
R E S E A R CH AR T I C L E

High-rate uncoded space-time labelling diversity with
low-complexity detection

Sulaiman Saleem Patel1 | Tahmid Quazi2 | Hongjun Xu2

1Emerging Technology, Digital
Consulting, KPMG Services (Pty.) Ltd.,
Durban, South Africa
2School of Engineering, University of
Kwa-Zulu Natal, Durban, South Africa

Correspondence
Tahmid Quazi, School of Engineering,
University of Kwa-Zulu Natal, Durban,
South Africa.
Email: quazit@ukzn.ac.za

Summary

Uncoded space-time labelling diversity (USTLD) is a recent scheme that

improved the error performance compared to conventional multiple-input,

multiple-output systems. Thus far, USTLD has suffered from limited achiev-

able data rates, as the original model uses only two transmit antennas. This

motivates for the work in this paper, where the USTLD model is extended to

allow for any desired number of transmit antennas. An analytical bound for

the average bit error probability of this high-rate USTLD (HR-USTLD) system

is derived. This expression is verified using the results of Monte Carlo

simulations, which show a tight fit in the high signal-to-noise ratio region. The

increased data rates associated with larger transmit antenna arrays in HR-

USTLD systems come at the cost of increased detection complexity. Therefore,

this paper studies the application of low-complexity detection algorithms based

on the popular QR decomposition technique and proposes a new algorithm

specifically designed for HR-USTLD systems. Analysis of this algorithm in

terms of accuracy and computational complexity is also provided and

benchmarked against maximum-likelihood detection (MLD). It is shown that

the proposed algorithm achieves near-MLD accuracy, while reducing

complexity by 79.75% and 92.53% for the respective 4 × 4 16QAM and 4 × 5

16PSK HR-USTLD systems investigated.
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1 | INTRODUCTION

1.1 | Context of research

The inclusion of diversity in wireless communication systems allows for many potential benefits, such as protection
against burst errors and improved robustness in the presence of multipath fading or co-channel interference.1 Uncoded
space-time labelling diversity (USTLD)2-5 is a recent scheme which achieves three levels of diversity: antenna diversity,
time diversity and labelling diversity. Antenna diversity is achieved by adopting a multiple-input, multiple-output
(MIMO) system model. The inclusion of multiple antennas at both the transmitter and receiver generates more signal
paths, increasing the likelihood of correct detection.1,6 The original work on USTLD describes a MIMO system of two
transmit antennas and any arbitrary NRx receive antennas.2 To achieve time diversity, symbols representing the same
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binary data are transmitted in two time slots. To achieve labelling diversity, symbols are selected from constellations
with different binary mappings in each time slot. The design and selection of mappers aims to maximise the minimum
product Euclidean distance (ED) between symbol pairs in each constellation. Stated differently, adjacent symbols in the
constellation defined by the primary mapper are spaced further apart in the constellations defined by subsequent map-
pers. By following this approach, detection is done based on symbol pairs, instead of individual symbols. Due to difficul-
ties in designing labelling diversity mappers, Xu et al2 constrained their studies to M-ary quadrature amplitude
modulation (MQAM) and M-ary phase shift keying (MPSK) modulation schemes. The challenge of labelling diversity
mapper design for other modulation schemes has also been explored in related works.3,5

A drawback of the USTLD scheme is that transmitting symbols containing the same information across two time
slots halves the effective data rate of the system. In general, the two approaches to improving the data rate of uncoded
MIMO systems, such as USTLD, are to either increase the modulation order, M, or to increase the number of transmis-
sion streams. Higher modulation orders allow the system to transmit larger codewords in each instance, that is, the
number of bits per codeword is increased. To increase the number of transmission streams, MIMO systems typically
increase the number of transmit antennas, NTx, and transmit independent symbols from each antenna simulta-
neously.1,6 This increases the number of codewords transmitted during a single time slot. It is possible to increase either
M or NTx in USTLD systems; however, they also result in increasing the complexity of detection for receiver hardware.
The algorithmic complexity of performing maximum-likelihood detection (MLD or ML detection) on an NTx × NRx

USTLD system with modulation order M is O NTxNRxMNTx
� �

, where Oð�Þ is the ‘order of’ operator used in complexity
analysis.7 This is derived in the Appendix of this paper in terms of real operations, the metric suggested by Pillay and
Xu.4 The high complexity of MLD motivates for the development of low-complexity detection algorithms (LCDAs), with
the goal of achieving near-ML accuracy at significantly reduced complexity.8

The current work on USTLD systems2 only allows for increasing the data rate by using higher modulation orders,
as NTx in the system is fixed at only two transmit antennas. This is because the original USTLD system model2 was con-
ceived as a direct extension of the Alamouti space-time block code9 to improve its bit error rate (BER). Since the struc-
ture proposed by Alamouti constrains the system to only two transmit antennas,9 the same constraint was applied to
the original USTLD model.2

However, as discussed in literature,1,6 the data rate of uncoded MIMO systems increases logarithmically with M and
linearly with NTx. Thus, the improvement in data rate as M increases is hyperbolic and becomes negligible as M ! ∞.
By contrast, increasing NTx provides constant data rate improvement. Another drawback to increasing modulation
order is that the average ED between constellation points for normalised constellations decreases as M increases,
resulting in inferior error performance. It is also noted that increasing the modulation order above M = 16 presents dif-
ficulties in designing optimal mappers to achieve labelling diversity.2,3,10 For these reasons, this paper proposes to
increase the achievable data rates of USTLD systems by extending the existing model to allow for more than two trans-
mit antennas. To distinguish between such a system and the existing USTLD model, this paper adopts the term ‘high-
rate USTLD’ (HR-USTLD) to describe the NTx × NRx USTLD model proposed. It is further noted that Ayanda et al11

have also extended the original USTLD model to allow for the use of three transmit antennas and three labelling diver-
sity mappers. However, the system proposed by Ayanda et al also uses a third transmission time slot and thus achieves
the same data rate as the original USTLD model.2,11 Thus, the HR-USTLD system presented in this paper is capable of
achieving higher data rates than the three mapper USTLD system.

As mentioned previously, HR-USTLD incurs high detection complexity. Existing LCDAs for MIMO systems may be
divided into two broad classes: linear detection schemes and search-based detection schemes. Linear detection schemes,
such as zero forcing12 and minimum mean squared error equalising,13 perform linear matrix operations during the
detection process, incurring a lower complexity cost than MLD. However, these schemes are unable to fully capture the
receive diversity of the MIMO system, leading to reduced detection accuracy and a degradation in error perfor-
mance.14,15 For this reason, this paper focuses on applying search-based LCDAs to the systems investigated.

Search-based detection schemes are often based on QR decomposition (QRD), which transforms the detection prob-
lem into a tree search. In this way, detection is done one information codeword at a time. Spherical detection (SD)16,17

is a popular scheme that has been combined with QRD to reduce complexity. This is achieved by constraining the sea-
rch space at each layer of the search to only those symbols within a predefined hypersphere of the received signal.
Another important improvement to the standard QRD approach is QRD-m, where the m best paths are considered
while traversing the search tree.18 In the work by Radosavljevic et al,19 a technique that is referred to in this paper as
the QR-QL Parallel Searching Algorithm (QRLPSA) was proposed. This technique reduces the complexity of QRD with
SD by simultaneously considering the equivalent QL decomposition (QLD) search tree. The QRD search tree is based
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on an upper, right triangular structure, whereas the QLD search tree is based on a lower, left triangular structure.
As such, the order in which symbols are detected is reversed depending on the search tree structure used. By per-
forming partial, parallel searches through both trees, only half of each individual tree need be traversed to obtain
estimates for all symbols. The QRLPSA has been extended by Peer et al,20 whose algorithm introduces two addi-
tional detection stages. The first additional stage involves merging the m partial candidate symbol vectors obtained
from the QR and QL search trees, respectively, and pruning these to only the K best candidate vectors. The sec-
ond additional stage is to search through these K candidate vectors, using either the QR or QL search tree, and
generate an ML-hypothesis candidate vector. A set of counter-hypotheses is generated, and the log-likelihood ratio
(LLR) between the ML-hypothesis and each of the counter-hypotheses is then computed, after which the suitabil-
ity of the ML hypothesis is determined.

