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Abstract—The extent to which Uncoded Space-Time Labelling
Diversity is able to improve the error performance of space-
time block coded (STBC) systems is dependent on the binary
mappers used to encode information. Existing design techniques
are limited; as they either rely on symmetry-based heuristics, or
constrain the size of the constellation due to high computational
costs. This paper proposes a new genetic algorithm for labelling
diversity (LD) mapper design which is applicable to constellations
of any shape or size. The proposed algorithm is tested using
16QAM, 64QAM, 32PSK and three 16APSK constellations that
do not display diagonal symmetry. The proposed LD mappers
match the best heuristic designs for 16QAM and 64QAM. The
32PSK LD mapper produced achieves a diversity gain of ≈ 8dB
when compared to the available heuristic-based LD mapper.
In addition, the 16APSK mappers achieve a diversity gain of
approximately 3 to 8dB compared to Alamouti-coded STBC
systems for the three non-symmetric constellations considered.

Index Terms—genetic algorithms, labelling diversity, mapper
design, MIMO communication, quadratic assignment problem

I. INTRODUCTION

Uncoded Space-Time Labelling Diversity (USTLD) [1] is
a recent technique proposed to improve the performance
of space-time block coded (STBC) wireless systems in the
presence of multipath fading. USTLD systems reduce the bit
error rate (BER) of the STBC system by adopting a multiple-
input, multiple-output (MIMO) structure and implementing
labelling diversity (LD).

Prior to its application in STBC systems in [1], the idea of
LD (sometimes referred to as Mapping Diversity in literature)
was initially proposed for bit-interleaved coded systems with
iterative decoding [2]–[4]. The use of convolutional coding
in these systems increases the power consumption, detection
complexity and latencies experienced; which prompted studies
of LD applied to uncoded systems [1]. Apart from the STBC
systems of [1], relevant literature on the use of LD includes
its application to decode-and-forward relay systems [5] and
multi-packet data transmissions with automatic repeat requests
(ARQs) [6]. Other works expanding on STBC applications
of LD include studies of spatial modulation [7], media-based
modulation using RF mirrors [8], antenna correlation [9],
detection complexity [10] and signal-space diversity [11].

In USTLD systems, LD is achieved by using pairs of
symbols from constellations with different binary mappings
to encode each information codeword. These symbol pairs are
then transmitted across two time slots. For the transmission
of a single codeword using an M -ary constellation, there

are M possible symbol pairs that could be transmitted over
these two time slots. However, the receiver is able to detect a
total of M2 possible combinations of symbols. Since only M
combinations out of the M2 possible combinations are valid,
the error performance is improved.

The extent to which LD is achieved depends on the binary
mappings of each constellation. The end-goal of a mapper
design is to ensure that adjacent symbols on each constellation
are spaced further apart than in the base constellation. [1]
suggests a design metric for these mapping structures, as well
as symmetry-based heuristic techniques to design mappers for
square M -ary quadrature amplitude modulation (MQAM) and
M -ary phase shift keying (MPSK) systems. Other heuristic-
based mappers have been designed in [5] for 16QAM and
64QAM. The reliance on heuristics for these mapper designs
constrains the constellations that may be applied to USTLD
systems.

Other LD works propose algorithmic approaches to mapper
design, such as the 16QAM mapper design algorithm for
convolutionally coded systems in [4]. A more general approach
to LD mapper design is found in [6], wherein mapper design is
shown to be an instance of the quadratic assignment problem
(QAP). [6] shows that for a system requiring κ LD mappers,
there are (M !)κ possible solutions to the QAP, where (·)!
represents the factorial. Due to the enormity of the search
space, [6] uses a lower-bound approximate QAP solver that
iteratively finds κ optimal LD mappers solutions one at a time,
thereby reducing the problem search space to M ! × κ. Even
after reducing the search space, [6] reports that their algorithm
is still too computationally expensive for larger constellations,
where M > 16.

