The effectiveness of lemon and sandalwood essential oils in the treatment of post inflammatory facial pigmentation in African females aged 18-35 years

Submitted in fulfilment of the requirements for the degree of Master of Health Sciences: Somatology in the Faculty of Health Sciences at The Durban University of Technology

APPROVED FOR FINAL EXAMINATION

Ronnell Naidoo

November 2019

Supervisor: Mrs D Borg Co-supervisor: Dr N Govender

Signature: Signature:
PREFACE

This study represents original work by the author and has not been submitted in any other form to another university. Where use was made of the work of others, it has been duly acknowledged in the text.

The research described in this dissertation was carried out in the Department of Somatology, Faculty of Health Sciences Durban University of Technology Durban, South Africa under the supervision and co-supervision of Mrs D Borg and Dr N. Govender

______________________________ ________________________ _______________________
Mrs R Naidoo Mrs D Borg Dr N Govender
(Supervisor) (Co-supervisor)
DECLARATION OF AUTHORSHIP

I, Mrs Ronell Naidoo, hereby declare the content of this research project is my own unaided original work, except where specific indication is given to the contrary (by reference). To the best of my knowledge and belief, this thesis has not been submitted to any other institution as part of an academic qualification and contains no material previously published or written by any other person except where due reference is made.

__
Mrs Ronell Naidoo
Student number: 20807147
Date: 29 November 2019
DEDICATION

I wish to dedicate this piece of work in its entirety to my first-born Zaiden Samuel Naidoo. My little boy, your contagious smile lights up our lives. I am, and will always be, your biggest supporter. You have changed our lives for the better.

To my loving husband and parents, your spiritual guidance, support and encouragement to always progress is greatly valued.

To my Lord and Saviour Jesus Christ, this study would not have been possible without your faithfulness and grace.

“Commit to the Lord whatever you do, and he will establish your plans.”

Proverbs 16:3
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to:

- My Supervisors: Dr Govender and Mrs Borg for their continuous guidance and unfailing support throughout this study.

- My heart-felt thanks to my husband (Riza) and son (Zaiden) for their continual support, patience, love and encouragement.

- My parents, Pastors Cyril and Shanthie Ganesh for their constant encouragement.

- To my family and friends for their support and encouragement throughout the write up of this dissertation.

- Professor Matthews for statistical assistance.

- Professor Mosam for diagnostic assistance.

- Dr Steele for meticulous editing and proof reading.

- Participants that have participated in the study.

- Environ Distribution for the generosity in sponsoring aqueous cream used in the study.

- Upfront Distribution for their donation of product during the study.

- The Durban University of Technology for financial assistance.
ABSTRACT

Introduction: Post inflammatory pigmentation (PIH) is a common dermatologic disorder globally. It is most prominent in darker skinned woman of childbearing age. PIH affects the physical and physiological features of the sufferer, altering their quality of life. The high costs and safety of treatment options available for PIH are questionable, thus creating an interest in the effects of natural remedies on PIH.

Aim: The study aimed to evaluate the effects of lemon and sandalwood essential oils on PIH present in African females aged 18-35 years.

Objective: The study objective was to determine the progression of PIH using sandalwood and lemon essential oils and a placebo treatment by means of a Skin Analyser® machine. Comparisons were made between the oils to determine their effectiveness in the treatment of PIH.

Methodology: This was a prospective, quantitative and double-blinded study with an experimental design, conducted at the Durban University of Technology. Participants were black female students, 18-35 years, with a sample size of 48. Participants were randomly assigned to experimental and control groups. A pre-test post-test method was used and follow up consultations took place at baseline 0 weeks and thereafter at 8, 16 and 24 weeks.

Results: The majority of participants were 18-22 years of age with 61.7% (n = 29) indicating the use of daily homecare treatments such as cleansers and moisturisers, while 54.3% (n = 25) reported a family history of pigmentation. Low-self-esteem was reported by 52% (n = 31), which is a concern. Improvements (facial spots, pore sizes, ultraviolet [UV] features) were noted in the skin as a result of treatment with both sandalwood and lemon oils. Significant results were demonstrated by sandalwood oil across key skin parameters (facial spot, pore sizes, UV features)

Discussion: The prevalence of common factors that influence the onset of PIH such as age, race and increased hormonal factors are high within this cohort, endorsing their susceptibility to PIH development. Our data also highlights waxing as the preferred hair removal method. However, waxing predisposes women to inflammation, blockage of pores and burns, leading to PIH.
Therefore, the increased incidence of pigmentation in our study may be associated with the higher usage of waxing. Overall, visible improvements were demonstrated in the skin for both oils. We observed significant physiological changes in the pore sizes as a result of both oils, as well as improved pore conditions with fewer enlarged and blocked pores. Thus, both groups showed a reduction in the prevalence of acne. Our data thus suggests that both oils may have a potential role in decreasing the development of acne and PIH.
TABLE OF CONTENTS

PREFACE .. ii
DECLARATION OF AUTHORSHIP .. iii
DEDICATION .. iv
ACKNOWLEDGEMENTS .. v
ABSTRACT ... vi
TABLE OF CONTENTS ... vii
LIST OF FIGURES .. xi
LIST OF TABLES .. xii
LIST OF APPENDICES ... xiii
ABBREVIATIONS AND ACRONYMS .. xiv
DEFINITION OF TERMS ... xv

CHAPTER 1: INTRODUCTION .. 1
 1.1 BACKGROUND .. 1
 1.2 RESEARCH AIM AND OBJECTIVES ... 3
 1.2.1 Aim .. 3
 1.2.2 Research objectives ... 3

CHAPTER 2: LITERATURE REVIEW ... 4
 2.1 Anatomy of the integumentary system ... 4
 2.1.1 Cellular features of the epidermis ... 6
 2.1.1.1 Keratinocytes .. 6
 2.1.1.2 Merkel cells .. 7
 2.1.1.3 Langerhans cells ... 7
 2.1.1.4 Melanocytes ... 7
 2.2 Melanin .. 8
 2.2.1 Melanogenesis ... 9
 2.3 PIGMENTARY SKIN DISORDERS .. 9
 2.3.1 Melasma .. 10
 2.3.2 Post-Inflammatory hyperpigmentation .. 11
 2.3.2.1 Pathophysiology and aetiology of PIH .. 11
2.3.2.2 The PIH process ... 12
2.3.2.3 Acne in PIH development .. 13
2.4 Hyperkeratinisation ... 14
2.5 Treatment options for PIH .. 15
 2.5.1 Lasers .. 15
 2.5.2 Hydroquinone ... 16
2.6 Natural remedies for PIH ... 17
 2.6.1 Essential oils .. 19
 2.6.2 Lemon essential oil (Citrus limon) .. 21
 2.6.3 Sandalwood essential oil (Santalum album) 21
 2.6.4 Role of lemon and sandalwood oils in pigmentation 22

CHAPTER 3: MATERIALS AND METHODS ... 23
3.1 Ethical considerations ... 23
3.2 Study design and setting ... 23
 3.2.1 Inclusion criteria ... 23
 3.2.2 Exclusion criteria .. 24
3.3 Study Sampling and recruitment .. 24
3.4 DATA COLLECTION ... 25
 3.4.1 Allergy testing ... 25
 3.4.2 Allocation of experimental products and essential oil blends 26
 3.4.3 Assessment of skin parameters 27
3.5 Data analysis .. 27

CHAPTER 4: RESULTS ... 28
4.1 Demographics and lifestyle characteristics 28
4.2 Bivariate analysis between skin parameters, skincare regimen and family history of PIH ... 29
4.3 Photographic evidence .. 31
 4.3.1 Lemon treatment group ... 31
 4.3.2 Control group .. 32
 4.3.3 Sandalwood treatment group ... 32
4.4 Descriptive analyses of the skin parameters 33
4.5 Effect of lemon and sandalwood essential oil on skin parameters ... 34
4.6 Changes in skin parameters over time among all groups 36
LIST OF FIGURES

Figure 2.1: Cellular layers of the epidermis...6
Figure 2.2: Difference in melanosome and melanocyte distribution among Africans, Asians
and Europeans..9
Figure 2.3: Process of PIH formation in acne...12
Figure 2.4: The hyperkeratinisation process...14
Figure 2.5: Summary of the effects of lemon and sandalwood oil essential oil on PIH....22
Figure 4.1: (a) Image illustrating the facial appearance at baseline (0 weeks), (b) Image
illustrating post treatment improvements with the visual characteristics of the skin in the
lemon treatment group ...31
Figure 4.2: (c) Image illustrating the facial appearance at baseline (0 weeks), (d) Image
illustrating post treatment improvements with the visual characteristics of the skin in the
control (aqueous cream and SPF) ...32
Figure 4.3: (e) Image illustrating the facial appearance at baseline (0 weeks), (f) Image
illustrating post treatment improvements with the visual characteristics of the skin in the
sandalwood treatment group ..32
Figure 4.4: Graphs illustrating the changes in the percentages of the skin parameters over
time in the treatment and control groups, (a) facial spot, (b) pore size, (c) skin roughness,
(d) facial wrinkles, (e) UV acne, (f) UV spot, (g) UV moisture38
LIST OF TABLES

Table 3.1: Skin parameters and indicators analysed by the Skin Analyser®27
Table 4.1: Participant skin care management and family history (pigmentation)30
Table 4.2: Evaluation of skin parameters at baseline (0 weeks) and post treatment (24 weeks)
amongst those using the lemon treatment (n = 15) ...33
Table 4.3: Evaluation of skin parameters at baseline (0 weeks) and post treatment (24 weeks)
amongst those using the sandalwood treatment (n = 15) ..34
Table 4.4: Effects of lemon and sandalwood essential oil on skin parameters35
LIST OF APPENDICES

Appendix 1: IREC approval .. 96
Appendix 2: Request for permission to conduct research .. 97
Appendix 3: Letter of Information and Consent – English .. 98
Appendix 4: Letter of Information and Consent – isiZulu .. 100
Appendix 5: Consent form – English ... 102
Appendix 6: Consent form – isiZulu ... 103
Appendix 7: Advert – English ... 104
Appendix 8: Advert – isiZulu .. 105
Appendix 9: Questionnaire – English .. 106
Appendix 10: Questionnaire – isiZulu ... 111
Appendix 11: Agreement letter Prof. Mosam ... 117
Appendix 12: Basic treatment usage instructions ... 118
Appendix 13: Process of consultations .. 119
Appendix 14: Manuscript ... 120
ABBREVIATIONS AND ACRONYMS

With reference to this study the following abbreviations and acronyms apply:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EO</td>
<td>Essential oil</td>
</tr>
<tr>
<td>PIH</td>
<td>Post Inflammatory Hyperpigmentation</td>
</tr>
<tr>
<td>HQ</td>
<td>Hydroquinone</td>
</tr>
<tr>
<td>SEO</td>
<td>Sandalwood Essential oil</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra Violet</td>
</tr>
<tr>
<td>UVA</td>
<td>Ultraviolet A</td>
</tr>
<tr>
<td>UVAB</td>
<td>Ultraviolet B</td>
</tr>
<tr>
<td>AV</td>
<td>Acne Vulgaris</td>
</tr>
<tr>
<td>P. Acnes</td>
<td>Propionobacterium acnes</td>
</tr>
</tbody>
</table>
DEFINITION OF TERMS

Acne: Acne vulgaris is a common pigmentary disorder of the pilosebaceous follicles affecting the face, chest, shoulders and back. It consists of comedones, papules, pustules, and nodules.