In this paper, USTLD is extended from the 2 × NRx model originally proposed by Xu et al2 to a more general
NTx × NRx HR-USTLD model. Increasing the number of transmit antennas allows for higher data rates to be achieved.
Alternatively, a desired data rate can be obtained by using more transmit antennas and a lower modulation order. This
is desirable, as many existing mapper design techniques for labelling diversity systems do not perform well when scaled
to higher order modulations.3,5 In other works on USTLD,21,22 a search-based LCDA based on performing an orthogo-
nal projection has been proposed. However, the manner in which this LCDA is presented is only valid for two transmit
antennas. For this reason, this paper further proposes a new LCDA for HR-USTLD which removes this constraint and
is based on the QRLPSA19 and its extension.20 It is shown that the proposed LCDA is capable of achieving ML perfor-
mance at significantly reduced complexity. It should be noted that the SD approach is not applicable to USTLD and
HR-USTLD due to the manner in which mappers are designed to achieve labelling diversity and that the use of LLRs is
not feasible for uncoded systems such USTLD and HR-USTLD.23

1.2 | Structure and notation

The remainder of this paper is structured as follows. In Section 2, the system model for HR-USTLD is given. Section 2.1
describes the transmission model, and Section 2.2 describes the various detection schemes which may be
applied—including ML detection, existing LCDAs and the proposed LCDA for this paper. Section 3 provides analytical
expressions to evaluate the proposed system. Section 3.1 derives the analytical average bit error probability (ABEP), and
Section 3.2 gives analytical expressions to evaluate and compare the algorithmic complexity of the detection algorithms
given in Section 2.2. Section 4 provides and discusses the results obtained through Monte Carlo simulations, and finally,
Section 5 concludes this paper.

The notation used in this paper is to denote vectors in boldface, matrices in italicised boldface, and scalars in italics.
Occasionally, two levels of subscripts are used when referring to elements of a matrix or vector during a particular time
slot. In these cases, the inner subscript refers to the position of the element within the matrix and the outer subscript
refers to the time slot considered. For example, V 32 is read as the third element of vector V during the second time slot.
The operators Ef�g, �k k, b�c, d�e, (�)H, and (�)T denote the statistical expectation, Frobenius vector norm, floor, ceiling,
Hermitian, and matrix transpose, respectively. Sets of variables are denoted in braces, and a superscript outside the
braces indicates the size of the set. The operator �j j represents either the magnitude of a complex number or the cardi-
nality of a set, depending on the argument used.

1.3 | Contributions

The original contributions of this article are as follows:

1. The achievable data rates of USTLD systems are increased by employing a HR-USTLD transmission model with
any arbitrary NTx transmit antennas. A tight, closed-form union bound expression for the ABEP of HR-USTLD
systems is presented.

2. A comprehensive study of the application of existing QRD-based LCDAs to HR-USTLD systems is conducted. Each
of these LCDAs was originally proposed for systems that do not achieve labelling diversity; hence, they have been
adapted for USTLD systems. It is noted that the only previously proposed LCDA for USTLD systems21,22 cannot be
applied to HR-USTLD systems as it fails when used with more than two transmit antennas.
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3. A new LCDA designed specifically for HR-USTLD systems is proposed, which achieves significantly higher detection
accuracy when compared to the existing LCDAs studied (i.e. QRD, QRD-m, QRLPSA, and extended QRLPSA).

4. New insights on the manner in which labelling diversity affects the BER performance of systems are presented.
These were not reported in the original work on USTLD systems.2

5. Expressions are derived to quantitatively evaluate the computational complexity for all detection algorithms pres-
ented in this paper.

2 | SYSTEM MODEL

2.1 | Transmission model

This paper considers an NTx × NRx HR-USTLD system, where the number of transmit antennas is constrained such that
NTx≤NRx. A stream of NTx log2M information bits is transmitted over two time slots. These bits are grouped into NTx

labels denoted by vector B= B1…BNTx½ �T , where the term ‘label’ is for the log2M consecutive bits from the information
bitstream. To achieve labelling diversity, in each time slot, transmitted symbols are selected from constellations with
different mappings. The constellation mapper used in the t-th time slot, where t 2 [1 : 2], is denoted Ωt.

NTx × 1 transmit symbol vector xt = x1t… xNTx t

� �T
is generated such that xi1 =Ω1ðBiÞ and xi2 =Ω2ðBiÞ, where i 2 [1 :

NTx]. The set of M possible symbol pairs is denoted ξ, such that its j-th entry ξ( j) is given by ξðjÞ = Ω1ð j−1Þ,Ω2ð j−1Þh i,
where j2 [1 :M]. By simultaneously sending independent symbols from each transmit antenna, the HR-
USTLD achieves spatial multiplexing in a similar manner to the Vertical-Bell Laboratories Layered Space-Time
(V-BLAST) architecture.24

After transmission, the NRx × 1 received signal vector, yt, transmitted in the t-th time slot, is given by

yt =
ffiffiffiffiffiffiffiffi
γ

NTx

r
Htxt +nt; xi1 ,xi2h i 2 ξ, i2 ½1 :NTx�: ð1Þ

In Equation (1), γ represents the total average signal-to-noise ratio (SNR) of the transmission, assumed to be equally
distributed among the NTx transmit antennas. Ht is the NRx × NTx matrix of channel coefficients. These channels are
assumed to follow a Rayleigh amplitude distribution of zero mean and unit variance, the probability density function of
which is f RayleighðαÞ= αe−0:5α2 , where α is the fading amplitude. Furthermore, channels are assumed to be frequency
flat and fast-fading. NRx× 1 vector nt represents additive white Gaussian noise (AWGN) which follows a complex nor-
mal distribution with zero mean and variance σ2n =

N0
2 per dimension. Both the fading channels and AWGN have uni-

form phase distribution.
The design of a suitable pair of mappers Ωt, t2 ½1 : 2�ð Þ affects the extent to which the USTLD system achieves label-

ling diversity, and hence, its error performance. When designing a pair of mappers, the objective is to ensure that the
labels corresponding to neighbouring points when mapped by Ω1 are spaced further apart when mapped by Ω2.
Techniques to design mappers for USTLD systems is an ongoing research area,2,3,5,10,25 and is beyond the scope of
this paper. Thus, the constellations studied are constrained to those for which mapper designs are readily obtainable
from literature.2,10,25

Based on the original work on USTLD systems2 and the study by Samra et al,10 it is optimal to choose a Gray-coded
mapping for Ω1. Ω2 then requires a different mapper to be selected. In this paper, for the case of 16QAM, the mapper
proposed by Samra et al,10 found to be optimal by previous works on labelling diversity systems,2,10 is used. These con-
stellation mappings are illustrated in Figure 1. However, the optimal mapper design technique used by Samra et al10 is
only feasible for up to 16-ary constellation sizes. Therefore, for 64QAM, the heuristic-based mapper design proposed by
Seddik et al25 is used. This heuristic design was found to be superior to the 64QAM mapper design presented by Xu
et al2 in other works on USTLD systems.3 For the case of MPSK constellations, the secondary mapper is constructed by
swapping alternate symbols with their diagonally opposite counterparts, as suggested by Xu et al.2 All constellations are
power normalised such that Ef xitj j2g=1, where i 2 [1 :NTx] and t 2 [1 : 2].