In summary, the current approaches to designing USTLD
systems have the following limitations: i) the existing
symmetry-based heuristics for mapper design are inapplicable
to asymmetric constellations and may not necessarily produce
good mappers for symmetrical ones, and ii) the existing
algorithms for mapper design are computationally expensive
and infeasible for M > 16. In order to overcome these
limitations, this paper proposes a new approach to mapper
design based on genetic algorithms (GAs) [12]. GAs are a
robust heuristic approach to solving large-scale, combinational
optimisation problems, based on the biological process of
“natural selection” [13]. They have previously been used
in mapper design applications for amplitude PSK (APSK)
[14]–[16] and to solve instances of the QAP [13], [17]. By



basing the proposed algorithm on a GA design, it will be able
to produce LD mappers for constellations unconstrained by
the modulation order or possible asymmetry.

In terms of notation, this paper represents vectors and
scalars in boldface and italics respectively. ‖·‖ represents the
Frobenius norm of a vector, and |·| represents the absolute
value of a scalar.

II. SYSTEM MODEL

L

Ω1

Ω2

Space-Time
Block

Encoder

Ω1(L)

Ω2(L)

Tx Antenna 1

Tx Antenna 2

Fig. 1: Block Diagram of a USTLD Transmitter

To achieve labelling diversity, USTLD systems use con-
stellations with two different binary mappings to encode the
information to be transmitted. That is, an m-bit information
codeword (or label) L is passed through binary mappers
Ω1 and Ω2 to produce the respective symbols Ω1(L) and
Ω2(L). This process is illustrated in Fig. 1 for a single
codeword. The USTLD STBC system model described by
[1] considers a MIMO structure with two transmit antennas
and NR receive antennas. Two codewords, L(1) and L(2), are
transmitted over consecutive time slots. When encoding these
codewords, binary mapper Ωt is used during the t-th time slot,
where t ∈ [1 : 2]. Thus, the NR × 1 received signal vector, y,
in time slot t is given by

yt =

√
ρ

2

[
ht,1 Ωt

(
L(1)

)
+ ht,2 Ωt

(
L(2)

)]
+ nt (1)

In (1), ρ = Es
EΩEn

is the total average SNR at the transmitter,
wherein Es is the transmit energy per symbol and EΩ is
the average energy of the constellation (used to normalise
the symbol power before transmission). En is the expected
energy of additive white Gaussian noise at the receiver, which
is represented by NR × 1 vector n. Each independent entry
in n follows a complex normal distribution with zero mean
and variance En

2 per dimension. The NR × 1 vector ht,u,
t, u ∈ [1 : 2], represents the multipath fading experienced
by the symbol transmitted from antenna u during time slot
t. The fading is assumed to be frequency flat and follow
a Rayleigh amplitude distribution with zero mean and unit
variance. Fading may be either fast or quasi-static over the
duration of the two time slots. The phase distribution of both
the noise and fading is assumed to be uniform.

At the receiver, maximum-likelihood detection is used to
estimated the transmitted information codewords. Assuming
that perfect channel state information is available at the
receiver, detection may be described according to

L̃(1), L̃(2) = arg min
L̆(1),L̆(2)∈[0:M−1]

D1 +D2, (2)

where

Dt =

∥∥∥∥∥yt −
√
ρ

2

2∑
u=1

ht,u Ωt

(
L̆(u)

)∥∥∥∥∥
2

, t ∈ [1 : 2] (3)

In (2) and (3), the estimated codewords are denoted as
L̃(1) and L̃(2). L̆(1) and L̆(2) represent candidate labels to be
tested during the detection.