Cosmetics: These are scented preparations used to clean, soften skin and mask body odour and is linked to hygiene as its primary purpose. Cosmetics are used to enhance complexion, skin, hair, and nails.

Dermis: The dermis forms part of the integumentary system and is a fibrous elastic tissue that hosts vessels, nerves, and sensory receptors.

Epidermis: The epidermis is a superficial layer differentiated into multiple stratified squamous epithelium that is the first layer of the integumentary system. The basale, spinosum, granulosum, lucidum and corneum layers make up the epidermis.

Essential oils: These oils are extracted from roots, herbs, fruits and barks for use in various industries for their beneficial properties.

Hydroquinone: Hydroquinone (HQ) is a whitening agent known as 1,4 dihydroxybenzene and is considered the best treatment PIH

Hyperkeratinization: The hyperkeratinisation process occurs when the cells of the follicle become interconnected and do not shed normally onto the skin's surface, resulting in lesions characteristic of acne

Hypodermis: This is the last layer of the integumentary system containing adipose tissue, providing insulation to the skin.

Keratin: These are key fibrous structural proteins that make up hair, nails, and the outer layer of skin. Keratin is also the protein that protects epithelial cells from damage or stress.

Keratinocytes: Keratinocytes are building blocks of the epidermis, they function as an effective barrier against harmful elements.

Melanin: Melanin is responsible for pigmentation in skin, hair, and eyes. There are two types of melanin: eumelanin and pheomelanin.
Melanocytes: Melanocytes produce pigment located in the basal layer. Melanocytes are responsible for increased epidermal pigmentation.

Pigmentary disorders: These disorders occur in the skin in response to ultraviolet (UV) exposure, genetic background, hormones and inflammation due to physical injury. The two most common pigmentary disorders are hyperpigmentation and melasma.

Tyrosinase: The enzyme tyrosinase is responsible for melanin production.

Fitzpatrick Scale: This scale is based for correlation between the risk of skin burning and tanning. The scale ranges from I – IV, with skin type I that always burns and never tans. The darker the skin is, the higher risk of burns occurring. This classification system was created by Thomas B. Fitzpatrick (1919-2004).
CHAPTER 1: INTRODUCTION

1.1 BACKGROUND

There has been a global reawakening in cosmeceutical markets for an improved facial aesthetic appearance (Sharma and Sharma 2012). While the biosafety of cosmetics was acceptable in the early 1950s, concerns arose when skin lightening products showed links to harsh reactions (Nohynek et al. 2010). These concerns peaked when harmful side effects of various skin lightening chemicals such as arbutin, kojic acid and hydroquinone were reported in products (Zhu and Gao 2008; Huang et al. 2012). Such harmful effects include irritation, inflammation, thinning of skin, scarring, kidney, liver, or nerve damage (Shroff, Diedrichs and Craddock 2018). These reportings subsequently increased demand for and access to natural products.

Pigmentary disorders rank among the five common complaints among Blacks, Arabs and South Asians (Konda, Geria and Halder 2012). This has led to an increase in usage of skin creams with bleaching properties among many black South African women (Dlova, Hendricks and Martin 2012). These women are in pursuit of treatment regimens that improve the appearance of pigmentation and overall skin tone (Swanson, Leo and Finlay 2014). Furthermore, those with pigmentary disorders are predisposed to poor self-confidence (Jiang et al. 2018), which affects their quality of life (Yadav 2018). Thus, the natural formulation of cosmetics is essential (Walters and Roberts 2008).

Pigmentation remains a challenge due to the limited availability of successful treatment options (Konda, Geria and Halder 2012). Despite the assured guarantee that hydroquinone (HQ) is a successful topical treatment, its link to allergic reactions and irritant contact dermatitis remains a concern (Woolery-Lloyd and Kammer 2011). There is an increased demand for the inclusion of natural treatment options for both facial and body rejuvenation. Chemical based cosmetics may be harmful to the skin, which has increased the interest of many consumers in the beneficial effects of natural products (Do et al. 2015).
Natural products have the ability to exfoliate, lighten skin, and reduce skin irritations (Thakur, Negi and Kush 2013). The biosafety of herbal cosmetics is far superior when compared to traditional cosmetics, as they are paraben free and less irritative (Joshi and Pawar 2015). Essential oils are natural compounds characterised by the strong odour formed by aromatic plants, thereby invoking such benefits (Bakkali et al. 2008). The safety and long-term use of natural ingredients, also known as essential oils, are beneficial in treating pigmentary disorders (Sundaram and Emer 2011). Essential oils are widely used in medical preparations, dietary supplements, aromatherapy, and cosmetology (Misharina and Samusenko 2008). They exhibit good stability during use, and support product blending with other carrier components.

Sandalwood oil imparts moisturising and balancing effects on skin texture, thus improving skin conditions and improving existing pigmentary conditions (Gite et al. 2013). Lemon oil, in contrast is known for its astringent, cleansing and depigmenting properties (Kole et al 2005), characteristics which are also beneficial to the skin. Thus, both essential oils are known to exfoliate, lighten skin and reduce skin irritations (Reddy et al. 2011; Thakur, Negi and Kush 2013). However, the use of these oils in post-inflammatory hyperpigmentation (PIH), whether used independently or in combination with each other, remains unknown.

Pigmentation is a common dermatologic condition found in all skin types but is more prominent in dark skin (Woolery-Lloyd and Kammer 2011). To date, the common treatment agents for depigmentation are kojic acid, arbutin, catechins, HQ and azelaic acid (Zhu and Gao 2008; Huang et al. 2012).

The artificial combinations of these ingredients often result in irreversible cutaneous skin damage, resulting in limited usage (Konda, Geria and Halder 2012). For this reason, botanical and natural components in cosmetics have gained more popularity due to their tolerable effects (Leyden et al. 2011; Sumit et al. 2012). There is also an increased focus on identifying safe and effective skin depigmenting agents for pigmentation treatment (Huang et al. 2012). Therefore, this study aims to explore the effectiveness of lemon and sandalwood essential oils in the treatment of post-inflammatory facial pigmentation in African females aged 18 to 35 years.
1.2 RESEARCH AIM AND OBJECTIVES

1.2.1 Aim

The aim of this study was to evaluate the effectiveness of lemon and sandalwood essential oils in the treatment of post-inflammatory facial pigmentation among African females aged 18 to 35 years.

1.2.2 Research objectives

- To determine the progression of post inflammatory facial pigmentation using lemon essential oil and a placebo treatment by means of a Skin Analyser® machine

- To determine the progression of post inflammatory facial pigmentation using sandalwood essential oil and a placebo treatment by means of a Skin Analyser® machine

- To compare the effectiveness of lemon oil and sandal wood oil in the treatment of facial post inflammatory pigmentation in African females.
CHAPTER 2: LITERATURE REVIEW

2.1 Anatomy of the integumentary system

The skin is important for absorption, excretion, protection, thermoregulation, sensory perception and immunity (Stephen-Haynes 2014; Stephen-Haynes 2013; Proksch, Brandner and Jensen 2008). It is enclosed with a barrier lipid layer assisting moisture balance which prevents dehydration while providing waterproofing (Mizutani et al. 2009). This protective role is critical in preventing infiltration of microbial organisms, chemical irritants, toxins and solar radiation (Bangert, Brunner and Stingl 2011; Luebberding, Krueger and Kerscher 2013).

The skin responds to environmental changes, therefore, it maintains internal homeostasis (Singh and Maibach 2013). Skin varies in thickness according to function and area of the body. On the eyelids, the skin is 0.5mm thick and 3-4mm thick on the soles of the feet and hands (McLafferty, Hendry and Farley 2012). The cellular structure of the skin is multi-layered which prevents dehydration and provides temperature stability, insulation of fats, and vitamin D synthesis (Lai-Cheong and McGrath 2013; Shier, Butler and Lewis 2007; Duckney et al. 2013). The skin is made up of the epidermis, dermis and hypodermis (Venus, Waterman and McNab 2011).

The outermost layer, the epidermis, synthesises keratin a protein while the dermis contains collagen. The hypodermis contains adipose tissue, providing insulation (Arda, Göksügür and Tüzün 2014). Collectively they contribute to the integumentary system as an external protective barrier (Kolarsick, Kolarsick and Goodwin 2011; Bangert, Brunner and Stingl 2011). The epidermis is a continually renewing epithelium, divided into several layers (Baroni et al. 2012) which assist the epidermis in upholding its structure. The epidermis is a superficial layer differentiated into multiple stratified squamous epithelia (Lai-Cheong and McGrath 2013). The stratum layers (basale, spinosum, granulosum, lucidum and corneum) make up the epidermis.
The epidermis serves as a skin barrier (Darlenksi and Fluhr 2012) that receives oxygen and nutrients by diffusion from the dermis (Jones 2014). Keratinocytes and dendritic cells make up the layers that form the epidermis (Wong et al. 2015). The epidermal layer houses pigment melanocytes, Langerhans cells and Merkel cells (Kolarsick, Kolarsick and Goodwin 2011; Rolstad, Ermer-Seltun and Bryant 2011). Melanocytes are responsible for providing skin colour and are the foundation of the pigmentation process (Lavers 2017).

The dermis is a fibrous elastic tissue that hosts vessels, nerves, and sensory receptors (Arda, Göksügür and Tüzün 2014). The strong fibre bundles interact with elastic fibres (Meyer and Seegers 2012) creating a tough, resilient layer, protecting the body against mechanical injury (Venus, Waterman and McNab 2011). The dermis is separated from the epidermis by the dermal epidermal junction (Wang et al. 2015). The dermis functions to provide nutrients and physical support to the epidermis (McLafferty, Hendry and Farley 2012). It is vascular, with lymphatic drainage and sensory receptors (Lai-Cheong and McGrath 2013). Dermal fibroblasts, immune cells, and hair follicles dominate this layer (Brohem et al. 2010).

The dermis includes the superficial papillary layer and the deeper reticular layer (Arda, Göksügür and Tüzün 2014; Barcaui et al. 2015). The dermal matrix lies beneath the basement membrane and provides energy and nutrition to the epidermis (McLafferty, Hendry and Farley 2012). This allows the body to transport immune cells via the circulatory system, and removal of damaged cells through lymphatic circulation (Brodell and Rosenthal 2008). The subcutaneous layer is composed of fat that provides insulation, protective padding, and energy storage (Hwa, Bauer and Cohen 2011). Thus, this layer protects the body from mechanical injury while concealing water. This process aids in thermal regulation.

The basal layer contains column-shaped keratinocytes that attach to the dermis. These cells contain the melanin pigment found within melanocytes (Kolarsick, Kolarsick and Goodwin 2011) and are responsible for stem cell replication and pigment distribution (Thomas 2010). Melanocytes make up 5-10% of the total cell population (Venus, Waterman and McNab 2010). They create melanin that protects the skin from harmful UVA/UVB effects. Melanin gathers in melanosomes that are transported by dendrites to surrounding keratinocytes (Lavers 2017). The epidermis is mainly responsible for pigmentation; therefore, the epidermis and its structures will be discussed in detail.
2.1.1 Cellular features of the epidermis

The predominant cell type of the epidermis is the keratinocyte found from the basal to the granular layer (Wickett and Visscher 2006). The epidermis also harbours melanocytes, Langerhans and Merkel cells (Kolarsick, Kolarsick and Goodwin 2011), as detailed in Figure 2.1. They form a barrier to infection from environmental pathogens and regulate transepidermal water loss (Baroni et al. 2012). The cellular components of the epidermis are important in pigmentation development therefore will be further elaborated upon.