The proposed HR-USTLD model achieves a data rate of 0:5NTxlog2M bits/s/Hz. This expression is in agreement with
the explanation given in Section 1, where it is mentioned that the data rate of uncoded MIMO systems increases loga-
rithmically with M and linearly with NTx. Thus, the improvement in data rate as M increases is hyperbolic and becomes
negligible as M!∞. By contrast, increasing NTx provides constant data rate improvement.
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2.2 | Detection model

In this work, different detection algorithms are implemented and compared in terms of accuracy and complexity.
Detection is performed by first dividing (1) by the SNR factor to produce

zt =

ffiffiffiffiffiffiffiffi
NTx

γ

s
yt =Htxt + ´nt, ð2Þ

where the equivalent noise term ´nt is defined as ´nt =
ffiffiffiffiffiffi
NTx
γ

q
nt . All detection techniques investigated assume that per-

fect channel state information is available at the receiver. After detecting the transmitted symbol pairs, decoding is done
to recover the associated labels and hence, the transmitted information.

2.2.1 | Maximum likelihood detection

MLD is the benchmark detection technique investigated in this paper. To perform MLD on the proposed HR-USTLD
system, it is required that received symbol vectors from both time slots are considered simultaneously. Unlike conven-
tional MIMO detection, MLD for labelling diversity is concerned with joint detection using corresponding symbols from
both mappers. As such, the output of the ML detector is two NTx × 1 symbol vectors, ~x1 and ~x2 . The detected data are
represented by the label vector, ~B , which corresponds to the labels associated with the pair ~x1,~x2h i . The MLD search
based on Equation (2) is described by

~x1,~x2h i= arg min
x̂ j1 , x̂ j2

� �2 ξ
j2 ½1 :NTx�

Aðx̂1, x̂2Þ, ð3Þ

where the MLD detection metric A is defined as

Aðx̂1, x̂2Þ= z1−H1x̂1k k2 + z2−H2x̂2k k2: ð4Þ

FIGURE 1 16-QAM binary

constellation mapping, key: Ω1/Ω2
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MLD incurs high complexity but ensures the most accurate results, as there are MNTx candidate symbol pairs that
need to be considered.

2.2.2 | Standard QRD and QRD-m

QRD and QLD are two techniques for decomposing an arbitrary complex-valued matrix, A, into an equivalent matrix
product. The QRD of A is defined as A = QQRR, and similarly the QLD of A is A = QQLL. QQR and QQL are unitary,
complex orthogonal matrices such that QQR

� �H
QQR = QQL

� �H
QQL = I ; where I is the identity matrix. R is an upper,

right triangular matrix, and L is a lower, left triangular matrix.
To apply these techniques to detection in MIMO systems, the channel coefficient matrix, H, is first decomposed.

Thereafter, Equation (2) is left-multiplied by the Hermitian of the unitary matrix to produce Equation (5) for QRD, and
Equation (6) for QLD.

αt = QQRt

� �H
zt =Rtxt + QQRt

� �H
´nt ð5Þ

βt = QQLt

� �H
zt =Ltxt + QQLt

� �H
´nt ð6Þ

Due to the triangular structure of matrices R and L, detection may be performed on a row-by-row basis starting with
the row with the most zero elements (i.e. the NTx-th row of R and the first row of L). Back-substitution is then used, so
that in each row, there are only M candidate symbol pairs that must be tested. This allows the detection to be formu-
lated as a tree search, through NTx layers, with M candidate nodes per layer. Each node represents a candidate label,
and its associated symbol pair generated from Ω1 and Ω2. The simplest case of QRD and QLD is when the system of
equations defined by Equations (5) and (6) is perfectly determined. This is the case if the decomposed matrix, H, was a
square matrix (i.e. NTx = NRx). Figure 2 illustrates the QRD search tree for a perfectly determined system. Searching
begins at the NTx-th row of matrix R and ends at its first row. Without loss of generality, it is assumed that Node M − 1
is detected from Row NTx and Node 1 is detected from Row NTx − 1 to illustrate expansion of nodes during the search.

If H is not a square matrix, QRD and QLD may still be performed. When H has fewer rows than columns
(i.e. NTx < NRx), the system of equations it represents is overdetermined. After decomposition, the triangular
matrix of an overdetermined system has rank NTx and NRx − NTx zero rows. The case of H having more rows
than columns (i.e NTx > NRx), does not arise due to the constraints placed on the system.

If all zero rows of any overdetermined system are discarded, the q-th rows of Equations (5) and (6), during the t-th
time slot, are given by the scalar equations:

αqt =
XNTx

i= q

rq,it xit , ð7Þ

βqt =
Xq
i=1

lq,it xit : ð8Þ

FIGURE 2 Illustration of a QR decomposition (QRD)

search tree
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The row-by-row detection adapted from Equation (3) and based on Equation (7) for the q-th row of a QRD search is
then given by

~xq1 ,~xq2
� �

=arg min
x̂1, x̂2h i2ξ

X2
t=1

αqt −rq,qt x̂t−S1t
		 		2, ð9Þ

and likewise, for the q-th row of a QLD search, the row-by-row detection based on Equation (8) is

~xq1 ,~xq2
� �

=arg min
x̂1, x̂2h i2ξ

X2
t=1

βqt −S2t − lq,qt x̂t
			 			2, ð10Þ

where the summation terms are defined as

S1t =
XNTx

i= q+1

rq,it ~xit , ð11Þ

S2t =
Xq−1

i=1

lq,it ~xit : ð12Þ

It may be intuitively observed that both QRD and QLD are equivalent techniques. Radosavljevic et al19 has previ-
ously shown that performing QRD on a column-reversed channel matrix Hrev = hNTx …h1½ � produces a decomposition
equivalent to the QLD of the original channel matrix H, where hi represents the i-th column of the un-reversed channel
matrix H.

A drawback of standard QRD detection is that it is susceptible to error propagation through the search tree due to
the use of back-substitution. Referring to Figure 2, suppose an error occurs in Row NTx and correct detection should
have yielded Node 1. This incorrect detection then increases the likelihood of a detection error in all rows from Row
NTx− 1 to Row 1. An approach to combat this is to change the detection order to maximise the probability of correct
detection in upper rows of the search tree.26 A simple method of achieving this is by preprocessing and reordering the
columns of H. Columns are arranged such that the sum of column-norms from both time slots are in ascending order,
and the rows of x are also reordered accordingly. For example, assuming a 5 × NRx HR-USTLD system described
according to Equation (2) by

zt = h1 h2 h3 h4 h5½ �t

x1
x2
x3
x4
x5

2
6666664

3
7777775
t

+ ´nt: ð13Þ

Ordering is done according to the sum of column-norms across time slots t = 1 and t = 2. Without loss of generality,
assume that it is found that

P2
t=1 h3k k2t <

P2
t=1 h1k k2t <

P2
t=1 h5k k2t <

X2

t=1
h4k k2t <

X2

t=1
h2k k2t . This means that the

probability of correctly detecting x2 is highest, and the probability of erroneously detecting x3 is highest. Reordering
Equation (13) accordingly for QRD produces

zt = h3 h1 h5 h4 h2½ �t

x3
x1
x5
x4
x2

2
6666664

3
7777775
t

+ ´nt: ð14Þ

Due to the upper, right triangular structure of R after decomposition, it is evident that detection is now done in
order of descending

P
hk k2. Similarly, the appropriate reordering for QLD is
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zt = h2 h4 h5 h1 h3½ �t

x2
x4
x5
x1
x3

2
6666664

3
7777775
t

+ ´nt: ð15Þ

Another improvement to standard QRD, presented by Kim et al,18 is QRD-m detection. In QRD-m, the best
m nodes are expanded at each level of the search tree, where m 2 [1 :M]. The case of m= 1 is identical to the standard
QRD approach. In QRD-m, the cumulative metrics are considered at each search layer. QRD-m is illustrated with
m = 2 on a perfectly determined system in Figure 3.

