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Abstract— The relatively high accuracy, large measurement 

range, and durability of thermocouple devices make these 

devices to probably be the most-widely used temperature 

measuring devices in industrial applications. The ability of 

thermocouples to sense temperature is derived from the 

generation of thermoelectric voltages arising due to temperature 

differences between the hot and cold junctions of the 

thermocouple. Thermocouple temperature measurement 

processes suffer from inaccuracies arising from both the 

unwanted or undetected variations in the cold junction 

temperature of the thermocouple, and nonlinearities in the 

generated thermoelectric voltage. This paper presents an 

enhancement of thermocouple temperature measurement using 

a combination of augmented thermocouple tables generated 

from thermocouple polynomial functions, look-up MLP neural 

networks trained to accept the thermocouple output voltage, 

and the cold or reference junction temperature measurements: 

to produce improved hot-junction temperature outputs. 

Experimental validation of the current approach for a J 

thermocouple, using data from augmented device tables, 

reproduced the measured temperature values with a worst-case 

error of 0.0094%. 

Keywords— Artificial neural networks, thermocouple, 

nonlinear, multilayer perceptron 

I. INTRODUCTION 

Most processes in biological tissues, chemistry, power 
generation and manufacturing, etc., involve energy exchange 
of one sort or the other [1,2]. Such energy exchanges are often 
accompanied by temperature changes. Consequently, 
temperature is one of the most widely measured quantities.  
Thermocouple devices are the most ubiquitous of sensors for 
temperature measurement. Despite the high utility of these 
class of temperature sensors, the thermoelectric voltage 
generated by them suffers from nonlinearities; and is also 
affected by unwanted variations in the temperature of the 
reference junction. Both factors affect the accuracy of 
temperature measurements with thermocouples. 
Thermocouple devices generate a small dc voltage 
(electromotive force) in the millivolts and microvolts range 
that can be represented in the form; 

� = �� + ����	 − ���
� + ����	
� − ���


� � + ⋯ +
��(�	

� − ���

� )                                                (1) 

Where ��, ��, … , ��  thermocouple constant of type K, J, 

B, R or S.  �	 is hot/measuring junction temperature (°C) 

and  ���
 the reference/cold junction temperature (°C). 

The cold and hot junction of the thermocouple contribute 
to the generated thermoelectric voltage, as such the cold 
junction variation must be monitored or controlled. There 
exist many methods for dealing with the effects of cold 
junction disturbances on thermocouple output voltage. One 
such method involves keeping the reference junction at 0°C in 
an ice bath [3,4]. This approach is not always economic, in 
terms of cost and space utilization. Moreover, this method 
cannot be applied where an ice bath is not available. Another 
physical approach to correcting the effect of variations in the 
cold junction temperature is effected by measuring the 
variations in the reference junction temperature or voltage, 
and then subtracting the measurements from the measured 
thermocouple voltage [5], as such thermocouple equation is 
then reduced to: 

����� = �	(�	) − ���
(���
)       (2) 

Where ����� , �	(�	) , ���
(���
) are the measured 

thermocouple output voltage, hot junction voltage, and the   
cold junction voltage.  

Two other methods for cold junction compensation, are 
classified as: hardware compensation and software 
compensation. With hardware compensation, a variable 
voltage source is inserted into the circuit to cancel the 
contribution of the reference junction in the measured voltage. 
This variable voltage source generates a compensation voltage 
according to the ambient temperature, thus adding the correct 
voltage to cancel the reference junction voltage. The resulting 
voltage measured at the output is used to compute 
thermocouple temperature using the ITS-90 tables [5]. The 
major disadvantage of hardware compensation is that it is 
expensive. Each thermocouple type must have a separate 
compensation circuit that would add correct compensation 
voltages, as each thermocouple type has different 
characteristics.  

Software cold compensation has better accuracy than 
hardware compensation [6]. It requires a direct reading sensor 
to measure the reference junction temperature; after that, the 
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software can add the correct compensation voltage to the 
measured voltage of the thermocouple.  