![Figure 2.1: Cellular layers of the epidermis](image)

Source: adapted from Miranda et al. (2007)

2.1.1.1 Keratinocytes

Keratinocytes are building blocks of the epidermis (Barcaui et al. 2015) and function as an effective barrier against harmful elements (Lulevich et al. 2010). Merkel, Langerhans and melanocyte interactions with keratinocytes are fundamental in the development and functioning of the skin (Sengupta et al 2010; Arda, Göksügür and Tüzün 2014). These interactions are also necessary for the pigmentation process (Kolarsick, Kolarsick and Goodwin 2011). Keratinisation is a process of cytodifferentiation from their germinative state (stratum basale) to hardened cells filled with protein in the stratum corneum (Shetty and Gokul 2012). This process is important in the development and health of the cell (Bragulla and Homberger 2009).
Keratinocytes provide structure and strength to the cell (Hwa, Bauer and Cohen 2011). Cell division gives rise to keratinocytes that undergo differentiation as they pass through the layers (Tsuruta et al. 2002; Qiu et al. 2016). Although the epidermis is the major source of vitamin D, keratinocytes are significant in metabolising vitamin D to its active state (Bikle 2011). Humans synthesise vitamin D3 when 7-dehydrocholesterol interact with ultraviolet (UV) light (Shahriari et al. 2010).

2.1.1.2 Merkel cells

Merkel cells are found at the base of the epidermis (Owens and Lumpkin 2014). They are found in the fingertips and lips (Woo, Lumpkin and Patapoutian 2015) providing the touch sensation.

2.1.1.3 Langerhans cells

Langerhans cells reside in the basal layer of the epidermis. They are located in the epithelia of the respiratory and digestive tracts and possess strong immunogenic properties involved in antimicrobial immunity (Chomiczewska et al. 2009). These cells are responsive to different environmental stimuli (Jaitley and Saraswathi 2012), protecting the body against foreign particles.

2.1.1.4 Melanocytes

Melanocyte cells produce pigment that is located within the basal layer (Thomas 2010). They are transferred through dendrites to keratinocytes and are critical in UV protection and determining skin colour (Goding 2007; Baroni et al. 2012; Lin and Fisher 2007). Melanocytes are responsible for the increased epidermal pigmentation (Nicolaidou and Katsambas 2014), that appear in higher concentrations in melanosomes (Kang and Ortonne 2010; Sarkar et al. 2016). The relationship between melanocytes and keratinocytes is vital in pigment development and transportation (Costin and Hearing 2007).

According to Lang, Mascarenhas and Shea (2013), melanin is produced by melanocytes in melanosomes as the epidermis renews (Wickett and Visscher 2006). Thus, the active export of melanosomes through the dendritic processes forms the foundation of skin pigmentation (Goding 2007).
Melanin production is dependent on the structural proteins of melanosomes, enzymes for melanin synthesis, and proteins for melanosome distribution (Yamaguchi and Hearing 2014). These factors have a crucial role in inflammatory responses and PIH (Plonka et al. 2009). A recent study indicates an improved understanding of skin pigmentation if the links between cellular and molecular interactions of melanocytes and keratinocytes are clearly understood (Mizukoshi, Nakamura and Oba 2015).

2.2 Melanin

Melanin is responsible for pigments in skin, hair, and eyes (Solano 2014). Skin colour is determined by the combination of carotenoids, oxy-deoxy-haemoglobin and different types of melanin (Brenner and Hearing 2008). Melanin is divided in two groups, eumelanin (eu = good) and pheomelanin (pheo = cloudy) (Ito et al. 2011; Roulin et al. 2011). Most melanin is dark, from black to brown (eumelanin), while other melanins (pheomelanin) are reddish or yellowish. The quantity and ratio of eumelanin to pheomelanin determines the colour of hair, skin, and eyes (Ito et al. 2018; Herrling, Jung and Fuchs 2008).

The intensity of pigment is dependent on the quantity of melanosomes (Brenner and Hearing 2008), melanin synthesis and transportation within keratinocytes (Patel 2015). Melanin is the first defence against UV damage, hence, the effects of melanin on UV radiation in skin requires exploration (Jablonski and Chaplin 2000).

Melanin protects the skin against the high levels of reactive oxygen that damage cells (White and Zon 2008). Melanosomes in light skin are small and mature early (stages I and II) as displayed in Figure 2.2. In dark skin, melanosomes are large, maturing at stage V to IV (Bastonini, Kovacs, Picardo 2016). Pigmentation differences arise from quantity variation, size and distribution of melanosomes (Lin and Fisher 2007).
2.2.1 Melanogenesis

Melanogenesis or melanin production (D’Ischia et al. 2015) is regulated by signals from keratinocytes (Schallreuter et al. 2008). These signals are controlled by the amino acids L-tyrosine and the enzyme tyrosinase in melanosomes (Solano 2014; Park et al. 2009). Raised melanogenesis activities result in higher pigment levels (Padma, Satyamoorthy and Bhat 2015), thus increasing susceptibility to pigmentary disorders. Therefore, treatment options must include melanogenic inhibitors and antioxidants that prevent or treat PIH (Huang et al. 2012).

2.3 PIGMENTARY SKIN DISORDERS

Skin discoloration triggered by pigmentary disorders are prominent in dark skin (Woolery-Lloyd and Kammer 2011). Pigmentary disorders rank among the five most common complaints among Blacks, Arabs and South Asians (Konda, Geria and Halder 2012). These disorders occur in response to UV exposure, genetic background, hormones and inflammation due to physical injury (Leyden et al. 2011).

Abnormal melanin production is the key cause of these disorders (Huang et al. 2012; Sumit et al. 2012). Pigmentary conditions include melasma, PIH, and lentigo (Cayce, McMichael and Feldman 2004; Woolery-Lloyd and Kammer 2011), all of which can lead to psychological distress. The quality of life in those affected by pigmentary disorders is altered (Nouveau et al. 2016).
Pigmentation is divided into hypopigmentation and hyperpigmentation (Nicolaidou and Katsambas 2014). Post-inflammatory hypopigmentation is an autoimmune condition causing chalky-white patches of skin. The severity of lost pigment relates to the extent and degree of inflammation (Vachiramon and Thadanipon 2011). Hypopigmentation affects all ages and progresses rapidly (Hill and Batchelor 2017). A common type of hypopigmentation is vitiligo, characterised by the absence of melanocytes or disruption of their function (Deeva et al. 2017).

Hyperpigmentation can be congenital, either cutaneous or systemic (Cestari, Dantas and Boza 2014). Hyperpigmentation is characterised by various skin disorders (Speeckaert et al. 2014) that affect a large portion of the population (Augustyniak, Erkiert-Palguj and Rotsztejn 2015). Hyperpigmentation may appear localised or diffused, with severity and frequency increased in darker individuals (Desai and Alexis 2014; Nouveau et al. 2016). Hourblin et al. (2014), suggests that hyperpigmentation appears early and may increase with age.

The rate of pigmentation development is dependent on the size, cellular distribution and type of melanosomes in the epidermis rather than just the number of melanocytes (Scherer and Kumar 2010). Although PIH is common among dark skinned individuals, it is prevalent in acne skin, eczema and contact dermatitis (Davis and Callender 2010). The two most common pigmentary disorders are melasma and PIH (Nieuweboer-Krobotova 2013).

2.3.1 Melasma

Melasma is common in dark skin (Rodrigues and Pandya 2015). It manifests as pigmented macules and patches on the face (Sarkar et al. 2016; Sheth and Pandya 2011), causing much emotional distress (Handel, Miot and Miot 2014). The aetiology of melasma is a combination of hormonal influences, UV exposure, genetics, pregnancy, and psychological stress (Scheinfeld 2007).

Certain cosmetics and medication may aggravate the condition (D’Elia et al. 2017) because they alter melanin production. Melasma treatment is difficult due to its recurrence (Sehgal et al. 2011). Therefore, treatment should be aimed at preventing and reducing the appearance of melasma with minimal side effects (Gupta et al. 2006).
The first line of treatment should be sun protection (Scheinfeld 2007), with other treatments including topical preparations, chemical peels and lasers (Rendon et al. 2006). Hydroquinone and azelaic acid may be prescribed as tyrosinase inhibitors acting directly on melanogenesis, however the safety of these products are not certain (Situm et al. 2011). No single therapy has reported success, so combinations of treatments are more common (Sheth and Pandya 2011).

2.3.2 Post-Inflammatory hyperpigmentation

Post-inflammatory hyperpigmentation is the “darkening of skin following inflammatory eruption or cutaneous injury” (Vashi and Kundu 2013). Post-inflammatory hyperpigmentation is an acquired hypermelanosis, appearing as a brown-to-black macules (Kubba et al. 2009) and is common among dark skinned individuals (Nestor et al. 2014; Eimpunth, Wanitphadeedecha and Manuskiatti 2013). The condition is characterised by skin darkening following inflammation and skin injury (Cestari, Dantas and Boza 2014; Youn 2016) as a result of the skin’s inflammatory processes. Keratinocytes, Langerhans cells and lymphocytes alter the function of the cells, resulting in PIH (Callender et al. 2011; Deckers, Hammad and Hoste 2018). Although skin trauma, skin irritants and eczema are influencers of PIH, acne is the leading cause (Nouveau et al. 2016).

2.3.2.1 Pathophysiology and aetiology of PIH

Hyperpigmentation results from higher rates of melanin production (Huang et al. 2012). Post-inflammatory hyperpigmentation occurs after several dermatologic processes with melanin, melanocytes and keratinocytes (Chaowattanapanit et al. 2017). Following inflammation, melanocytes increase melanin production (Callender et al. 2011) which causes an increased transfer of pigment to surrounding keratinocytes (Lacz et al. 2004). This process leads to PIH (Halder and Nootheti 2003). The causes of PIH are skin trauma, friction, application of skin irritants, eczema, psoriasis, drug reactions, skin infections and sunburn. Studies show correlations between the inflammatory responses from these causes and melanocyte stimulation (Lee, Hossaine and Park 2016), leading to the production of abnormal melanin quantities.
Tyrosinase is responsible for melanin production and mediates melanin production through the intermediate, L-dopa (Ingber 2009). Once tyrosinase and structural proteins are delivered to the inflamed site, melanin synthesis begins (Manga et al. 2013). Numerous reports indicate acne and acne scarring as the main cause of PIH (Kaufman, Aman and Alexis 2018; Isedeh et al. 2016; Adalatkhah and Bazargani 2013; Zawar, Agarwal and Vasudevan 2015). Dark skinned individuals are reported to have a more intense incidence of PIH (Patel 2015). [Figure 2.3 displays PIH development in acne].

2.3.2.2 The PIH process

![Diagram of the PIH process]

Figure 2.3: Process of PIH formation in acne
Source: Adapted from Pink, Anzengruber and Navarini (2017)
2.3.2.3 Acne in PIH development

Acne vulgaris (AV) is a common pigmentary disorder of the pilosebaceous follicles (Zaenglein *et al.* 2016) that commonly affect the face, chest, shoulders and back (Pink, Anzengruber and Navarini 2017). Non-inflammatory and inflammatory acne lesions (Purdy and de Berker 2011) consist of comedones, papules, pustules, and nodules (Yildizgoren and Togral 2014). *Acne vulgaris* is a common skin disease and is the main diagnosis in dermatology (Chen *et al.* 2011), affecting 85% of people between ages of 12-24 years (Luqman *et al.* 2019). Acne scarring occurs in 20% of teenagers with *acne vulgaris* (Common, Barker and Van Steensel 2019). Inflammatory mediators, the keratinisation process, sebum production and follicular colonisation by *Propionibacterium acnes* (*P. acnes*) are responsible for acne development (Williams, Dellavalle and Garner 2012). However, Jonczyk-Matysiak *et al.* (2017), believes that acne occurrence is not limited to these factors and may be influenced by a host of behavioural and genetic elements such as age, diet, race and daily practices.