2.2.3 | QR-QL parallel searching

The QRLPSA19 takes advantage of the symmetry of matrices R and L to reduce the number of layers to be searched
through when performing detection. If the channel matrix of an HR-USTLD system is decomposed using the QRD
approach, the order in which labels are detected starts from label BNTx and ends at label B1. If the QLD approach is used,
this order is reversed. It may be observed from Equations (9) and (10) that the latter layers of either search tree have
more terms to be computed when performing detection.

QRLPSA exploits the similar structure of the search trees obtained via QRD and QLD. By evaluating only the first
NTx
2


 �
layers of each search tree in parallel, the QLD search tree is able to detect labels B1 to B NTx

2b c, and the QRD search
tree is able to detect labels BNTx−

NTx
2b c+1 to BNTx .

In general, for the case of even NTx, the floor operator is redundant and thus by parallel searching through the first
NTx
2 layers of both search trees, an estimate for B can be obtained. In the case of odd NTx, the

NTx
2

� 
-th layer remains after

parallel searching. This requires that either the QRD or QLD search tree be expanded by one extra layer. The original
work by Radosavljevic et al19 also uses multiple search paths, as in QRD-m. It further makes use of reordering
the matrix H such that the outermost columns have the highest summed column-norms. To illustrate this, consider
the example system given in Section 2.2.2 and Equations (13)–(15). Reordering Equation (13) to perform parallel
searching produces

zt = h2 h5 h3 h1 h4½ �t

x2
x5
x3
x1
x4

2
6666664

3
7777775
t

+ ´nt: ð16Þ

In this way, the QLD search tree is marginally more accurate than the QRD search tree, which suggests that the
remaining layer after parallel searching be obtained by expanding one more layer of the QLD search tree.

FIGURE 3 Illustration of a QR

decomposition (QRD-m) search tree
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2.2.4 | Extended QR-QL parallel searching algorithm

An extension to the QRLPSA was proposed by Peer et al,20 where two further stages are introduced to the detection pro-
cess. Peer et al20 developed their algorithm for a coded system—as such, only the aspects applicable to uncoded systems
such as HR-USTLD are investigated further in this paper.

The three stage structure of the uncoded aspects of extended QRLPSA is illustrated in Figure 4. The first stage is to
perform parallel searching as in the QRLPSA, which produces m partial candidate label vectors from the QRD and
QLD search trees, respectively, denoted f~BgmQR and f~BgmQL. The second stage is to merge these partial candidate symbol
pair vectors to form a set of m2 candidate symbol pair vectors, denoted ξmerged, for which the corresponding set of labels
are f~Bgm

2

such that

ξmerged = Ω1 f~Bgm
2� �
,Ω2 f~Bgm

2� �D E
: ð17Þ

The detection metrics of the partial candidate vectors are summed to produce a detection metric for the merged can-
didate vectors. This set is then reduced to a set of K candidate labels, f~BgK �f~Bgm

2

, where K 2 [1 :m2). f~BgK is then
populated with the K candidate label vectors from f~Bgm

2

with the lowest merged detection metrics and defines candi-
date symbol vector pairs

ξreduced = Ω1 f~BgK
� �

,Ω2 f~BgK
� �D E

: ð18Þ

In the final stage, a QLD tree search through only ξreduced is performed, yielding the final estimate of the transmitted
labels. The detection metric for the q-th layer of this search is given by Equation (19), where q 2 [1 :NTx]. This metric
has been obtained by modifying Equation (10). Thereafter, Peer et al20 make use of techniques applicable to coded sys-
tems to determine the suitability of this estimate; however, these further techniques are not applicable for HR-USTLD.

~xq1 ,~xq2
� �

= arg min
x̂1, x̂2h i2ξreduced

X2
t=1

βqt −
Xq−1

i=1

lq,it ~xit − lq,qt x̂t

					
					
2

ð19Þ

2.2.5 | Proposed LCDA: MSRSD-USTLD

As shown by the results in Section 4, the extended QRLPSA20 does not improve detection accuracy compared to
QRLPSA19 when applied to HR-USTLD. It is also shown that both these algorithms offer poor detection accuracy com-
pared to MLD, with a loss of up to 7 dB in the high SNR region of the systems investigated (see Figures 8A and 9A and).

There is generally a trade-off between accuracy and complexity in LCDAs. The QRD-based LCDAs presented reduce
complexity by transforming the exhaustive ML search to a layer-by-layer tree search, which reduces the search space of
candidate symbol vector pairs considered. However, adopting a layer-by-layer approach reduces the amount of informa-
tion used to perform detection at each stage of the tree search, which results in these LCDAs being unable to fully cap-
ture the diversity of the system.27 This is further motivated by the results in Figures 8A and 9A and. By considering
more received signals during detection, such as when computing ML metric A in Equation (4), more information about
the channel is present to increase detection accuracy. Moreover, QRD-based LCDAs are susceptible to error propaga-
tion through the search tree, which leads to severe consequences if there is a detection error in earlier layers of the
search tree.

FIGURE 4 Block diagram of extended

QR-QL Parallel Searching Algorithm (QRLPSA)
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In order to improve the accuracy of extended QRLPSA, this paper proposes a new scheme called MSRSD-USTLD.
The proposed scheme follows the same three-stage structure as extended QRLPSA (shown in Figure 4), but increases
accuracy by considering a greater search space than extended QRLPSA during the final stage of detection. In addition,
the final reduced search set for MSRSD-USTLD is based on the ML metric, A, instead of the QLD tree search used in
extended QRLPSA. This further increases accuracy but also causes an increase in complexity. A more detailed block
diagram of MSRSD-USTLD is given in Figure 5.

The first two stages of MSRSD-USTLD are logically the same as for the extended QRLPSA. Parallel searching is per-
formed during Stage 1 to obtain partial candidate label vectors f~BgmQR and f~BgmQL, which are merged and reduced during
Stage 2 to produce f~Bgm

2

, ξmerged (17), f~BgK and ξreduced (18), as described in Section 2.2.4. However, MSRSD-USRLD
differs from extended QRLPSA in that instead of summing the metrics from f~BgmQR and f~BgmQL, the detection metric for
the merged candidate label vectors are obtained by evaluating ML metric A, given in Equation (4), for each candidate
symbol vector pair in ξmerged. The K candidate label vectors with the lowest merged detection metrics are again used for
constructing f~BgK and ξreduced.

In Stage 3 of MSRSD-USTLD, NTx reduced sets of candidate symbol vector pairs, ξ∗j, j2 ½1 :NTx� are defined as the
‘union sets’. The final estimate of the transmitted information is obtained by performing an ML search through the
union sets as described by

~x1,~x2h i= arg min
x̂ j1 , x̂ j2

� �2 ξ∗j
j2 ½1 :NTx�

Aðx̂1, x̂2Þ: ð20Þ

To generate the union sets, it is first necessary to perform preprocessing and generate a lookup table of M reduced
constellation sets, ξλi . ξ

λ
i represents the λ most likely symbol vector pairs to be detected for transmitted information label

i, where 1< λ≤M. The metric chosen to determine which symbol pairs should be selected to build the reduced constel-
lation sets is the product ED, as it is shown by Samra et al10 and Xu et al2 that USTLD mappers are designed to maxi-
mise the minimum product ED between labels across both constellation mappers. The product ED between the labels
a and b is defined by

Y
dða,bÞ= d1ða,bÞd2ða,bÞ, ð21Þ

where

FIGURE 5 Block diagram of Multiple Stage Reduced Set

Detection for USTLD (MSRSD-USTLD). QLD, QL decomposition;

QRD, QR decomposition
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dtða,bÞ= ΩtðaÞ−ΩtðbÞj j2; t2 ½1 : 2� ð22Þ

is the squared ED between the symbols represented by labels a and b as a result of each mapper Ω1 and Ω2. To con-
struct ξλi for label i, i 2 [0 :M− 1], the algorithm given in Table 1 is implemented.