III. MAPPER DESIGN

Based on the model described in Section II, the analytical
union bound on the average bit error probability (ABEP)
of a USTLD system has been derived in [1]. The resulting
expression is

Pb(ρ) ≤ 1

mM

M−1∑
L=0

M−1∑
L̃=0

L̃ 6=L

δ(L, L̃)P (L→ L̃), (4)

where M = 2m is the number of points in the signal
constellation and δ(L, L̃) is the number of bit errors between
the transmitted label L and estimated label L̃. P (L → L̃)
is the pairwise error probability (PEP) of L being detected
erroneously as L̃. It is shown in [1] that the PEP is given by

P (L→ L̃) =
1

4r

2∏
t=1

(
1 +

ρd2
t

8

)−NR

+
1

2r

r−1∑
s=1

2∏
t=1

(
1 +

ρd2
t

8 sin2
(
sπ
2r

))−NR

, (5)

where r is an arbitrarily large integer r > 10 and dt =∣∣∣Ωt(L)− Ωt(L̃)
∣∣∣ , t ∈ [1 : 2], is the Euclidean distance

between the constellation points represented by L and L̃ when
mapped using Ωt. For details on the derivation of (4) and (5),
the reader is referred to [1, Eq. (3)–(10)].

The authors of [1] show that at high SNRs, ρd2
t

8 � 1,
t ∈ [1 : 2]. Under these conditions, the PEP in (5) may be
approximated as

P (L→ L̃) ≈ 1

4r

(
ρd2

1

8
· ρd

2
2

8

)−NR

+
1

2r

r−1∑
s=1

(
ρd2

1

8 sin2
(
sπ
2r

) · ρd2
2

8 sin2
(
sπ
2r

))−NR

(6)

The result in (6) indicates that the ABEP of USTLD systems
at high SNRs is dominated by the product Euclidean distance,
d1d2. Hence, the minimum product Euclidean distance sets the
error floor, providing a metric that may be used to evaluate
the extent to which a pair of mappers Ω1 and Ω2 achieve LD.
This metric is given by

Ψ(Ω1,Ω2) = min
L,L̃∈[0:M−1]

L6=L̃

[
2∏
t=1

∣∣∣Ωt(L)− Ωt(L̃)
∣∣∣] (7)
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Fig. 2: Illustration of Hypersphere Swap Crossover

Higher values of Ψ(Ω1,Ω2) indicate that more LD is
achieved. Thus, the objective of mapper design is to maximise
Ψ(Ω1,Ω2). In this paper, the proposed GA takes in a base
mapper, Ω1, and produces an appropriate secondary mapper,
Ω2 that achieves LD. This process may be described as an
instance of the QAP [1], [6].

A. The Quadratic Assignment Problem

The QAP is an optimisation problem that describes the chal-
lenge of assigning each of M variables to one of M locations,
in order to optimise a given cost function [17]. In the context
of mapper design for an M -ary constellation, the variables in
question are each of the binary labels L ∈ [0 : M − 1] and
the locations are the constellation points [6]. The cost function
for this optimisation is given by (7). For this application, the
QAP has M ! complexity which exceeds 1013 for M > 16.
A genetic algorithm is applied to find a solution to such a
computationally expensive problem, as described in the next
subsection.

B. Proposed Genetic Algorithm

GAs mimic the process of evolution and natural selection
to solve complex problems in an iterative manner. The GA
designed for generating USTLD mappers is as follows:

1) Genetic Coding: The first step of the GA is to represent
a candidate solution to the problem as a chromosome, γ.
Information is encoded within the chromosome by individual
values referred to as genes. For this application, each gene
`i, i ∈ [0 : M − 1], represents a point on the constellation and
the value contained within the gene is the label associated with
that constellation point. Hence the chromosome is defined as

γ = [`0 `1 . . . `M−1] (8)

The set of p chromosomes representing the population of
candidate mappers is denoted by P . The initial population,
P(0), is constructed from using a random selection of p
chromosomes. Additionally, for constellations where existing
heuristic-based mappers are available, these mappers are en-
coded as chromosomes and added to the initial population.
This ensures that the GA will always either match or improve

upon the heuristic-based design. Since each chromosome can
be represented geometrically by a constellation with a given
binary mapping, the terms ‘chromosome’ and ‘constellation’
will occasionally be used interchangeably in the following
sections.