According to Greydanus (2015), acne is an inflammatory condition that begins with follicular keratinocytes becoming adhesive. Thus, a keratin plug is formed that blocks the follicle with sebum (Abad-Casintahan *et al.* 2016). Furthermore, Fabbrocini *et al.* (2010) consider that the androgen hormone is largely responsible for acne development because testosterone controls the size of the sebaceous gland and sebum secretion. *P. acnes* activates keratinocytes and sebocytes (Kumar *et al.* 2016).

Androgens show an interactive role in the initiation of acne development, influencing the formation of acne lesions (Kurokawa *et al.* 2009). These acne lesions are difficult to remove and develop into acne scars. Acne scars are the persistent and they may remain permanently. Recent reports indicate acne scarring to cause both cosmetic and social insecurities such as low self-esteem, which negatively impact the quality of life (Moon *et al.* 2019; Luqman *et al.* 2019). A family history of acne predisposes to early acne onset and severe progression in future generations (Degitz and Ochsendorf 2017).
2.4 Hyperkeratinisation

Hyperkeratinisation occurs when cells of the follicle become interconnected and do not shed normally onto the skin's surface, resulting in lesions characteristic of acne (Thiboutot 2000). This process (Figure 2.4) is crucial in the development of acne and inflammation of the follicle (Kurokawa et al. 2009). This progression occurs due to irritation of the epithelial cells (Deo and Deshmukh 2018). While sebum and hormone production is an important prerequisite for acne development, hyperkeratinisation must take place for acne to appear (Persson et al. 2018).

Follicular hyperkeratosis is regarded as a possible initiator of the acne sequence (Tilles 2014). As the hair follicle becomes infected, a keratin plug is formed, thus creating a lesion. Therefore, the pathogenesis of acne is dominated by the interchange between excessive sebum production, hypercolonisation of *P. acnes*, hyperkeratosis of the hair follicle, and inflammation (Chen et al. 2011). Androgens are significant in acne formation as they promote keratinocyte and sebaceous gland proliferation (Das and Reynolds 2014). This process is most common during adolescence and during early adulthood (Yildizgoren and Togral 2014).

Figure 2.4: The hyperkeratinisation process

Source: Adapted from Das and Reynolds (2014)
2.5 Treatment options for PIH

Treating hyperpigmentation is a challenge (Clark and Sivamani 2016). Topical treatment combined with sun protection is the first treatment for PIH (Eimpunth, Wanitphadeedecha and Manuskiatti 2013). The management of PIH should be aimed at identifying the underlying condition (Davis and Callender 2010). While treatment may benefit some, it may create or worsen PIH in others (Grippaudo and Di Russo 2016). Treatment should aim to disrupt the distribution of melanosomes and inhibit the tyrosinase enzyme (Choi et al. 2016). The use of borax, sulfur, potassium and sodium hydroxide have been explored as lightening PIH (Clark and Sivamani 2016), but are not permanent solutions.

Currently, treatments include HQ, salicylic peels, retinoids, and laser therapy, alone or in combination, however these demonstrate low success rates (Konda, Geria and Halder 2012). Although HQ is considered an effective treatment for PIH, it is linked to increased allergic reactions. The microbiological purity of options such as HQ is maintained by preservatives (Herman et al. 2013) and even though only small concentrations of preservatives are used, these are the root cause of pigmentary reactions (Bunyavaree, Kasemsarn and Boonchai 2016). Such reactions prompt consumers to seek safer treatment and product options (Woolery-Lloyd and Kammer 2011; Swanson, Leo and Finlay 2014).

The need for natural therapies for hyperpigmentation is evident and necessary in for the safe treatment of PIH (Clark and Sivamani 2016). Therefore, the use of natural compounds within the cosmetic industry as a preservative and active ingredient warrants exploration. Treatment options available for PIH may be classified into lasers, pharmaceuticals and natural remedies.

2.5.1 Lasers

The high intensities of laser have proved effective in clearing erythema (Wang and Chen 2012), PIH has and shown partial PIH clearance or deterioration with laser (Sebaratnam et al. 2014). While PIH may disappear with laser treatment, it tends to reoccur shortly thereafter (Mlosek et al. 2012). However, in general, the risk of PIH progression and scarring from lasers is high due to severe thermal damage (Leok 2010; Chaowattanapanit et al. 2017).
In particular, laser treatment at high intensities on darker skin may actually result in PIH (Alam and Warycha 2011). Thus, the risk of scarring in ethnic skin is greater (Alexis 2013). Consequently, many patients are reluctant to receive laser treatment (Negishi *et al.* 2013) as PIH is a common complication of laser and other light sources (Silpa-Archa *et al.* 2017). Darker skin absorbs more of the light energy due to the higher levels of melanin in the skin.

2.5.2 Hydroquinone

Hydroquinone is a whitening agent (Tse 2010), known as 1,4 dihydroxybenzene (Draelos 2007), and is considered the best pharmaceutical treatment for PIH. Hydroquinone is used to treats melasma, freckles and PIH (Hu *et al.* 2009). Creams containing HQ are commonly used for dark skinned individuals suffering from hyperpigmented skin (Toombs 2007). These preparations are unregulated and may worsen pigmentation when used without correct sun protection (Walters and Roberts 2008).

Although HQ may be effective in treating PIH, its safety and toxicity remains controversial (Gold and Biron 2011; Hu *et al.* 2009). This has resulted in the exploration of hydroquinone-free skin lighteners and natural treatments (Tse 2010), that improve PIH without harmful effects and post treatment conditions, thus highlighting the need for safer, effective cosmetic preparations.

Glazer, Sofen and Gallo (2016) found that Fitzpatrick recognised HQ as a depigmenting agent in the 1960s. HQ was found to be strong inhibitor of melanin production. Hydroquinone inhibits melanin production due to its potent antioxidant ability in increasing oxidative stress (Ibrahim *et al.* 2015). Hydroquinone improves the enzymatic oxidation processes of tyrosine and phenol (Kanthraj 2010; Tatebayashi *et al.* 2014). As a result, HQ obstructs RNA and DNA synthesis, altering melanosome formation, thus damaging melanocytes (Tse 2010). Therefore, its primary mechanism of action is based on melanin inhibition (de Mendonca *et al.* 2014). These processes are significant in PIH formation. Hydroquinone acts by reducing the thickness of the stratum corneum that increases the penetration and efficacy of HQ (Guevara and Pandya 2003). Consequently, keratinocytes are shed and less pigmented keratinocytes are formed (Chandra, Levitt and Pensabene 2012), reducing PIH. Hydroquinone is oxidised by tyrosinase thereby becoming toxic to melanocytes Hu *et al.* (2009), as well as affecting the functioning of other cells (Malek *et al.* 2013).
While HQ has proven its effectiveness against PIH, it is unstable and reactant in cosmetic formulations (de Mendonca et al. 2014), therefore packaging must be non-transparent and airtight to avoid light and air exposure (Zhu and Gao 2008). Hydroquinone is highly reactive with oxygen; HQ presents as a cream colour, changing to dark yellow or brown as oxidation occurs. As the discoloration progresses, the effectiveness of the HQ decreases (Draelos 2007). The safety of hydroquinone is debatable (Dreher et al. 2013). Irritation, hyper and hypopigmentation, and nail discoloration are evident with its use (Nordlund, Grimes and Ortonne 2006). Although HQ is considered effective at low concentrations of 4% or less, its safety has come into question (Tse 2010). Safety concerns have encouraged research into alternate, natural agents including retinoids, azelaic acid, and kojic acid (Mauricio, Karmon and Khaiat 2011). Thus, more studies on safe alternative skin-lightening agents are needed to establish treatment efficacies with improved safety (Mendoza, Singzon and Handog 2014).

2.6 Natural remedies for PIH

There is evidence of skin preparations being used in Egypt and India dating back 1550 B.C (Patkar 2008), since early human life (Garbossa and Campos 2016). Embraced by all cultures, humans have used cosmetics for 6000 years (Draelos 2015). Scented preparations were used to clean, soften skin and mask body odour (Chaudhri and Jain 2009). Hence, cosmetic products may originally have been linked to hygiene as their primary purpose (Garbossa and Campos 2016). Cosmetics were also used to enhance complexion, skin, hair, and nails (Kumar and Paulose 2014).

Greater awareness has emerged for its curative and medicinal use, as cosmetics are lucrative, innovative and beneficial (Kumar, Massie and Dumonceaux 2006). The cosmetic market has constantly developed (de Melo et al. 2013; Kerscher and Buntrock 2011), with continuous innovations on how to maintain a good skin appearance (Chen, Chen and Lin 2011). These cosmetic advancements contribute to global economic growth (Ramli 2015). Within these expansions, chemicals replaced natural ingredients, some of which can trigger allergic reactions (Kumar, Massie and Dumonceaux 2006), initiating various pigmentary conditions. This has further prompted research into the natural products (Dimitrova, Kaneva and Gallucci 2009).
Facial appearance is important in the judgement and decisions of others (Little et al. 2012), hence cosmetics are used to improve appearance (Zeigler-Hill and Noser 2013; Kumar and Paulose 2014; Michelle and Hye-Shin 2009). Their significance in improving aesthetic appearance has grown (Ghodsee 2007) as cosmetics continue to dominate the health and beauty industry (Lopaciuk and Loboda 2013). Although the role of cosmetics is evident, literature surrounding the natural cosmetic market and its effects on pigmentary disorders remains scarce (Matic and Puh 2016).

Africa reports the highest prevalence of skin lightener usage (Davids et al. 2016), revealing black females among the highest users (Dlova et al. 2014). Due to this demand, Dlova, Hendricks and Martin (2012) report that South African women require skin lightening creams that improve complexion without harmful effects. Daily used foundations, sunscreens and perfumes may cause allergic reactions (Kumar and Paulose 2014).

Skin-lightener side effects are inevitable and might be permanently disfiguring (Petit et al. 2006). Therefore, consumers now desire natural products with active ingredients which may reduce such effects. A portion of South Africans still use medicinal plants to treat skin disorders (de Wet, Nciki and van Vuuren 2013). These plants demonstrate decreased melanogenesis, thus causing skin lightening. However, the bioactivity of these compounds/botanic extracts are yet to be explored (Burger et al. 2016).

Preservatives in products maintain microbiological purity during manufacture, packing and storage (Lv et al. 2015). They are purposed to inhibit microorganism activity while prolonging the shelf life of the product (Herman et al. 2013). It is believed that preservatives contribute to allergies, however, often in a dose dependent manner (Lundov et al. 2011) Preservatives and fragrances are responsible for 80% of cosmetic allergies (Zaragoza-Ninet et al. 2016). Chemical based products triggered health concerns (Reddy et al. 2011) which has increased demand for preservative free and green products (Herman et al. 2013).