Given the existence of the reduced constellation sets, the union set is constructed based on the output set of candi-
date label vectors from Stage 2 of MSRSD-USTLD, f~BgK = ~B

ð1Þ
, ~B

ð2Þ
,…, ~B

ðKÞn o
. Each candidate label vector is described

by ~B
ðjÞ
= ~B

ðiÞ
1 … ~B

ðjÞ
NTx

h iT
; j2 ½1 :K�. Thus, the union set for transmitted label Bk, k 2 [1 :NTx] is defined as

ξ∗k = ξλ
Bð1Þ
k

[ ξλ
Bð2Þ
k

[…[ ξλ
BðKÞ
k

= [
j2½1:K�

ξλ
BðjÞ
k

: ð23Þ

The union set may be optimised by removing any duplicate entries in the set. As such, the cardinality of each union
set is in the range λ≤ ξ∗j

			 			≤Kλ.
It is noted that the search described in Equation (20) has worst-case ML search space KλNTx , which incurs much

higher complexity than the LCDAs discussed in Sections 2.2.1 to 2.2.4. However, by selecting a suitably small value for
K and an appropriate λ, it is possible to ensure that KλNTx �MNTx , thereby allowing significant complexity reduction
compared to MLD. In this way, MSRSD-USTLD defines three adjustable parameters m, K, and λ, the values for which
present a trade-off between detection accuracy and complexity. By comparison, the QRD-m18 and QRLPSA19 have only
one degree of freedom (m), and the extended QRLPSA20 has two (m and K).

A final optimisation to reduce the complexity of MSRSD-USTLD is to retain the m2 ML metrics computed in Stage
2 of detection and reuse them in Stage 3 if any of the same candidate symbol vector pairs arise. Since

Ω1 f~BgK
� �

,Ω2ðf~BgKÞ
D E

� ξmerged and Ω1ðf~B jgKÞ,Ω2ðf~B jgKÞ
D E

� ξ∗j; j2 ½1 :NTx�, the maximum number of ML metrics

computed during the third detection stage is reduced to K λ−1ð ÞNTx .

3 | PERFORMANCE ANALYSIS

3.1 | ABEP for HR-USTLD

An approach to analysing the ABEP for a 2×NRx MIMO system in both fast-fading and quasi-static Rayleigh fading con-
ditions is given by Xu et al.2 This paper follows the same approach and extends it to the more general case of an
NTx × NRx HR-USTLD system. An important assumption made at the start of the analysis by Xu et al2 is that at high
SNR, only one of the transmitted symbol pairs is incorrectly detected. This assumption is reasonable, as the the system
is expected to have high link reliability at high SNRs. Therefore, the same assumption is also used when analysing the
performance of HR-USTLD in this paper. Given this assumption, the bound of the ABEP for HR-USTLD is defined as2

TABLE 1 Algorithm for generating lookup table entries of ξλi , i2 ½1 :M�

Step 1: Compute the product distancesQ
d i, î
� �

, î2 ½0 :M−1� and store these as the set
Q
df gM .

Step 2: Sort
Q
df gM in ascending order.

Step 3: Construct f̂igλ by storing the first λ candidate labels, î, from the sorted listQ
df gM . The first label should always correspond to the case ofQ

d i, î
� �

=0, which occurs when i= î.

Step 4: Construct the reduced constellation set ξλi by mapping the candidate label set f̂igλ

using the USTLD mappers, as described by

ξλi = Ω1ðf̂igλÞ,Ω2ðf̂igλÞ
D E

:

Abbreviation: USTLD, uncoded space-time labelling diversity
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PeðγÞ≤ 1
Mlog2M

XM−1

i=0

XM−1

j=0
j 6¼ i

δði, jÞP X! ~X
� �

, ð24Þ

where δ (i, j) is the number of bit errors between the labels i and j, and P X! ~X
� �

is the pairwise error probability (PEP)
of an erroneous detection of matrix X= x1 x2½ � to estimated matrix ~X= ~x1 ~x2½ � .

For the sake of notation, and without loss of generality, it is assumed that the incorrectly detected symbol pair is
~xa1 ,~xa2h i, a2 1 :NTx½ �. The corresponding transmitted symbol pair is denoted xa1 ,xa2h i. Hence, the PEP P X! ~X

� �
may

be equivalently written as P xa1 ,xa2h i! ~xa1 ,~xa2h ið Þ.
Given the assumption that only one symbol pair is incorrect, Xu et al2 have shown that the conditional PEP may be

expressed as
P X! ~XjH1,H2
� �

=P xa1 ,xa2h i! ~xa1 ,~xa2h ijH1,H2ð Þ

=P
X2
k=1

kyt−
ffiffiffiffiffiffiffiffi
γ

NTx

r
Ht~xtk2 <

X2
k=1

kntk2
 !

=Q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ1 +ϕ2

p� �
,

ð25Þ

where QðxÞ= 1
π

Ð 0:5π
0 exp 0:5 xcscyð Þ2� �

dy is the Gaussian Q-function28 and the cosecant is defined as cscðxÞ= 1
sinðxÞ . In

Equation (25), ϕ1 and ϕ2 are central chi-squared random variables which each have 2NRx degrees of freedom.2 The
underlying Gaussian random variables that form ϕ1 have zero mean and variance γ

4NTx
xa1 −~xa1j j2 . Similarly, the

Gaussian random variables that form ϕ2 have zero mean and variance γ
4NTx

xa2 −~xa2j j2 . The derivations for the variance
of these random variables can be found in the work by Xu et al.2

As shown by Xu et al,2 the unconditional PEP is found by integrating the conditional PEP, given by Equation (25),
over the probability density functions of ϕ1 and ϕ2 and applying a trapezoidal approximation. This produces the result:

P X! ~X
� �

≈
1
4n

Y2
t=1

Mt
1
2

� �
+

1
2n

Xn−1

m=1

Y2
t=1

Mt
1
2
csc2

mπ

2n

� �� �
, ð26Þ

where M1ðsÞ and M2ðsÞ are the respective moment generating functions (MGFs) of ϕ1 and ϕ2 under the assumption of
NRx independent and identically distributed (i.i.d.) Rayleigh fading channels, and n is an arbitrarily large integer value
that allows the summation to approximate an integral. Xu et al2 have shown that the MGF for the specific case of
NTx = 2 is defined in terms of the variance of the Gaussian random variables that underlie ϕ1 and ϕ2. For the high-rate
USTLD system described in this paper, the derivation provided by Xu et al2 is generalised to describe a system of any
arbitrary NTx transmit antennas. Expressing the resultant MGF in terms of the squared ED between labels, given in
Equation (22), yields

MtðsÞ= 1+
γ

2NTx
dts

� �−NRx

; t2 ½1 : 2�: ð27Þ

Thus, the overall ABEP for an NTx ×NRx HR-USTLD system in i.i.d. Rayleigh fading channels is obtained by
substituting Equation (26) in Equation (24). The resulting expression is

PeðγÞ≤ 1
2nMlog2M

XM−1

i=0

XM−1

j=0
j 6¼ i

δði, jÞ 1
2

Y2
t=1

Mt
1
2

� �
+
Xn−1

m=1

Y2
t=1

Mt
1
2
csc2

mπ

2n

� �� �" #
: ð28Þ

3.2 | Analytical evaluation of algorithmic complexity

When reviewing literature, it is found that the authors of the existing LCDAs discussed in Section 2.2 analyse complex-
ity using different metrics.18-20 In table I of the paper by Kim et al,18 QRD-m is compared to MLD in terms of complex
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additions, subtractions and multiplications, as well as real multiplications. Radosalvjevic et al19 implement the QRLPSA
on a field programmable gate array and evaluate its performance in terms of the number of arithmetic units used and
the search latencies experienced in the hardware implementation. Finally, Peer et al20 analyse the complexity of the
extended QRLPSA in terms of the number of expanded nodes during the detection search. To fairly analyse and com-
pare the LCDAs investigated in this work, a unified means of evaluating complexity is considered: the effective number
of real mathematical operations performed during the detection process, which is denoted by the symbol Ψ. Real opera-
tions were also used by Pillay and Xu4 in their complexity analysis of USTLD systems with media-based modulation.
Complex addition, or subtraction, is considered to have two effective real operations and complex multiplication is con-
sidered to have six effective real operations. Vector norms are said to consist of 4|V|− 1 operations, where |V| is the
length of the vector.