2) Crossover and Mutation: The most important step of
the GA is the crossover [17]. During crossover, ‘parent’
chromosomes from the population are used to generate ‘off-
spring’ chromosomes that retain the most desirable properties
from the parents. Various crossover techniques for optimising
constellation assignments were investigated in [16], however
these are not suitable for USTLD mapper design. In [16], the
GA repositions constellation points (each with its associated
label) in order to achieve optimisation. By contrast, when
designing Ω2 to achieve LD in a USTLD system, the positions
of the constellation points are fixed by the constellation used
by Ω1. This constraint requires that a new crossover operation
be developed for the proposed GA.

The crossover operation designed for the proposed GA is
called the hypersphere swap crossover (HSX), and is best
illustrated by example. Consider two parent chromosomes, γ1

and γ2, which produce two offspring chromosomes, γ̄1 and
γ̄2, using HSX. A label L1 is selected at random, and is
located in gene `γ1,L1 in the first parent chromosome and gene
`γ2,L1 in the second parent chromosome. A hypersphere of
radius R is then constructed, and projected around the points
corresponding to L1 on each of the constellations defined by
the parent chromosomes. A second label L2 is then selected at
random, such that the points corresponding to L2 fall outside
the hypersphere. This ensures that the points corresponding
to labels L1 and L2 are sufficiently far apart on both con-
stellations. Offspring γ̄1 is then generated by swapping the
genes containing L1 and L2 in parent chromosome γ1, i.e.
`γ̄1,L1 = `γ1,L2 and `γ̄1,L2 = `γ1,L1 . γ̄2 is similarly generated
from γ2.

For clarity, this process is illustrated in Fig. 2, using a
16QAM constellation example. Figs. 2a and 2b respectively
represent the mappings represented by the parent chromo-
somes that will undergo crossover. Following the process
described above, the first label L1 is selected at random. A



hypersphere of radius R centred around L1 is constructed,
such that the nearest adjacent neighbours to L1 are contained
within the hypersphere. The projection of this hypersphere on
each constellation is indicated by the dashed circle. Points
A, B and C are shown as candidates for L2. Both A and
B are inappropriate for swapping with L1, as A falls within
the region defined by the hypersphere in the constellation
corresponding to γ1 (see Fig. 2a). Similarly, B falls within
the hypersphere in the constellation corresponding to γ2 (see
Fig. 2b). Thus, C is the only candidate that meets the criteria
for swapping according to the HSX. When implementing
HSX in the GA for USTLD mapper design, performing only
one swap does not produce offspring that are sufficiently
different to their parents. For this reason, a k-point HSX (k-
HSX) is implemented (i.e. k swaps are done per crossover).
The hypersphere radius R should be chosen such that it
encompasses less than half of the points when projected onto
each constellation.

Mutation in the context of GAs is a probabilistic event that
an offspring undergoes a further change after crossover. In
the context of this GA, mutation occurs by swapping any two
genes in the offspring chromosome. The authors emphasise
that, unlike HSX, the swapping is not dependent on the parent
chromosomes. The probability of a mutation occurring is
denoted Pm.

3) Evaluation of Chromosomes: After offspring are gen-
erated and added to P , “natural selection” is imitated. All
chromosomes of the population in the n-th iteration, P(n)

are evaluated according to a fitness function, and the p
best chromosomes are selected to form the next generation
population P(n+1). As stated previously, the fitness function
is given by (7). The reader is reminded that Ω1 is known, and
that each chromosome in P represents a candidate mapper for
Ω2. Steps 2–3 of the proposed GA are summarised in Fig. 3.

P(n) k-HSX Pm + Ψ P(n+1)

γ1

γ2

γ̄1

γ̄2

Population
at Iteration n Crossover Mutation Evaluate

Fitness
Population at

Iteration n+ 1

Fig. 3: Block Diagram of Proposed Genetic Algorithm

4) Termination: Termination of a GA occurs when the
population P is deemed to contain an optimal solution, or
if the algorithm determines that no feasible solution can be
found. As in [14]–[16], the proposed GA determines that an
optimal solution has been found when all chromosomes in P
have converged to the same fitness value, i.e. Ψ(Ω1, γa) =
Ψ(Ω1, γb),∀γa, γb ∈ P . In this case, all chromosomes in
P are regarded as optimal. The algorithm is constrained to
only perform a maximum of nmax iterations, after which it is
assumed that the GA will not converge. In this case, the GA
output is the chromosome in P with the highest fitness, and
is regarded as suboptimal. Setting nmax � M5 ensures that
the GA is less computationally expensive than the branch-and-
bound QAP solvers discussed in [6].