The World Health Organization defines green products as “finished labelled medicinal product that contain an active ingredient, or underground parts of the plant or other plant material or combinations” (Parveen et al. 2015). Also known as natural products, they are manufactured using safe cosmetic ingredients and modern technology (Sumit et al. 2012; Narayanaswamy and Ismail 2015).
Natural products benefit the skin (Kaczmarczyk et al. 2015) and possess natural defence properties suitable for allergy prone skin (Patel, Padhtare and Saudagar 2015; Wright et al. 2007; Farzaneh and Carvalho 2015). They are easily absorbed into the skin (Mukherjee et al. 2011), allowing for improved penetration of minerals and nutrients (Joshi and Pawar 2015). For these reasons, the exploration into these ingredients are essential in understanding their uses within the cosmetic industry.

2.6.1 Essential oils

Essential oils (EOs) may be defined as: “Odorant products, generally of a complex composition, obtained from a botanically defined plant raw material, either by steam of water or by dry distillation without heating” (El Asbahani et al. 2015). Essential oils are natural, intricate mixtures with potent odours (Bakkali et al. 2008) that disguise unpleasant odours (Hyldgaard, Mygind and Meyer 2012). The quality, efficacy and correct identification of the plant is crucial in maximising results (Bharkatiya et al. 2008). Their uses within various industries are broad and will be discussed further.

Clinical aromatherapy is the fastest growing complementary therapy globally (Steflitsch and Steflitsch 2008). These oils are extracted from roots, herbs, fruits and bark to promote holistic wellbeing (Bharkatiya et al. 2008). The composition and stability of EOs allows for blending with carrier components (Misharina and Samusenko 2008). Phytochemicals in EOs decrease the number of harmful microorganisms found in chemical-based preparations (Steflitsch and Steflitsch 2008), thus, they are used in medical preparations, dietary supplements, aromatherapy, food and cosmetology (Fornari et al. 2012). Complex chemical components (terpenes, terpenoids, phenylpropenes and phenolics) make up the oils (Thakur, Negi and Kush 2013).

The medicinal benefits of EOs have recently been highlighted (Narayanaswamy and Ismail 2015). Their beneficial effects in facial treatments has stimulated consumer awareness (Do et al. 2015; Thakur, Negi and Kush 2013). Thus, the transition by consumers from facial treatments with products containing chemical preservatives to plant based facial treatment products (Herman et al. 2013; César et al. 2017). Essential oils eradicate free radicals and improve skin conditions (Cefali et al. 2016), thus, giving rise to holistic approaches to treatment options (Fornari et al. 2012).
All plant organs (flowers, buds, stems, leaves, fruits, seeds and roots) contain EOs in their cells (Pandey, Singh and Tripathi 2014; Lawrence 2001). Although they are present in minimal quantities, chemical and structural differences exist (Oprean et al. 2001; Pandey, Singh and Tripathi 2014). The oil composition varies with the plant developmental stage and growth environment (Martinelli et al. 2017). Essential oils are antimicrobial, antiviral, antioxidant and anti-inflammatory (Raut and Karuppayil 2014). These properties allow for uses in various industries (El Asbahani et al. 2015), emerging as components to treat diseases and illnesses (Solorzano-Santos and Miranda-Novales 2012).

The cosmetic and pharmaceutical industries use EOs as natural preservatives (Dreger and Wielgus 2013). They serve as replacements for synthetic preservatives (Andrade et al. 2014), thus reducing side effects. EOs are used in skin creams, shampoos, soaps and perfumes (Raut and Karuppayil 2014; Łopaciuk and Łoboda 2013; Faidi et al. 2014).

There are various extraction methods of EOs. They are extracted from plants by steam or hydrodistillation (El Asbahani et al. 2015; Tongnuanchan and Benjakul 2014). Steam distillation is the preferred method for extraction (Raut and Karuppayil 2014), with 93% of oils being extracted this way. Plants are positioned in boiling water, breaking down the plant, releasing EOs (Tongnuanchan and Benjakul 2014; Martinelli et al. 2017). This distillation method is the simplest and most economical method.

Elevated temperatures and prolonged extraction time cause chemical modifications to the oil affecting the quality of the product (El Asbahani et al. 2015). Solvent extraction is widely used to extract active components from plants (Hassim et al. 2014). It is a gentle method that creates less movement of the EO compared to other methods. Oils extracted using this method, are more fragrant (Raut and Karuppayil 2014). There are many EOs used in the dermatologic industry, however for the purpose of the study, lemon and sandalwood oil will be examined in detail.
2.6.2 Lemon essential oil (*Citrus limon*)

Lemon (*Limonene*) is the most common citrus tree crop (Golmakani and Moayyedi 2015; Kejlova *et al.* 2010), belonging to the Rutaceae family (Do *et al.* 2015). Lemon essential oil originates from south eastern China and is extracted via cold expression (Yazgan, Ozogul and Kuley 2019). Lemon oil has astringent properties that stabilise overactive sebum production, thus treating skin problems (Battaglia 2016). Furthermore, it possesses antibacterial, antifungal and antiviral properties with skin protectants (Valgimigli *et al.* 2012).

Lemon essential oils (*Citrus limon*) improve topical absorption and diffusion conditions through the epidermis (Valgimigli *et al.* 2012; Kanlayavattanakul and Lourith 2011). Limonene is a monoterpene hydrocarbon possessing cleaning and antioxidant properties. These properties are suitable for treating skin conditions. Lemon oil contains citric acid, ascorbic acid, minerals and flavonoids beneficial in the treatment of pigmentary conditions (Hojjati and Barzegar 2017). In PIH, lemon oil may result in a lightening effect (Hsouna *et al.* 2017). The citric and ascorbic acid in lemon oil inhibits tyrosinase activity which prevents melanin production (Matsuura, Hiroyuki and Masayoshi 2006). Lemon desquamates cells (Maldonado, Aban and Navarro 2013), breaking down hyperkeratinisation build up in the formation of acne, hence improving the texture of skin (Baghel, Gidwani and Kaur 2017).

2.6.3 Sandalwood essential oil (*Santalum album*)

Sandalwood essential oil (SEO) originates from India and belongs to the Santalaceae family (Jones, Plummer and Barbour 2007). East Indian sandalwood (*Santalum album*) is highly fragrant and is extracted from the Santalum genus tree (Misra and Dey 2013). It is obtained via the distillation process (Kuriakose and Joe 2012) and is stable when blending with other oils. This oil is frequently used for relaxation or sedation (Choi and Park 2016).

Due to its anti-inflammatory and anti-bacterial properties, SEO is used to treat skin diseases (Dozmorov *et al.* 2014). Furthermore, SEO demonstrates elevated effects on keratinocytes, a core component of acne and pigmentation formation (Itoi-Ochi *et al.* 2016). Sandalwood oil acts as an inhibitor of tyrosinase, a key enzyme in melanin formation. Thus, SEO may inhibit pigmentation associated with exposure to UV light (Diaz-Chavez *et al.* 2013). This oil destroys multiplying keratinocytes, suggesting reduced progression of skin disorders (Haque and Coury 2018). Sandalwood essential oil has been found to reduce levels of *P. acnes*, crucial in the formation of acne (Moy and Levenson 2017).
2.6.4 Role of lemon and sandalwood oils in pigmentation

Lemon and sandalwood essential oils demonstrate several beneficial effects on the skin, however, literature surrounding its effects on PIH is still emerging. Sandalwood is known for its moisturising, balancing and cooling effects, while decreasing blemishes (Gite et al. 2013), thus reducing sensitivity and irritation from acne and PIH (Dozmorov et al. 2014).

Lemon essential oil has been recognised for both its whitening and depigmenting properties (Kole et al. 2005), and sandalwood essential oil exfoliates dead skin cells, improves penetration and lightens skin (Thakur, Negi and Kush 2013). Thus, in combination they could compact the processes of PIH as displayed in Figure 2.5. They are safe for use within herbal cosmetics, preservative free and beneficial (Joshi and Pawar 2015).

Due to the mechanism of actions of lemon and sandalwood oils (Figure 2.4), this study focused on determining if these oils would have an influence on the parameters of the skin, in relation to PIH. Therefore, this study aimed to investigate these influences.

Figure 2.5: Summary of the effects of lemon and sandalwood oil essential oil on PIH
Source: Adapted from Narayanaswamy and Ismail (2015); Kole et al. (2005)
CHAPTER 3: MATERIALS AND METHODS

3.1 Ethical considerations

The study was approved by the Institutional Research and Ethics committee of the Durban University of Technology (DUT) (IREC 62/16: Appendix 1). Gate keeper permission was received from the Director of Research and Postgraduate Support Durban DUT (Appendix 2). Participation was voluntary, and no remuneration was given to participants for their participation. All participants were advised of the anonymity and confidentiality of the data that was collected. Data was only accessible to the researcher, supervisors and statistician.

The details of the study were explained to all recruited participants who agreed to participate (Appendix 3, Appendix 4). Participants confirmed their participation by their signed informed consent (Appendix 5, Appendix 6). Participants were informed that they could withdraw from the study at any point if they wished. All data collected will be stored in a secure cabinet for a maximum period of five years at the Department of Chiropractic and Somatology, Durban University of Technology, and thereafter shredded.

3.2 Study design and setting

This was a prospective, quantitative and double-blinded study with an experimental design. Participants were randomly assigned to experimental and control groups by the supervisor. The study was conducted at the Somatology clinic, Durban University of Technology. A pre-test, post-test method was used. Prior to implementation of the study, the questionnaire was piloted to determine the relevance of questions and identify any redundancies. Participants were included or excluded from the study based on the following criteria.

3.2.1 Inclusion criteria

Participants selected for the study were included based on the following inclusion criteria:

- Participants must be African females
- Participants must be between 18-35 years of age
- Participants that were clinically diagnosed with post inflammatory facial pigmentation by a dermatologist
- Participants that do not react during the 24-hour allergy test
3.2.2 Exclusion criteria

Participants were excluded from the study based on the following exclusion criteria:

- Participants that were part of the pilot study
- Participants that were not African females
- Pregnant or lactating women
- Participants that were on oral contraception
- Participants that were on any oral or topical treatments for pigmentation or skin conditions
- Participants occupations that involve outdoor environments
- All male participants
- Participants that display early signs of menopause

Exclusion of pregnant and lactating woman and woman on oral contraceptives from the study was primarily because these women are more susceptible to the development of pigmentation. According to Ingber (2009), almost all woman, particularly those with darker skin, are predisposed to some degree of pigmentation during pregnancy and when using oral contraceptives. To eliminate this type of pigmentation, these women were excluded from the study. If a participant falls pregnant during the duration of the study, she will be removed from the study.

However, the composition used in the study was not harmful during pregnancy as the oils used in the study are not considered harmful during pregnancy. Battaglia (1997) mentions that essential oils that are toxic during pregnancy are aniseed, basil, clary sage, cypress, sweet and bitter fennel, jasmine, juniper, sweet marjoram, myrrh, nutmeg, peppermint, rose and rosemary.

3.3 Study Sampling and recruitment

The study population included African females aged between 18-35 years who met the inclusion criteria. Purposive sampling was used to identify and recruit participants. The sample size were determined in consultation with a biostatistician as 45 participants (n = 45), and the total number recruited was 62, of which 48 completed the protocol.
Recruitment was supported by the placement of advertisements (Appendix 7 [English]; Appendix 8 [IsiZulu]) in both the Ritson and Steve Biko campuses of DUT as well as Durban and surrounding areas. Prospective participants were verbally informed of the study by the researcher and invited to meet for a consultation. During this consult the prospective participants were given the letter of information (Appendix 3 or Appendix 4) and participation confirmed by a signed consent form (Appendix 5 or Appendix 6). Participation was voluntary and no coercion was used to recruit participants.