According to Peer et al,20 the complexity of decomposing matrix H by either QRD or QLD is negligible compared to
the complexity of searching and is thus neglected.

The preprocessing and ordering of H incurs a complexity of 8NTxNRx−NTx operations.
A summary of the complexity of each detection scheme is given in terms of the number of expanded nodes during

the detection search in Table 2. Table 3 presents a similar summary in terms of the number of effective real operations,
Ψ. Derivations for the expressions in Table 3 are provided in Appendix A1. Note that for MSRSD-USTLD, the complex-
ity cannot be exactly determined (see Appendix A1, Section A.0.4). Thus, the expression given in the last row of Table 3
is for the upper bound of the complexity of MSRSD-USTLD.

4 | RESULTS AND DISCUSSION

Monte Carlo simulations were used to produce all the results presented in this section. In the first set of results, the ana-
lytical expression for the ABEP (28), which was derived in Section 3.1, is verified. As shown in Figure 6, simulation

TABLE 2 Complexity comparison of LCDAs in terms of number of candidate label vectors

LCDA No. of candidate label vectors (nodes)

MLD MNTx

QRD MNTx

QRD-m18 M +mM NTx−1ð Þ
QRLPSA19 2M+mM(NTx− 2)

Extended QRLPSA20 2M +mMðNTx−2Þ+K NTx
2


 �
MSRSD-USTLD 2M +mMðNTx−2Þ+m2 +K λ−1ð ÞNTx

Abbreviations: LCDA, low-complexity detection algorithm; MLD, maximum-likelihood detection; MSRSD-USTLD, multiple stage reduced
set detection for uncoded space-time labelling diversity; QRD, QR decomposition; QRLPSA, QR-QL parallel searching algorithm.

TABLE 3 Complexity comparison of LCDAs in terms of effective real operations

LCDA Number of effective real operations (Ψ)

MLD MNTx ð16NTxNRx + 8NRx−1Þ
QRD 16N2

Rx−4NRx +M 8N2
Tx + 15NTx

� �
QRD-m18 16N2

Rx−4NRx +M 23+m 8N2
Tx + 15NTx−23

� �� �
QRLPSA19

32N2
Rx−8NRx +M 46+m 4N2

Tx + 15NTx−46
� �� �

; evenNTx

32N2
Rx−8NRx +M 46+m 4N2

Tx + 15NTx−42
� �� �

; oddNTx

(

Extended QRLPSA20

ΨQRLPSA; even NTx +m2 +K 6N2
Tx +

15
2
NTx

� �
; evenNTx

ΨQRLPSA; oddNTx +m2 +K 6N2
Tx +

23
2
NTx +

11
2

� �
; oddNTx

8>>><
>>>:

MSRSD-USTLD ΨQRLPSA + m2 +K λ−1ð ÞNTx

� �
16NTxNRx + 8NRx−1ð Þ

Abbreviations: LCDA, low-complexity detection algorithm; MLD, maximum-likelihood detection; MSRSD-USTLD, multiple stage reduced
set detection for uncoded space-time labelling diversity; QRD, QR decomposition; QRLPSA, QR-QL parallel searching algorithm.
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results based on MLD converge to the theoretical ABEP in the high SNR region. Results are presented for various
antenna array sizes, modulation orders, and for both QAM and PSK modulation.

From the results in Figure 6, it is further observed that there is a difference of 1 dB between the 4 × 5 and 5 × 5
8PSK HR-USTLD systems at a BER of 10−6. The same observation is made when comparing the 3 × 4 and 4 × 4 16QAM
HR-USTLD systems. These observations indicate that increasing the number of transmit antennas in the HR-USTLD
system results in higher data rates at the cost of poorer BER performance. This trade-off between data rate and error
performance is typical of MIMO systems that achieve spatial multiplexing, such as the V-BLAST architecture.24 The
reason for the degradation in error performance can be explained mathematically. Considering the equation for the
MGF given in Equation (27), when NTx is increased, the MGF increases as well. Thus, the result for the ABEP calcu-
lated using Equation (28) will increase, indicating inferior error performance. The intuitive interpretation of this (based
on the system model defined in Section 2.1) is that splitting the total average SNR across more transmit antennas results
in less power being allocated to each antenna. Thus, the energy of each of the transmitted symbols at the receiver is
reduced, increasing the likelihood of an incorrect detection.

The next set of results compares the performance of HR-USTLD and similar schemes of equal data rate. The results
presented in Figure 8 compare the theoretical performance of six systems which achieve a data rate of six bits/s/Hz:
(i) a conventional 3 × 4 4QAM MIMO system, (ii) a conventional 1 × 4 64QAM single-input, multiple-output (SIMO)
system, (iii) a 2 × 4 64QAM Alamouti space-time block coded system,9 (iv) a 2 × 4 64QAM USTLD system,2 (v) a 3 × 4
64QAM USTLD system with three labelling diversity mappers,11 and (vi) a 3 × 4 16QAM HR-USTLD system. It is
highlighted that the ‘conventional’ SIMO and MIMO systems considered utilise a single time slot to transmit informa-
tion6 and that the USTLD system with three labelling diversity mappers utilises three time slots to transmit informa-
tion.11 The mappers used for the three mapper USTLD system are constructed by following the design rules presented
in Section 4 of the work by Ayanda et al.11 The results in Figure 7A show that by using a lower order modulation and
more transmit antennas, the 3 × 4 16QAM HR-USTLD system outperforms the existing 2 × 4 64QAM USTLD system by
approximately 4 dB in the high SNR region.The gradient of the curves also confirm that HR-USTLD achieves similar
diversity to the original USTLD model. This may be quantified in terms of the diversity order, Γ, which is defined as29

Γ= − lim
γ!∞

logPeðγÞ
log γ

: ð29Þ

By using Equation (29) to determine the diversity order of each of the systems presented in Figure 7A, the results
given in Figure 7B are obtained. The values for ΓAlamouti and ΓUSTLD (3 Mappers) match those that have been reported in

FIGURE 6 Analytical average bit error

probability (ABEP) converging to simulated

results using maximum-likelihood

(ML) detection. HR-USTLD, high-rate uncoded

space-time labelling diversity
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literature.9,11 The values obtained for ΓUSTLD (original), ΓUSTLD (3 Mappers) and ΓHR-USTLD indicate that the diversity order
of USTLD systems is a product of the number of time slots over which the same information is transmitted and the
number of receive antennas. Stated differently, the diversity order represents the total number of independent copies of
the same information codeword that are available at the receiver when performing detection. It is interesting to note
that the number of labelling diversity mappers in the system does not directly influence the diversity order. This is
shown most clearly by the result that ΓAlamouti = ΓUSTLD (original) = 2NRx. Qualitative analysis of the results presented in
other works that apply labelling diversity to systems that utilise only one transmission time slot, such as those studied
by Naidoo,30 also indicate that diversity order is unaffected by labelling diversity.