IV. RESULTS AND DISCUSSION

In this section, the output of the proposed GA for USTLD
mapper design, denoted ΩGA

2 , is evaluated. As in [1], the
error performance benefits of 2 × NR USTLD systems are
demonstrated by comparing them to 2×NR Alamouti STBC
systems [19]. This provides a fair comparison, as both systems
have the same antenna array structure and spectral efficiency.
It is also noted that, due to the similar structures of Alamouti
STBC and USTLD systems, the union bound error perfor-
mance of the Alamouti STBC system can be obtained from
(4) by setting d1 = d2. All applications of the GA use
parameters: p = 8 and Pm = 10%. When implementing the
k-HSX, k = M−4

2 is chosen and offspring are produced by
all possible combinations of parent chromosomes within P .
For MPSK and APSK constellations, the hypersphere radius
R = 1 is selected. This is increased to R = 3 for MQAM.
The maximum number of iterations for the GA is set as
nmax = 104 for 16-ary constellations and nmax = 106 for
larger constellations. All binary mappings are represented by
their decimal equivalent for brevity.

A. Square Constellations: MQAM

First, the output of the GA is tested with 16QAM and
64QAM constellations. In the case of 16QAM, the algorithm
output is benchmarked against the mappers found in [1], [5]
and [6]. These are denoted Ω[1]

2 , Ω[5]
2 and Ω[6]

2 respectively.
Evaluating the quality of these mappers according to (7),
Ψ(Ω1,Ω

[1]
2 ) = Ψ(Ω1,Ω

[5]
2 ) = Ψ(Ω1,Ω

[6]
2 ) = 8.0. The GA

converges to chromosomes with fitness Ψ(Ω1,Ω
GA
2 ) = 8.0.

Thus, it does not improve upon existing 16QAM mappers. In
the case of 64QAM, the benchmark mappers are found in [1]
and [5] and have fitness Ψ(Ω1,Ω

[1]
2 ) = 4.0 and Ψ(Ω1,Ω

[5]
2 ) =

8.0. The GA is found to converge to Ψ(Ω1,Ω
GA
2 ) = 8.0,

again matching – but not improving upon – the best available
heuristic-based design.

B. Circular Constellations: MPSK and APSK

Next, the output of the proposed GA for 32PSK is consid-
ered. As the algorithmic approach of [6] is computationally
infeasible for M > 16, the benchmark mapper for comparison
is the heuristic-based design found in [1]. This symmetry-
based heuristic is to swap alternate pairs of diametrically
opposite constellation points across the origin [1], and the
mapper it produces is denoted Ω[1]

2 . Ω1 selected as a pseudo-
gray mapper. Ω1, Ω[1]

2 and the output of the GA, ΩGA
2 , are

illustrated in Fig. 4. These mappers have fitness scores of
Ψ(Ω1,Ω

[1]
2 ) = 0.0384 and Ψ(Ω1,Ω

GA
2 ) = 0.2178. The curves

shown in Fig. 5 show the theoretical performance of these
systems in a fast fading channel. These results are verified by
Monte Carlo simulations using the system model described
in Section II. These results indicate that the proposed mapper
achieves significantly more LD than the heuristic mapper, as
indicated by the ≈ 8dB diversity gain at a BER of 10−6. This
is expected, since Ψ(Ω1,Ω

GA
2 ) is an order of magnitude greater

than Ψ(Ω1,Ω
[1]
2 ).