All interested participants were required to complete a questionnaire (Appendix 9 [English]; Appendix 10 [IsiZulu]) and agree to have their affected facial regions photographed. Photographs were used to confirm a clinical diagnosis which was done in consultation with a dermatologist (Appendix 11).

All photographs were taken with a 13 megapixel camera against a specific background (dark coloured towel or sheet) as specified by the consultant dermatologist. Only participants whose facial skin was clinically diagnosed by the consultant dermatologist with post inflammatory facial pigmentation were allowed to continue in the study. Once their participation was confirmed, the participants were followed and re-consulted at 8, 16 and 24 weeks respectively.

3.4 DATA COLLECTION

3.4.1 Allergy testing

Participants who received confirmation of a clinical diagnosis from the consultant dermatologist were then given a 24-hour allergy test. The test was conducted by the researcher and was used to determine the presence or absence of any allergies that participants may have to the selected blends of cream or the sunblock component of the cream (SPF 15). The allergy test was conducted by the researcher on the inner elbow of all participants. Prior to the allergy test, the inner below was cleaned with hibitane and cotton wool, followed by the application of each blend of cream (lemon with aqueous cream or sandalwood with aqueous cream) and the sunblock. The participants were asked to return after ± 24 hours for an allergy assessment. None of the participants reacted negatively during the allergy testing.
3.4.2 Allocation of experimental products and essential oil blends

The experimental product was a fragrance and preservative free aqueous cream-based cream. A 100ml tub of cream was given to the participants, either plain (control) or combined with 50 drops of lemon oil or sandalwood oil (experimental) which were 100% aromatherapy-based oils.

Following clinical diagnosis and allergy testing the participants were randomly allocated into the following groups:

- **Group 1**: Lemon essential oil blended into aqueous cream (intervention/experimental group)
- **Group 2**: Sandalwood essential oil blended into aqueous cream (intervention/experimental group)
- **Group 3**: Aqueous cream (placebo/control)

All participants were given an Environ RAD® SPF 15 sunblock together with the selected cream. The sunblock with SPF15 was selected as the sun protection factor due to its suitable coverage and protection, and to reduce potential allergic reactions (Davis and Callender (2010)).

Basic instructions on application of the prepared cream blends was given to the participants to maintain consistency (Appendix 12). The facial skin of all recruited participants were also analysed by the Skin Analyser® (LD6021). The analyser machine, which was provided by Upfront Distribution (Durban, South Africa), measures various parameters of the skin such as facial spots, pore sizes, skin roughness, facial wrinkles, UV acne, UV facial spot and UV moisture levels.

A consultation schedule (Appendix 13) was given to all participants in order to maintain adequate follow-ups with the researcher. Follow up consultations included a recording of any visible changes to the participants skin by capturing images using a camera and Skin Analyser® (LD6021). Follow up schedules were discussed with and agreed upon by both the participant and the researcher.
3.4.3 Assessment of skin parameters

Post inflammatory hyperpigmentation was assessed at baseline (0 weeks) and thereafter at 8, 16 and 24 weeks based on the measurement of the seven skin parameters as described in Table 3.1. Assessments from the Skin Analyser® was used as a point of reference.

Table 3.1: Skin parameters and indicators analysed by the Skin Analyser®

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facial spot</td>
<td>Indicating spot distribution on the surface of the skin. Also showing acne-scarring present on the outer dermis of the skin caused by post acne or inflammatory responses of the skin. This parameter provides a clear indication if there has been improvement of PIH</td>
</tr>
<tr>
<td>Pore size</td>
<td>Pore size changes are a good indication if there is improvement or not. Enlarged pores are prominent in acne and PIH skin. Smaller pore sizes presents a smoother appearance</td>
</tr>
<tr>
<td>Skin Roughness</td>
<td>Unsmooth areas on the epidermis</td>
</tr>
<tr>
<td>Facial Wrinkles</td>
<td>Epidermal expression lines</td>
</tr>
<tr>
<td>UV Acne</td>
<td>With acne being the most common cause of PIH, this machine measures the degree of active acne that may be present within the epidermis. Indicative that the skin may be prone to PIH.</td>
</tr>
<tr>
<td>UV facial spot</td>
<td>This parameter indicates pigmentation spots in the dermal layer. Measuring the extent of scarring present within the epidermis caused by the sun pre and post treatment. Indicating outer dermis scarring caused by post acne or inflammatory responses of the skin</td>
</tr>
<tr>
<td>UV Moisture level</td>
<td>Moisture levels within the epidermis are measured as PIH skin may present with poor moisture levels</td>
</tr>
</tbody>
</table>

3.5 Data analysis

Demographic data obtained from the questionnaire and clinical data obtained from the Skin Analyser® machine were used. This data was collected, coded and captured onto a spreadsheet using statistical analysis SPSS (Version 25.0). A p-value < 0.05 was considered a statistically significant result. Data were tested for normality and continuous data was summarised in terms of the mean, standard deviation, minimum and maximum. One-way analysis of variance (ANOVA) and sample t-tests were completed on skin parameters. Findings from the study were triangulated. Data from the questionnaire and Skin Analyser® (LD6021) were analysed. The study was analysed using descriptive data obtained from the questionnaire, focusing on lifestyle and skincare data. Comparisons between the parameters and descriptive were presented. The open ended questions from the questionnaire were analysed for the triangulation of data. Changes in the parameters over time were presented graphically and repeated measures ANOVA was used to detect whether there was a significant change over time and if there were treatment differences.
CHAPTER 4: RESULTS

4.1 Demographics and lifestyle characteristics

Sixty-two (n = 62) black African females were recruited for the study, of which 61 were students. Of the 62 recruited, 87.1% (n = 54) were aged between 18-22 years, while 12.9% (n = 8) were aged 23-27 years. With regard to lifestyle characteristics, 75% (n = 47) reported a healthy diet consumption, while only 38% (n = 23) reported the recommended daily water intake. Only 6.5% (n = 4) reported smoking and alcohol consumption. Based on these low numbers data was excluded from further analyses.

Despite the initial recruitment of 62 participants, only 48 completed the study including follow-up consultations. Only 33.9% (n = 19) of the total sample reported waxing as an option of hair removal while 19.6% (n = 11) reported threading as a preference. Furthermore, 42.9% (n = 24) reported the regular use of deep cleanse facials. Notably, 61.7% (n = 29) indicated the use of daily homecare treatments such as cleansers and moisturisers. In contrast, 17.1% (n = 7) indicated that they used some form of pigmentation treatment. In addition, 54.3% (n = 25) reported a family history of pigmentation.

More than half (52%) (n = 25) of the respondents reported acne as a concern, in contrast to pigmentation as a concern. Low self-esteem was highlighted as a consequence in 9.84% (n = 4) of the study population. Less than half (37.70%) (n = 8) of the respondents indicated that pigmentation onset occurred during their adolescence years, while 47.54% (n = 22) reported a later onset. Acne scarring was the leading pigmentation contributor (88.6%) (n = 42) within this population. Although the incidence of pigmentation occurred at various stages, self-reports suggested that pigmentation had gradually improved over time (78.7%) (n = 37).
4.2 Bivariate analysis between skin parameters, skincare regimen and family history of PIH

Bivariate analyses were completed between skin parameters and basic homecare skincare regimen (cleanser, toner and moisturiser), prior use of pigmentation treatments, and family history of pigmentation. Pre-parameter percentages were compared to post-parameter percentages to determine differences. Results that indicated a negative result showed that the post-measurement was greater than the pre-measurement, thus reflecting a decline in parameter improvement.

There were no significant differences observed between those on a daily regime compared to those who were not (Table 4.1). However, a statistically significant difference was noted with regard to change in UV acne ($p = 0.033$) among those who used prior pigmentation prescriptions compared to those not on prescriptions. More than half (54.3%) of the respondents indicated that a family history of pigmentation influenced the incidence of their pigmentation. Despite the lack of statistical significance, there was a noticeable difference in UV moisture levels of both oils with those that had a family history of pigmentation.
Table 4.1: Participant skin care management and family history (pigmentation)

<table>
<thead>
<tr>
<th>Skin parameter</th>
<th>On homecare (mean±SD)</th>
<th>p-value</th>
<th>No homecare (mean±SD)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facial spot</td>
<td>8.44 ±22.75</td>
<td>0.865</td>
<td>9.55 ±19.51</td>
<td>0.860</td>
</tr>
<tr>
<td>Pore size</td>
<td>8.75 ±14.36</td>
<td>0.642</td>
<td>6.83 ±13.25</td>
<td>0.648</td>
</tr>
<tr>
<td>Skin roughness</td>
<td>-.27 ±15.93</td>
<td>0.522</td>
<td>2.05 ±8.79</td>
<td>0.573</td>
</tr>
<tr>
<td>Facial wrinkles</td>
<td>2.65 ±15.14</td>
<td>0.159</td>
<td>9.44 ±16.06</td>
<td>0.151</td>
</tr>
<tr>
<td>UV acne</td>
<td>-2.06 ±20.28</td>
<td>0.760</td>
<td>-0.61 ±12.23</td>
<td>0.785</td>
</tr>
<tr>
<td>UV facial spot</td>
<td>9.58 ±23.83</td>
<td>0.356</td>
<td>4.44 ±13.96</td>
<td>0.411</td>
</tr>
<tr>
<td>UV moisture level</td>
<td>4.72 ±14.82</td>
<td>0.692</td>
<td>3.27 ±10.05</td>
<td>0.717</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Skin parameter</th>
<th>Prior PIH treatment (mean±SD)</th>
<th>p-value</th>
<th>No prior PIH treatment (mean±SD)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigmentation treatment used previously</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facial spot</td>
<td>0.00 ±16.29</td>
<td>0.399</td>
<td>7.76 ±22.80</td>
<td>0.309</td>
</tr>
<tr>
<td>Pore size</td>
<td>6.85 ±11.37</td>
<td>0.987</td>
<td>6.76 ±13.84</td>
<td>0.985</td>
</tr>
<tr>
<td>Skin roughness</td>
<td>-1.7 ±5.55</td>
<td>0.849</td>
<td>-0.61 ±14.75</td>
<td>0.742</td>
</tr>
<tr>
<td>Facial wrinkles</td>
<td>8.28 ±18.29</td>
<td>0.544</td>
<td>4.14 ±15.91</td>
<td>0.593</td>
</tr>
<tr>
<td>UV acne</td>
<td>9.00 ±11.10</td>
<td>0.098</td>
<td>-0.3.44 ±18.61</td>
<td>0.033*</td>
</tr>
<tr>
<td>UV facial spot</td>
<td>7.85 ±14.39</td>
<td>0.899</td>
<td>6.70 ±22.73</td>
<td>0.866</td>
</tr>
<tr>
<td>UV moisture level</td>
<td>4.85 ±12.86</td>
<td>0.773</td>
<td>3.23 ±13.54</td>
<td>0.770</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Skin parameter</th>
<th>Family history of PIH (mean±SD)</th>
<th>p-value</th>
<th>No family history (mean±SD)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facial spot</td>
<td>6.16 ±22.79</td>
<td>0.733</td>
<td>8.23 ±17.26</td>
<td>0.727</td>
</tr>
<tr>
<td>Pore size</td>
<td>6.48 ±13.26</td>
<td>0.861</td>
<td>7.14 ±12.06</td>
<td>0.860</td>
</tr>
<tr>
<td>Skin roughness</td>
<td>1.80 ±10.84</td>
<td>0.737</td>
<td>0.619 ±12.86</td>
<td>0.741</td>
</tr>
<tr>
<td>Facial wrinkles</td>
<td>5.52 ±11.63</td>
<td>0.870</td>
<td>4.76 ±19.33</td>
<td>0.876</td>
</tr>
<tr>
<td>UV acne</td>
<td>-2.56 ±19.39</td>
<td>0.640</td>
<td>-0.09 ±15.31</td>
<td>0.633</td>
</tr>
<tr>
<td>UV facial spot</td>
<td>8.08 ±20.54</td>
<td>0.766</td>
<td>6.23 ±21.13</td>
<td>0.767</td>
</tr>
<tr>
<td>UV moisture level</td>
<td>6.92 ±16.56</td>
<td>0.086</td>
<td>0.285 ±5.32</td>
<td>0.069</td>
</tr>
</tbody>
</table>

*p < 0.05 was considered statistically significant
4.3 Photographic evidence

Physical changes of the skin were observed between treatment groups as shown in Figures 4.1-4.3 (a-f). An overall improvement was observed in skin pore sizes, texture as well as an overall reduction in PIH facial features amongst those who used the lemon oil (Figure 4.1) and sandalwood oil treatment (Figure 4.2).