This leads to an interesting deduction which was not reported in the original work on USTLD systems2—the inclu-
sion of labelling diversity in a MIMO system does not change the diversity order of the system. Rather, the BER perfor-
mance improvement as a result of labelling diversity is qualitatively observed by a lateral shift of the high-SNR region
of BER versus total average SNR curve (as shown in Figure 7A). These lateral shifts of the BER versus total average
SNR curve are generally typical of a coding gain;6 however, labelling diversity achieves this benefit without introducing
coding to the system.

A further observation that is drawn from the results in Figure 8 highlights the importance of mapper design for
USTLD systems. In their work, Ayanda et al11 compared their three mapper USTLD with a two mapper USTLD system
based on the secondary mapper design by Xu et al2 for a 64QAM USTLD system. It was since shown by Quazi and

FIGURE 7 Error performance

comparison of uncoded systems with equal data

rate. HR-USTLD, high-rate USTLD; MIMO,

multiple-input, multiple-output; SIMO,

single-input, multiple-output; USTLD, uncoded

space-time labelling diversity detection
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Patel3 that the secondary mapper design technique by Seddik et al25 is better than that proposed by Xu et al for 64QAM
modulation. The results in Figure 7A show that the 3 × 4 64QAM USTLD system with three mappers11 performs worse
than the original 2 × 4 64QAM two mapper USTLD system2 (utilising the secondary mapper design proposed by Seddik
et al) by approximately 2 dB. This emphasises that mapper design has a drastic influence on the error performance of
USTLD systems. It may thus be inferred that the error performance of the HR-USTLD systems presented in this paper
may be further improved in future works if better mapper designs are developed.

The final set of results in this paper investigates the performance of QRD-based LCDAs on HR-USTLD. Algorithms
are compared in terms of accuracy and complexity to the benchmark case of MLD. Accuracy is observed graphically by
the closeness of the BER curves to the MLD case, and complexity is compared by using the equations presented in
Tables 2 and 3. Since the number of effective real operations gives a more realistic indication of performance, the

FIGURE 8 Comparison of

LCDAs for 4 × 4 16QAM HR-USTLD.

LCDA, low-complexity detection

algorithm; MLD, maximum-likelihood

detection; MSRSD-USTLD, multiple

stage reduced set detection for uncoded

space-time labelling diversity; QRD, QR

decomposition; QRLPSA, QR-QL

parallel searching algorithm
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discussion focusses on this metric. It is also useful to define the percentage reduction in effective real operations for an
LCDA, which is given by

% Reduction of ΨLCDA = 1−
ΨLCDA

ΨMLD
: ð30Þ

From the results presented in Figures 8 and 9, it is clear that existing QRD-based LCDAs are unsuitable for HR-
USTLD systems. Despite reducing the number of effective real operations by over 99%, these schemes fail to capture the

FIGURE 9 Comparison of

low-complexity detection algorithms

(LCDAs) for 4 × 5 16PSK HR-USTLD.

LCDA, low-complexity detection

algorithm; MLD, maximum-likelihood

detection; MSRSD-USTLD, multiple

stage reduced set detection for uncoded

space-time labelling diversity; QRD, QR

decomposition; QRLPSA, QR-QL

parallel searching algorithm
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system diversity and do not achieve detection accuracy comparable to MLD. By contrast, the proposed MSRSD-USTLD
algorithm achieves near-ML accuracy. The results indicate that there is a significant complexity cost associated with
this increase in accuracy, as expected, when comparing MSRSD-USTLD to existing QRD-based LCDAs. However,
MSRSD-USTLD provides considerable complexity reduction when compared to the benchmark case of MLD. For high
modulation orders, the achievable complexity reduction of MSRSD-USTLD may be approximated as 1− λ−1

M

� �NTx . For
reasonable values such as λ= 35 and a 4 ×NRx 64-ary QAM or PSK system, this results in complexity reduction of
approximately 1− 34

64

� �4
= 92:03%.

The final study in this paper presents the inherent trade-off between detection accuracy and complexity for the
MSRSD-USTLD algorithm. As mentioned in Section 2.2.5, MSRSD-USTLD defines three parameters (m, K, and λ)
that can be tuned to adjust the trade-off between detection accuracy and complexity. This study focusses on effect
of the reduced constellation set size (λ), which is the additional variable introduced to the detection when
compared to the Extended QRLPSA.20 The expression for the complexity of MSRSD-USTLD presented in Table 3
also shows that, of the three adjustable parameters in the MSRSD-USTLD algorithm, λ has the greatest impact
on complexity.

Figure 10 presents the results of this study for discrete values of λ, tested on a 4 × 4 16QAM HR-USTLD system
at a total average SNR of 14 dB. The other parameters for performing MSRSD-USTLD on this system were m = 10
and K= 2. The results indicate that higher values of λ result in more accurate detection, as expected. When λ = M,
the union set used in Stage 3 of the MSRSD-USTLD algorithm is the same as the MLD search set. In other words,
the BER simulated for λ= 16 in Figure 10 is the same as the BER that would be obtained by implementing MLD
and is the benchmark when comparing the detection accuracy of the algorithm. It is observed that when λ≥ 12,
there is minimal change in the simulated BER of the system. Hence, choosing λ in this range achieves optimal
detection accuracy for the USTLD system considered. Figure 10 also shows that the maximum complexity of
MSRSD-USTLD increases as λ increases. It is observed that for λ= 14, the complexity of MSRSD-USTLD is approxi-
mately the same as MLD. For greater values of λ, MSRSD-USTLD is found to incur a higher complexity than MLD.
This is expected, as when λ≈M, the complexity of Stage 3 of the MSRSD-USTLD algorithm is comparable to MLD.
However, when summing the complexity of all three stages of MSRSD-USTLD, a higher complexity than MLD is
obtained. It may thus be concluded that for the system presented, choosing λ= 12 allows for near-optimal detection
accuracy to be achieved at approximately 50% of the complexity of MLD.

FIGURE 10 Demonstrating the

trade-off between accuracy and

complexity of MSRSD-USTLD. MLD,

maximum-likelihood detection;

MSRSD-USTLD, multiple stage reduced

set detection for uncoded space-time

labelling diversity; QRLPSA, QR-QL

parallel searching algorithm
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5 | CONCLUSION

In this paper, USTLD was extended to a more general case of any NTx transmit antennas. The motivation behind such
an extension is that increasing NTx allows for higher data rates to be achieved at lower modulation orders, which results
in better system error performance. Results confirm this and show a 4 dB performance improvement between HR-
USTLD and existing USTLD systems for a six bits/s/Hz data rate. In addition to defining the HR-USTLD system model,
this paper derives an analytical expression for the upper bound of the ABEP, which is verified against simulated results.

To combat the exponential increase in computational complexity associated with systems with multiple transmit
antennas, a new LCDA designed specifically for the HR-USTLD system is presented (MSRSD-USTLD). It is shown that
MSRSD-USTLD is capable of achieving near-ML detection accuracy. From the systems investigated, the worst-case
complexity of MSRSD-USTLD is shown to still achieve 79.75% complexity reduction when compared to MLD in a 4 × 4
16QAM HR-USTLD system and 92.53% reduction in a 4 × 5 16PSK HR-USTLD system. Results have been presented to
demonstrate the trade-off between detection accuracy and complexity for MSRSD-USTLD. It is noted that although the
MSRSD-USTLD algorithm proposed has been developed using QRD-based LCDAs in its initial stages, this is not a strict
constraint. As such, future works may investigate the application of other existing LCDAs in the initial stages of
MSRSD-USTLD. Future works may also consider developing analytical expressions for the error performance of
HR-USTLD systems when sub-optimal LCDAs are applied to them.
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APPENDIX A: A DERIVATIONS OF COMPLEXITY IN TERMS OF EFFECTIVE REAL OPERATIONS

In the work of Pillay and Xu,4 it is suggested that algorithmic complexity be measured in terms of real operations.
This paper considers the same metric when determining the complexity of the detection schemes considered.
When working with complex numbers, a single complex multiplication consists of four real multiplications and
two real additions, equalling six effective real operations. Complex addition consists of two real additions and sim-
ilarly for complex subtractions. The derivation of complexity in terms of this metric for the detection schemes
given in Section 2.2 follows.

