodologies used in the 

two cases are also different.  In the study data mining is used, but Benlarbi, Eman and 

Goel used logistic regression of 174 classes in a C++ system and the study consisted 

of 68 packages with different number of classes in each package from the .net 

languages (C#, VB.net and J#) 

 

On the other hand, Counsell, Swift and Turner (2006) could not find empirical 

evidence that smaller software is more cohesive than bigger software probably 

because the cohesion metrics used was Coupling Between objects, Number of 

Association and Number of Methods in a class. 

5.1.2 Software Faults 

 

Basili, Briand and Melo (1995) conducted a study on a medium size information 

system in which it was empirically shown that fault proness is influenced by size and 

cohesion.  The results are in line with the work published by Basili, Briand and Melo 
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(1995) in the sense that the study also found empirical evidence that software faults 

expressed by software bugs, software support requests and patches and feature 

requests correlate with software cohesion. This is also confirmed by Gyimothy, 

Ferenc and Siket (2005) where research on the validation of object oriented metrics 

on open source software using Mozilla’s proved that the Lcom metric is a good 

indicator of software fault proneness. 

 

Moreover, Koru, Zhang and Liu (2007) presented a paper on the modeling of the 

effect of Size on Defect Proneness for Open Source Software.  The results showed 

defect-proneness is a logarithmic pattern.  The research does not reveal any empirical 

evidence linking size to defect proneness. This study also showed that there is a 

correlation between the number of bugs in a package and the Lcom1 and Lcom3 

value, the lower the number of bugs the higher the cohesion. A correlation also exists 

between the category of development software and the cohesion values for Lcom1 

and Lcom3, as long as the category is “development software” the cohesion value 

was high. 

 

5.1.3 Software Changeability 

 

Kabaili et al (2001) goal was to validate cohesion metrics as changeability indicators, 

and Lcc, and Lcom were chosen cohesion metrics.   For each metric min, max, mean, 

median and standard deviation statistics were collected.  The conclusion reached by 

Kabaili et al (2001) was that Lcc and Lcom should not be used as changeability 

indicators.  The results however show that Lcom1 and Lcom3 can be used as 

changeability indicators represented by the number of software patches.  Once again, 

the studies methodology is original and it relies on a wider data set compared to the 

methodology used by Kabaili et al (2001) that only applied to three industrial 

systems. 

 

Furthermore, Li and Hendry (1993) research implemented object oriented metrics to 

predict maintenance effort.  The results of their analysis proved that there is a strong 
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relationship between maintenance effort and size.  This study shows a relationship 

between the total patches and feature requests (linked to maintenance) and cohesion 

values for Lcom1 and Lcom3. The lower the total patches and feature requests the 

higher the cohesion of Lcom1 and Lcom3.  The study also revealed that if the CVS 

repository for commits or reads were low the Lcom1 and Lcom3 cohesion values 

were also high.  

5.1.4 Results obtained that has not being recorded in literature 

 

a) Team Size 

If the number of developers is low in a package the values for Lcom1 and Lcom3 

cohesion is high. 

b) Software reviewers 

If the mailing lists is low the values for Lcom1 and Lcom3 cohesion is also high. 

If the number of messages in a public forum is low the value of Lcom1 and Lcom3 

cohesion is high. 

c) Software Maturity 

If a software package was only a few days old the cohesion of that package was high 

for Lcom1 and Lcom3 

d) Software Language 

If the programming language was C# the cohesion of Lcom1 and Lcom3 was high 

 

 

5.2  Future Work and Recommendations 

 

There is a very rich body of object oriented measurement documented, but these 

frameworks for measurement have not been empirically tested.  There is definitely a 

need for these measurements to be tested and validated to ensure good software 

packages that are easy to maintain, reliable and easily imported into ones own work. 

 

Future work should also include identifying guidelines for the measurement of object 

oriented metrics measurement and a standardized framework should be established. 

There also exists a platform for the measurement of independent variables and object 
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oriented metrics.   A platform also exists for developing a standardized framework of 

all metrics  

5.2.1 Software Size 

 

It is recommended to design software in small units rather than in big monolithic 

programs.  It actually confirms the basic principal of modularization. 

 

5.2.2 Software faults and Changeability 

 

It is recommended to design highly cohesive software.  This is possible at the design 

stage where the calculation of cohesion metrics should be done and appropriate 

decisions should be taken as to optimize software cohesion that will yield positive 

rewards during the maintenance phase as this study shows that cohesive software is 

less fault prone. 

5.2.3 Team Size 

 

It is recommended that teams should be kept small 

5.2.4 Software Reviewers 

Even though fewer software reviewers can guarantee higher software cohesion, it is 

still recommended to have a bigger set of software reviewers because the more the 

reviewers the more the faults will be discovered.  It is a rectification of these faults 

that leads to low cohesion. 

5.2.5 Software Maturity 

There is nothing one can do about the maturity of a software package even though the 

results show that young software is more cohesive than old software.  

 

5.2.6 General Recommendation 

 

This study results shows that software cohesion only makes sense at the early state of 

the software life cycle.  Therefore it is recommended to measure software cohesion 
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before the software is released for the first time to users.  Once the software has been 

released, its maintenance seems to degrade software cohesion.  The possible results 

for that cohesion degradation seems to be linked to the fact that changes are made 

under pressure and no time is given to the redesign of the software.  It is therefore 

recommended to re-engineer the design of software every time that software is 

maintained. 
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