In addition, improvements in skin pore sizes and texture was also observed amongst those who were in the control group (Figure 4.3). This could be attributed to the presence of SPF. Our data highlights a visible reduction in the appearance of skin pigmentation and acne in both experimental groups.

4.3.1 Lemon treatment group

Figure 4.1: (a) Image illustrating the facial appearance at baseline (0 weeks), (b) Image illustrating post treatment improvements with the visual characteristics of the skin in the lemon treatment group.
4.3.2 Control group

Figure 4.2: (c) Image illustrating the facial appearance at baseline (0 weeks), (d) Image illustrating post treatment improvements with the visual characteristics of the skin in the control (aqueous cream and SPF)

4.3.3 Sandalwood treatment group

Figure 4.3: (e) Image illustrating the facial appearance at baseline (0 weeks), (f) Image illustrating post treatment improvements with the visual characteristics of the skin in the sandalwood treatment group
4.4 Descriptive analyses of the skin parameters

Sample t-tests were used to provide before and after comparisons for the lemon and sandalwood study groups. These comparisons were made to the control group from 0 weeks (baseline) to 24 weeks (post treatment). The mean and standard deviation (mean ± SD) for lemon (Table 4.2) and sandalwood oil (Table 4.3) are displayed below. Significant improvements was observed for facial spots amongst those who used the lemon treatment ($p = 0.047$) and sandalwood oil ($p = 0.050$). Similarly pore sizes were also significantly reduced in lemon oil ($p = 0.021$) and sandalwood oil ($p = 0.009$) in contrast to the control (Table 4.2 & Table 4.3). Statistically significant results were noted on the UV spots ($p = 0.050$). Facial wrinkles also demonstrated a significant difference ($p = 0.005$), indicating a reduced appearance of wrinkles in those using lemon oil.

Table 4.2: Evaluation of skin parameters at baseline (0 weeks) and post treatment (24 weeks) amongst those using the lemon treatment (n = 15)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline mean±SD (0 weeks)</th>
<th>Control (aqueous cream and SPF) mean±SD (0 weeks)</th>
<th>Control (aqueous cream and SPF) mean±SD (24 weeks)</th>
<th>Lemon essential oil mean±SD (24 weeks)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facial spot</td>
<td>68.67±21.24</td>
<td>64.60±20.85</td>
<td>58.67±22.68</td>
<td>59.06±20.61</td>
<td>0.047*</td>
</tr>
<tr>
<td>Pore size</td>
<td>70.94±17.12</td>
<td>73.60±15.88</td>
<td>68.80±18.17</td>
<td>62.56±19.87</td>
<td>0.021*</td>
</tr>
<tr>
<td>Skin roughness</td>
<td>87.17±19.44</td>
<td>84.47±25.70</td>
<td>87.20±15.85</td>
<td>87.94±17.04</td>
<td>0.772</td>
</tr>
<tr>
<td>Facial wrinkles</td>
<td>80.44±17.78</td>
<td>72.27±20.05</td>
<td>66.87±20.61</td>
<td>70.33±21.69</td>
<td>0.005*</td>
</tr>
<tr>
<td>UV acne</td>
<td>16.44±14.91</td>
<td>16.87±14.98</td>
<td>23.53±23.67</td>
<td>17.50±20.92</td>
<td>0.783</td>
</tr>
<tr>
<td>UV facial spot</td>
<td>81.72±23.20</td>
<td>88.73±15.32</td>
<td>83.33±18.48</td>
<td>76.28±25.45</td>
<td>0.345</td>
</tr>
<tr>
<td>UV moisture lev</td>
<td>93.61±7.95</td>
<td>95.53±0.743</td>
<td>91.93±10.07</td>
<td>93.22±7.04</td>
<td>0.816</td>
</tr>
</tbody>
</table>

* $p < 0.05$ was considered statistically significant
Table 4.3: Evaluation of skin parameters at baseline (0 weeks) and post treatment (24 weeks) amongst those using the sandalwood treatment (n = 15)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline mean±SD (0 weeks)</th>
<th>Control mean±SD (aqueous cream and SPF) (0 weeks)</th>
<th>Control mean±SD (aqueous cream and SPF) (24 weeks)</th>
<th>Sandalwood essential oil mean±SD (24 weeks)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facial spot</td>
<td>63.67±25.92</td>
<td>64.60±20.85</td>
<td>58.67±22.68</td>
<td>53.53±22.37</td>
<td>0.050*</td>
</tr>
<tr>
<td>Pore size</td>
<td>83.80±12.92</td>
<td>73.60±15.88</td>
<td>68.80±18.17</td>
<td>73.07±13.68</td>
<td>0.009*</td>
</tr>
<tr>
<td>Skin roughness</td>
<td>90.93±13.19</td>
<td>84.47±25.70</td>
<td>87.20±15.85</td>
<td>85.33±11.88</td>
<td>0.166</td>
</tr>
<tr>
<td>Facial wrinkles</td>
<td>71.27±21.59</td>
<td>72.27±20.05</td>
<td>66.87±20.61</td>
<td>72.53±22.49</td>
<td>0.773</td>
</tr>
<tr>
<td>UV acne</td>
<td>18.27±17.61</td>
<td>16.87±14.98</td>
<td>23.53±23.67</td>
<td>15.40±8.95</td>
<td>0.561</td>
</tr>
<tr>
<td>UV facial spot</td>
<td>90.80±10.83</td>
<td>88.73±15.32</td>
<td>83.33±18.48</td>
<td>78.87±22.22</td>
<td>0.050*</td>
</tr>
<tr>
<td>UV moisture lev</td>
<td>94.07±6.79</td>
<td>95.53±0.743</td>
<td>91.93±10.07</td>
<td>85.07±18.53</td>
<td>0.088</td>
</tr>
</tbody>
</table>

*p < 0.05 was considered statistically significant

4.5 Effect of lemon and sandalwood essential oil on skin parameters

Skin parameters were evaluated at baseline (0 weeks) and thereafter at 8, 16 and 24 weeks (post-treatment). Differences between the baseline and post-treatment were analysed to determine any significance. Analysis demonstrated the effect of lemon and sandalwood oil on the various skin parameters as shown in Table 4.4. Despite the lack of statistical significant an improvement (p = 0.11) was noted in the pore size amongst those with lemon oil. Similarly, a noticeable improvement was noted in facial spots among those treated with lemon oil. In contrast a significant difference (p = 0.015) was observed in pore size amongst those on sandalwood treatment. Improvements in the appearance of facial spots among those treated with sandalwood oil were also observed in those treated with the sandalwood treatment.
Table 4.4: Effects of lemon and sandalwood essential oil on skin parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BASELINE Mean% ±SD (0 weeks)</th>
<th>POST-TREATMENT Mean% ±SD</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(8 weeks)</td>
<td>(16 weeks)</td>
</tr>
<tr>
<td>Lemon essential oil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facial spot</td>
<td>68.67 ±21.24</td>
<td>65.17 ±19.04</td>
<td>62.56 ±19.40</td>
</tr>
<tr>
<td>Pore size</td>
<td>70.94 ±17.12</td>
<td>69.67 ±13.97</td>
<td>67.39 ±15.62</td>
</tr>
<tr>
<td>Skin roughness</td>
<td>87.17 ±19.44</td>
<td>81.61 ±14.15</td>
<td>84.00 ±11.39</td>
</tr>
<tr>
<td>Facial wrinkles</td>
<td>80.11 ±17.78</td>
<td>75.44 ±14.83</td>
<td>70.17 ±18.22</td>
</tr>
<tr>
<td>UV acne</td>
<td>16.44 ±14.91</td>
<td>16.94 ±13.81</td>
<td>16.61 ±16.42</td>
</tr>
<tr>
<td>UV facial spot</td>
<td>81.72 ±23.20</td>
<td>80.72 ±20.43</td>
<td>79.78 ±18.63</td>
</tr>
<tr>
<td>UV moisture level</td>
<td>93.61 ±7.95</td>
<td>90.78 ±6.35</td>
<td>90.11 ± 7.85</td>
</tr>
<tr>
<td>Sandalwood essential oil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facial spot</td>
<td>63.67 ±25.92</td>
<td>60.87 ±21.32</td>
<td>54.80 ±19.80</td>
</tr>
<tr>
<td>Pore size</td>
<td>83.80 ±12.92</td>
<td>77.73 ±11.48</td>
<td>74.00 ±9.87</td>
</tr>
<tr>
<td>Skin roughness</td>
<td>90.93 ±13.19</td>
<td>88.27 ±8.63</td>
<td>84.53 ±5.76</td>
</tr>
<tr>
<td>Facial wrinkles</td>
<td>71.27 ±21.59</td>
<td>71.67 ±18.99</td>
<td>73.33 ±20.73</td>
</tr>
<tr>
<td>UV acne</td>
<td>18.27 ±17.61</td>
<td>20.33 ±13.52</td>
<td>17.93 ±8.47</td>
</tr>
<tr>
<td>UV facial spot</td>
<td>90.80 ±10.83</td>
<td>84.20 ±10.45</td>
<td>79.73 ±16.64</td>
</tr>
<tr>
<td>UV moisture level</td>
<td>94.07 ±6.79</td>
<td>88.67 ±10.33</td>
<td>86.40 ±12.76</td>
</tr>
</tbody>
</table>

*p <0.05 was considered statistically significant when compared to the control group
4.6 Changes in skin parameters over time among all groups

Variations in skin parameters among those treated with lemon oil, sandalwood oil and the control groups at different consultations, are shown in Figure 4.3 (a-g). There was a statistical improvement \((p = 0.007)\) in facial spots with those on the sandalwood treatment in contrast to those treated with lemon oil. Similarly, the pore size skin parameter demonstrated statistical significance \((p = 0.001)\) in those treated with sandalwood oil in comparison to those on lemon oil.