TABLE I: 16APSK Constellation Points and Label Assignments

(a) 11+5 APSK [18]

Radius Phase Ω1 ΩGA
2

0.5501

0.0000 10 7
1.2566 13 4
2.5133 15 11
3.7699 6 0
5.0265 8 1

1.1476

0.0000 7 13
0.5712 3 12
1.1424 5 8
1.7136 4 2
2.2848 11 9
2.8560 0 14
3.4272 9 3
3.9984 14 6
4.5696 1 10
5.1408 12 5
5.7120 2 15

Ψ(Ω1,ΩGA
2 ) = 0.6766

(b) Asymmetric 16APSK [15]

Radius Phase Ω1 ΩGA
2

0.9593

4.7453 1 10
3.1109 5 5
1.5490 9 14
0.4687 13 3

1.000

5.0872 0 4
4.3400 2 13
3.7447 3 1
3.4121 4 11
2.7071 6 8
2.2326 7 6
1.8925 8 2
1.2567 10 0
1.0438 11 7
0.7340 12 9
0.2205 14 15
0.0699 15 12

Ψ(Ω1,ΩGA
2 ) = 0.0981

(c) Single Symmetry 16APSK [15]

Radius Phase Ω1 ΩGA
2

0.9627

2.3592 1 4
1.2107 5 6
-2.3592 9 2
-1.2107 13 15

1.0000

2.5650 0 11
2.0128 2 14
1.7317 3 1
1.4188 4 9
0.8849 6 12
0.5372 7 3
-2.5650 8 13
-2.0128 10 8
-1.7317 11 7
-1.4188 12 0
-0.8849 14 5
-0.5372 15 10

Ψ(Ω1,ΩGA
2 ) = 0.4020
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Finally, the proposed algorithm is applied to three 16APSK
constellations that do not exhibit diagonal symmetry. No
existing USTLD mapper design heuristics are directly appli-
cable to these constellations. Additionally, as they are not
diagonally symmetrical, the heuristic-based MPSK mapper
design technique proposed by [1] cannot be modified and
applied to these constellations. The 16APSK constellations
considered are:

1) The optimised 11+5 APSK constellation proposed by
[18], which has 11 points in its outer ring and 5 points
in its inner ring.

2) The asymmetric mean-square error (MSE) optimised
16APSK constellation proposed by [15].

3) The MSE-optimised 16APSK constellation with a single
degree of symmetry across the horizontal axis, which
was also proposed by [15]. The work in [15] shows that



this single symmetry constellation is more optimal than
the asymmetric case.

For each of these constellations, a pseudo-gray binary mapping
is selected for Ω1 and the proposed GA is used to generate
a secondary mapper to achieve LD, Ω2. Table I summarises
the constellation points (represented in polar coordinates),
mappings and fitness score for each of these constellations,
calculated using (7). The quality of these mappers are again
evaluated by comparing to the Alamouti STBC system, and the
results are presented in Fig. 6. These results show that the GA-
designed mappers are able to improve the error performance of
the asymmetric and single symmetry constellations proposed
by [15] by approximately 8dB at a BER of 10−5. In addition,
the performance of the 11+5 APSK constellation proposed by
[18] is improved by approximately 3dB in the same region.

V. CONCLUSION

Existing design techniques for USTLD mappers are limited
to approaches that either rely on symmetry-based heuristics,
or algorithms that are too computationally expensive to be
applied to constellations where M > 16. This paper proposes
a new mapper design technique based on GAs, which can be
applied to constellations of any shape and size. The algorithm
was tested on 16QAM, 64QAM, 32PSK and non-diagonally-
symmetric 16APSK constellations. Results presented indicate
that the proposed mappers match the best existing mappers
for 16QAM and 64QAM; and out-perform the best existing
32PSK mapper by a diversity gain of 8dB. When applied to a
USTLD system, the proposed 11+5 APSK mapper is shown to
achieve a diversity gain of 3dB when compared to an Alamouti
STBC system. In addition, under the same conditions, the
asymmetric and single symmetric 16APSK constellation LD
mappers both produced a diversity gain of 8dB.

Future works in this area may consider even larger constel-
lations, look at developing improved metrics for determining
the fitness of mappers, as well as investigating other crossover
operators, mutation operators and termination conditions for
the proposed GA.
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