The above methods generally lack flexibility at 
implementation, or a computationally intense and only 
suitable for low speed temperature measurement application.  
The main reason the ITS-90 tables are limited is the fact that, 
they are only useful if the reference temperature is 0°C. 
However, using the thermocouple polynomial function, an 
augmented thermocouple table could be generated, which 
would provide thermocouple output for random values of both 
the reference junction and hot-junction temperatures. In the 
approach used in this paper, the augmented table of a given 
thermocouple was programmed into a microcontroller.  Then, 
random values of the cold and hot junction temperatures were 
used with the thermocouple polynomial to generate data for 
training a look-up multi-layer perceptron neural network that 
uses cold-junction temperature values and the thermocouple 
output voltages to look up or compute the corresponding hot 
junction temperatures. The neural network is also 
programmed into the microcontroller.   

The overall thermocouple conditioning technique is 
summarized in Fig. 1. 

 

 

Fig. 1. Thermocouple signal conditioning using NN 

Fig. 1, shows the proposed technique for temperature 
measurement accuracy enhancement with thermocouples. 
First thermocouple polynomial equation is used to generate a 
new ITS-90 (International Temperature Standard of 1990) 
table for J-type thermocouple. The new ITS-90 table referred 
to as Augmented ITS-90 table provides training data for the 
MLP neural network. For practical validation, instrumentation 
amplifier (amplify thermoelectric voltage), temperature-
voltage sensor and microcontroller are used. 

The rest of this paper is organized as follows. The 
generation of augmented ITS-90 is presented in section II of 
this paper. The MLP neural network design and validation are 
discussed in section III. Conclusions are presented in section 
IV. A list of references and an appendix conclude the paper. 

 

II. AUGMENTED IST-90 TABLE GENERATION 

Data available from the National Institute of Standards and 

Technology (NIST) on thermocouple ITS-90 tables is 

limited, the fact that the International Temperature Scale of 

1990 (ITS-90) tables were calibrated only for reference 

junction temperature of 0°C. For the approach used in this 

research, where the thermocouple reference junction 

temperature is assumed variable beyond the 0°C value, 

augmented ITS-90 thermocouple tables are required. From 

generalized thermocouple equation for output thermoelectric 

voltage relating to the hot and cold junction temperatures 

given in equation (1), the reference junction temperature was 

varied between -10°C to 30°C, assuming average room/open-

space temperature and application-specific temperatures. 

Then using MATLAB, thermocouple coefficient and 

equation (1), several values of the thermocouple output 

voltage V, using randomly generated values of �	  and 

���
 (within pre-defined ranges) to form new, expanded 

table for J-type thermocouple with varying reference junction 

temperatures were generated. 

For accuracy validation, readings from the augmented 

table for the J-thermocouple with zero reference junction 

temperature was compared with standard ITS-90 Table. The 

results showed that the maximum error was within 5x10-4 

millivolt, as observable from the error plot below. 

 

 

 
Fig. 2. Augmented ITS-90 table for J-thermocouple validation results 

 

III. NEURAL NETWORK DESIGN 

An artificial neural network is composed of a large 

number of interconnected units called neurons that have a 

certain natural tendency for learning information from the 

outside world. Neural networks are best at estimating or 

approximation of functions that may depend on many 

variables [7-11], nonlinear function approximators. 

Thermocouples are nonlinear temperature measuring 

devices; therefore, neural networks will be used to linearize 

thermocouples in this study. 

 

A. Multilayer Perceptron Neural Network 

The proposed study of thermocouple signal conditioning 

using neural networks involves the design and training of a 

neural network for type-J thermocouples using the MATLAB 

neural network toolbox.  The selection of the particular neural 

network structure for use in linearization and cold junction 

compensation for the J-type thermocouple was decided after 

comparing the generalization capability and structure the 

neural network when trained to compensate and linearize the 

J-type thermocouple. The most interesting property of 

artificial neural networks is the ability to learn, collect 

information by a process called training [13, 14]. Training is 

when a neural network collects information using example 

data by applying an algorithm whose purpose is to reduce 

some error function. The error function employed in this 

study is the sigmoid function represented by; 
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The figure below depicts a typical MLP neural network 

structure with an activation function with two hidden layers. 
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Fig. 3. MLP neural network Structure 

 