MLD derivation
MLD for HR-USTLD is done by evaluating the decision metric given in Equation (4) for each of theMNTx possible vector
pairs x̂1, x̂2h i, where x̂i1 , x̂i2h i 2 ξ, i2 ½1 :NTx�. For a given vector x̂t, t2 ½1 : 2�, the following derives the complexity of cal-
culating vector norm zt−Htx̂tk k2:

1 Matrix product Htx̂t: NTxNRx complex multiplications, NRxNTx−NRx complex additions.
2 Vector subtraction zt−Htx̂t: NRx complex subtractions.

3 Vector norm zt−Htx̂tk k2: 4NRx− 1 real operations.

This gives a total of 8NTxNRx + 4NRx−1 effective real operations. It then follows that the complexity of MLD is
given by

ΨMLD =MNTx 2 8NTxNRx + 4NRx−1ð Þ+1ð Þ
=MNTx 16NTxNRx + 8NRx−1ð Þ: ðA1Þ

QRD, QRD-m, and QRLPSA derivations
For QRD, QRD-m, and QRLPSA, the derivations presented are for perfectly determined systems. This approach is iden-
tical when considering overdetermined systems if zero rows are discarded. Preprocessing by reordering H is not consid-
ered part of the algorithm, and the complexity of performing the actual decompositions (i.e. converting H to matrix
product QR or matrix product QL) is neglected, as per Peer et al.20

When considering any QRD-based detection schemes, the first step of detection after decomposing matrix H is to
perform left-multiplication as shown in Equation (5). This matrix multiplication consists of 2N2

Rx complex multiplica-
tions and 2NRx(NRx− 1) complex additions, giving a total complexity of 16N2

Rx − 4NRx effective real operations. The left-
multiplication for a QLD-based system, which is necessary for the QRLPSA, is described by Equation (6) and incurs the
same complexity as for QRD. Searching through the q-th layer of the QRD search tree during time slot t, as described
by Equation (9), the complexity may be calculated as

1 Summation S1t : q− 1 complex multiplications, q− 2 complex additions.
2 Scalar subtraction αqt −rq, qt x̂t−S1t : 1 complex multiplication, 2 complex subtractions.

3 ED αqt −rq,qt x̂t−S1t
		 		2: 3 real operations.

Thus, the complexity of searching through the q-th layer of the QRD search tree has 8q + 3 effective real operations.
Summing this result across both time slots yields:

ΨlayerðqÞ=2ð8q+3Þ+1=16q+7: ðA2Þ

The complexity for searching though the QRD tree is found by summing the result of (A2) through all NTx layers of the
QRD search tree and testing M candidate symbol pairs per layer. Using the identity given by Weisstein,31XA

k=1
k=

A
2
ðA+1Þ, the result is
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ΨQRD = 16N2
Rx−4NRx +M

XNTx

q=1
ΨlayerðqÞ

=16N2
Rx−4NRx +M 8N2

Tx + 15NTx
� �

,
ðA3Þ

where the first two terms are as a result of the left-multiplication as explained previously. The same result is obtained
for a QLD search tree.

For QRD-m, Equation (A3) is adjusted to cater for the m search paths considered from the second search layer
onwards, yielding:

ΨQRD-m = 16N2
Rx−4NRx +MΨlayerð1Þ+mM

XNTx

q=2
ΨlayerðqÞ

=16N2
Rx−4NRx + 23M +mM 8N2

Tx + 15NTx−23
� �

:
ðA4Þ

For parallel searching, it is sufficient to consider only the complexity of the QRD search tree and double the result to
take the QLD search tree into account. While traversing the search tree, the best m paths of the search tree are consid-
ered, and M nodes are expanded at each layer, for each path. Only NTx

2


 �
layers of the QRD and QLD search trees may

be evaluated in parallel, and for odd NTx, the
NTx
2

� 
-th layer is evaluated after parallel searching.

Thus, the complexity of QRLPSA may be expressed as

ΨQRLPSA =
NTx

2

� �
−

NTx

2

� �� �
Ψlayer

NTx

2

� �� �

+2 16N2
Rx−4NRx +MΨlayerð1Þ+mM

X NTx

2

� �
q=2 ΨlayerðqÞ

0
BB@

1
CCA:

ðA5Þ

Solving for the cases of even and odd NTx respectively yields:

ΨQRLPSA; even NTx = 32N2
Rx−8NRx + 46M +mMð4N2

Tx + 15NTx−46Þ:
ΨQRLPSA; odd NTx = 32N2

Rx−8NRx + 46M +mMð4N2
Tx + 15NTx−42Þ: ðA6Þ

Extended QRLPSA derivation
For the extended QRLPSA, the first stage is to perform parallel searching, and thus, it incurs the complexity
described by Equations (A5)–(A7). During the second stage, there are only m2 real additions as a result of summing
the metrics of the partial candidate label vectors during merging. Sorting and reducing to the set of K merged vec-
tors incurs minimal complexity and is neglected. Finally, the complexity of the third stage is found by evaluat-
ing Equation (A2) for the latter NTx

2

� 
layers of the QRD search tree and expanding K nodes per layer. Thus, the

complexity of extended QRLPSA is

ΨExtended QRLPSA =ΨQRLPSA +m2 +K
XNTx

q=
NTx

2

� �ΨlayerðqÞ

=ΨQRLPSA +m2 +K
XNTx

p=1
ΨlayerðpÞ−

X NTx

2

� �
q=1 ΨlayerðqÞ

0
BB@

1
CCA:

ðA8Þ

For even and odd NTx, the summation term reduces to K 6N2
Tx +

15
2 NTx

� �
and K 6N2

Tx +
23
2 NTx + 11

2

� �
, respectively.

MSRSD-USTLD derivation
Similarly to extended QRLPSA, the first stage of MSRSD-USTLD is to perform parallel searching, the complexity of
which is given in Equations (A5)–(A7). Stages 2 and 3 both evaluate the MLD detection metric A , which has been
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defined in Equation (4), through ξmerged and ξreduced, respectively. Complexity for each of these stages may be found by
using the result from Equation (A1) for the complexity of the ML metric and multiplying by the cardinality of the
respective search set. For Stage 2, ξmerged

			 			=m2, and thus, the complexity is

ΨMSRSD-USTLD; Stage 2 =m2 16NTxNRx + 8NRx−1ð Þ: ðA9Þ

For Stage 3, due to the optimisations outlined in Section 2.2.5, the size of the search space ξreducedj j cannot be exactly
determined. The maximum size of the reduced set search space is given by ξreducedj jmax =K λ−1ð ÞNTx . Thus, the resulting
upper bound on the Stage 3 complexity is

ΨMSRSD-USTLD; Stage 3 ≤K λ−1ð ÞNTx 16NTxNRx + 8NRx−1ð Þ: ðA10Þ

Finally, the complexity of MSRSD-USTLD is given by

ΨMSRSD-USTLD ≤ΨQRLPSA +ΨMSRSD-USTLD; Stage 2 +ΨMSRSD-USTLD; Stage 3: ðA11Þ

Substituting Equations (A5), (A9), and (A10) into Equation (A11) produces the expression given in Table 3.
The complexity of Stages 2 and 3 of MSRSD-USTLD is typically much larger than the complexity of Stage 1. Hence,

Equation (A11) may be approximated as

ΨMSRSD-USTLD≲ m2 +K λ−1ð ÞNTx

� �
16NTxNRx + 8NRx−1ð Þ: ðA12Þ
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