B. MLP Neural Network Design and Training 

A neural network with sufficient nodes can approximate 

any function, either linear or nonlinear [4], this property of 

NN was used in this study to design a neural network that 

predicts the measured temperature given reference 

temperature and measured thermoelectric voltage. The results 

from the comparison showed that the MLP neural network is 

better than the other models. The selection of an MLP was 

based on its ability to predict future variables given an input 

vector containing earlier observations [10]. The next step 

involved finding the smallest MLP architecture that had 

sufficient generalization capability without a significant loss 

of accuracy of generalization. Such pruning of the MLP 

neural network is required to reduce the requisite 

computational efforts during the microcontroller 

implementation of the conditioning system. The architecture 

of the MLP can be assessed by changing the ANN parameters 

(weights and biases) by using the pruning methods presented 

in [7]. Through pruning the size of the neural network, a 

neural network with excellent generalization capability was 

found. Below is the final neural network structure designed 

for approximating thermocouples characteristics. 
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Fig. 4. Type J thermocouple neural network structure 

 

 

 
 
Fig. 5. Type J thermocouple training error for network 

Fig. 5 shows training error for the Type J thermocouple 

neural network. The training of these neural network 

continued until the best training performance was reached. 

Careful consideration was taken not to over fit the neural 

networks that can give rise to the low generalization 

capability of the network. 

 

 
Fig. 6. Type J thermocouple neural network generalization test 

The J thermocouple neural network was designed and the 

performance of the MLP neural network was tested with 

unknown input vectors. Fig. 6 show the generalization error 

plots for the J-type thermocouple for the performance of the 

neural networks in predicting the measured temperature of a 

thermocouple with an input vector of reference junction 

temperature and thermoelectric voltage. As it can be seen 

from Fig. 6, the neural networks produced acceptable 

accuracy with the worst-case error within 0.0094%. 

 

IV. CONCLUSION 

It can first be concluded that, thermocouple 

polynomial equation can be used to expend the standard ITS-

90 thermocouple tables. As the augmented ITS-90 generated 

in this study produced an error within 5&10)* millivolt when 

compared with the ITS-90 table for the J-thermocouple. The 

J thermocouple signal conditioning neural network showed 

measurement accuracy error within 0.0094% during the 

experimental validation. This performance of cold junction 

978-1-6654-6887-9/22/$31.00 ©2022 IEEE
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compensation showed an improved performance from other 

cold junction compensation methods, and there is a potential 

to improve this performance by increasing the parameters of 

the neural network, such as the number of hidden layers and 

neurons. The results achieved in this study leads to the 

conclusion that this design was a success, and it will be 

implemented in the laboratory to confirm the theoretical 

results that were found here.  

Future recommendation is for practical validation of 

the results by implementing a signal conditioning system 

using microcontroller, a high accuracy instrumentation 

amplifier to improve the accuracy of thermocouple 

thermoelectric voltage readings by the microcontroller, and 

with a temperature-voltage sensor with improved accuracy. 

Thermocouple temperature measurement accuracy of within 

0.0094% can be achieved. 

 

V. APPENDIX I: MATLAB BASED GENERATION OF 

AUGMENTED TABLE FOR THE TYPE J THERMOCOUPLE. 

 
%--=========-Type J Thermocouples Coefficients in mV-------------- 
%------------- Type J -210 to 760 

C=[0.15631725697E-22 -0.12538395336E-18 0.20948090697E-15 -
0.17052958337E-12...           

0.13228195295E-9 -0.8568106572E-7 0.3047583693E-4 0.50381187815E-

1 0 ]; 
% %--------------Type J 760 to 1200--------------     

%C=[-0.306913690560E-12 0.157208190040E-8 -0.318476867010E5... 

%        0.317871039240E-2 -0.149761277860E1 0.296456256810E3]; 
 

Th=randi([-210 760],[1 1500]); 

Tc=randi([-10 30],[1 1500]); 
% Th=randi([760 1200],[1 500]); 

% Tc=randi([-10 30],[1 500]); 

 
Vm= polyval(C,Th)- polyval(C,Tc); 

C_Set=C'; 

Data_set=[Vm',Tc',Th']; 
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