Sandalwood oil showed a statistically significant difference \((p = 0.001)\) in reducing skin roughness in comparison to those treated with lemon oil. Although the lemon treatment oil showed improvement, skin roughness increased over time. In contrast, the occurrence of facial wrinkles was significantly reduced \((p = 0.031)\) among those on the lemon treatment compared to sandalwood oil. Significant quadratic changes were observed for all UV factors among those treated with sandalwood oil. Improvements were further noted in UV acne incidence \((p = 0.022)\), while UV spots showed a significant difference \((p = 0.133)\). UV moisture levels within the skin also displayed improvements \((p = 0.209)\).
Figure 4.4: Graphs illustrating the changes in the percentages of the skin parameters over time in the treatment and control groups, (a) facial spot, (b) pore size, (c) skin roughness, (d) facial wrinkles, (e) UV acne, (f) UV spot, (g) UV moisture
CHAPTER 5: DISCUSSION

5.1 Demographic and lifestyle characteristics

This study evaluated the effectiveness of lemon and sandalwood essential oils in the treatment of post inflammatory pigmentation, in an attempt to determine their impact on PIH progression. Our study highlights the incidence of PIH among our study population who were black female students aged 18-22 years. This may be attributed to our study location within a university. Reports suggest that the majority of students enrolled at a university are between 18-22 years of age (Mallman and Lee 2017; Sitek, Żądzińska and Rosset 2012). The prevalence of common factors that influence the onset of PIH such as age, race and increased hormonal factors are high within this cohort, endorsing their susceptibility to PIH development.

In our population, the prevalence of acne was 83%. A key contributor to PIH development was acne. Acne affects over 90% of adolescents and can persist into adulthood (Fabbrocini et al. 2010). A recent report suggested that both psychological and social outcomes affects almost 85% of people with acne aged between 12-24 years (Luqman et al. 2019).

A large proportion of our population presented with acne, which was similar to that reported by Sitek, Żądzińska and Rosset (2012). Sitek’s group emphasised that career choice decisions combined with financial and family problems are common emotional contributors to PIH development and progression within this age group. This age group is also more vulnerable to being young parents and increased contraceptive use (Kubiak and Rotsztejn 2012). The use of contraceptives is associated with increased melanin production, which consequently results in PIH development (Eliason et al. 2014).

Increased melanin production is a contributing factor for various pigmentary disorders, including PIH (Mahdalena, Jusuf and Putra 2018; Natale et al. 2016). Of note, hormones involved in pregnancy progression exert similar effects on non-pregnant females (Kubiak and Rotsztejn 2012), hence, we excluded pregnant woman and woman on contraception from this study. Although pregnant women were excluded from the study, 20% of participants were already young mothers and therefore presented with existing pigmentation.
Pigmentation is common among females (Pang et al. 2014), suggesting that hormonal changes may be involved (Hernando et al. 2016). Moreover, during this age period, contraceptives are often used by females, which may predispose them to PIH (Eliason et al. 2014). Earlier reports suggest that emotional, physical and hormonal changes are also prevalent during this transitional period between adolescence to adulthood (Dahl and Forbes, 2010), which may predispose them to PIH development.

Our data also highlights waxing as the preferred hair removal method, in contrast to threading. Waxing compared to other hair removal methods, is a more cost effective and quick and is a more easily accessible option. However, waxing predisposes many women to inflammation, blockage of pores, and burns, which can subsequently lead to PIH (DeMaria et al. 2014). Inflammatory outbreaks consequently increase bacterial growth resulting in comedone formation (Vaishnani 2015; Fabbrocini et al. 2010). Skin irritation arising from waxing frequently accompany PIH, particularly in Fitzpatrick skin types V and IV, as a result of increased epidermal melanocytes (Ho et al. 2011; Goldberg 2006). Based on this premise, waxing may be directly associated with PIH development (Williams and Almasi 2005).

However, limited studies are available to confirm these associations as much evidence is linked to anecdotal reports arising from local spas and clinics. It is thus possible that the increased incidence of pigmentation in our study may be associated with the higher usage of waxing as a hair removal option. Wax prepping factors such as skin preparation, wax temperature and the method of wax removal, must be considered when avoiding the development of such inflammatory responses (Dendle et al. 2007).

Furthermore, preventing excessive sun exposure and sweating following waxing is essential in order to reduce and prevent unnecessary skin reactions. An earlier report confirms that reduced skin inflammation is linked to consistent usage of sun protectors and decreased or minimal sun exposure (Marza 2014). Laser and intense pulsed light systems are also treatment modalities for removal of unwanted hair (Thaysen-Petersen et al. 2014). However, several reports suggest that laser treatments often result in the initiation and progression of pigmentation, thereby limiting its use.
Melanin attracts the heat energy from lasers; this energy is then absorbed by the melanin into the hair follicle thus creating further pigmentation (Chandrashekhar, Shenoy and Madura 2019; Thaysen-Petersen et al. 2017; Leok 2010; Chaowattanapanit et al. 2017). However, the newer long-pulsed laser treatments have been declared as safe and effective modalities for use in dark-skinned people with PIH (Bibilash et al. 2017; Ismail 2012). This data is consistent with recent findings by Passeron et al. (2019), who reported reduced PIH occurrence among those who opted for long-pulsed laser treatments.

Despite the potential value of laser treatments in improving PIH, its access is limited due to high costs, frequent follow up consultations and the potential risk of inducing or worsening PIH (Landau et al. 2011). In our study, this type of treatment remains inaccessible due to the increased costs associated consultations and follow ups.

Our data highlights a 55% occurrence of pigmentation among the family members of most participants, but we were unable to diagnose visible familial pigmentation in our cohort as we exclusively observed PIH incidences triggered by skin trauma (Patel 2015). However, studies have shown that hereditary or genetically transferred pigmentation may be confined to the periorbital regions, with familial progressive hyperpigmentation being prominent in infants (Piqueres-Zubiaurre et al. 2017; Sarkar et al. 2016).

The main activation pathways for PIH are skin trauma are friction, eczema, psoriasis, drug reactions, skin infections and sunburn (Patel 2015). However, reports suggest a higher PIH prevalence among those previously diagnosed with familial pigmentation due to the inheritance of higher levels of melanocytes (Bino, Duval and Bernerd 2018). These individuals may also have a higher incidence of other pigmentary disorders in addition to PIH (Baxter and Pavan 2013). Our study was however limited in that questions related to pigmentation could have been misinterpreted during data collection.

Homecare regimes were highlighted as daily skincare routines by most participants, however, the product details were unreported for further evaluation. While homecare regimes and over-the-counter preparations were routinely accessed/used by most participants, there was still 38% of the participants who reported no skincare regimes.
The effectiveness of homecare regimens are, however, dependent on the quality of ingredients within the preparations purchased. Surber and Kottner (2017) emphasised the importance of correct homecare regimens in contributing to a healthy skin appearance and reducing PIH. It is possible that the homebased skincare preparations used by our participants contained prohibited ingredients, such as HQ, which may predispose them to skin disorders (de Mendonca et al. 2014).

The popularity of products containing such ingredients are increasing, especially in dark skinned woman (Dlova et al. 2014). It is possible that many are desperate to reduce uneven skin tone and darkening caused by PIH, regardless of their limited knowledge of the product ingredients. Our data concurs with current global trends, whereby dark-skinned women are preferring lighter skin complexions (Marway 2018, Shroff, Diedrichs and Craddock, 2018). The use of skin fairness products containing toxic ingredients is increasing at an alarming rate as a result of societal expectations, despite it being associated with adverse health side effects.

Anecdotally, homecare products are known to contain lower percentages of active ingredients compared to commercial products. While it may have beneficial effects on overall skin appearance, the knowledge of the precise ingredients in these products are necessary when treating PIH (Clark and Sivamani 2016). Unprescribed products are reported to increase the progression of most PIH disorders (Grippaudo and Di Russo 2016).

Furthermore, adherence to homecare remedies can be challenging for the age group of our study, due to limited financial income. Dhadhal (2015) suggested that product price and discount availability were key factors when considering the purchase of cosmetic products and not specific ingredients.

Some participants reported an improvement in their PIH appearance over the years, possibly indicative of improved treatment adherence. However, Kamagaju et al. (2016) suggested that homecare preparations could potentially contain banned substances such as HQ and mercury, which are harmful to the structure and physiology of the skin. Moreover, prolonged exposure to HQ and mercury increases the risk of contact dermatitis, nail discoloration and excessive skin darkening (Bandyopadhyay 2009).
The possibility that certain constituents within these products inhibit melanin production is high, since skin color is usually the most observable feature that is anecdotally referred to rather than skin structure. Much concern arises since these preparations may also increase the risk of skin burns, epithelial thinning and skin darkening (de Mendonca et al. 2014; Hendon et al. 2014; Jennifer et al. 2012).

5.2 Acne and sunburn as common PIH contributors

5.2.1 Acne

Our study demonstrated a reduction in the appearance and features of UV acne among those that were on prior treatment in contrast to those that were not. Cutaneous injuries and inflammation such as acne often lead to PIH (Callender et al. 2011). Acne is characterised by large sebaceous glands and increased sebum production. Acne was found mainly around the face and on the upper trunk regions in our cohort. Our data concurs with Tanghetti et al. (2014) who found similar characteristics in their cohort.

Post-acne pigmentation and pigmented scars are usually outcomes of acne scarring (Al Qarqaz and Al-Yousef 2018). In our cohort, varying stages of acne and observable scarring was noted. Scarring, particularly on the facial regions is associated with reduced self-confidence which subsequently affects the quality of life. This consequently affects the morale of the affected individual resulting in low self-esteem and poor self-confidence (Thompson 2015).

While acne scarring can be removed, it requires much patience, appropriate treatment and sufficient time for the process to be successful. Our data corroborates several others who demonstrated associations between acne, PIH and low self-esteem (Thompson 2015; Jiang et al. 2018:35). These reports identify PIH sufferers as experiencing decreased self-confidence, self-esteem, and increased self-consciousness due to the noticeability of their condition. The ability to control the incidence of acne will subsequently reduce PIH development and its widespread physiological and social consequences (Abad-Casintahan et al. 2016).

Treatment control measures should target melanin production, which will subsequently prevent the onset of acne. Our study cohort included young females whose acne could be attributed to hormonal imbalances following puberty and their transition into adulthood.
PIH is reported to be a direct effect of acne (Degitz and Ochsendorf 2017). Moreover, acne development involves increased sebum production, hyperkeratinisation of the sebaceous ducts, colonisation by *P. acnes*, thus resulting in inflammation and PIH. Our data highlighted the presence of mild to severe active acne present on the facial and neck regions of some participants. These observations corroborates various others (Nouveau *et al.* 2016 and Degitz and Ochsendorf, 2017).

While acne affects approximately 85% of adolescents, as a result of puberty, changes in hormonal secretions, skin pH levels, anxiety and diet may also be contributing factors (Qidwai *et al.* 2017; Magin *et al.* 2006). Thus, the onset of acne may not be confined to physiological processes (Degitz and Ochsendorf 2017). While puberty and hormonal changes were potentially instrumental in the initiation of PIH in our cohort, climate may also be involved as data was collected at various times of the day and throughout the year in all seasons.

5.2.2 Sunburn

Our study revealed sunburn as a possible contributor to PIH. Participants reported severe progression of their PIH when exposed to the sun. Exposure to the sun increases the production of vitamin D, which also depends on melanin for its production (Felton *et al.* 2016). Melanin synthesis occurs through the absorption and distribution of both UVA and UVB rays into the skin (Swalwell *et al.* 2012).

Hence, increased melanin levels in dark skinned people predisposes them to absorb more UV rays (Bonilla *et al.* 2014). The effects of the blue light (modern technology) on skin pigmentation has recently emerged, however there is no literature supporting these effects.

The South African summer temperatures create unfavourable conditions for PIH patients (Wright *et al.* 2017). Ultraviolet radiation triggers uneven pigmentation in the skin (Young *et al.* 2009). Thus, it is possible that our participants who were mostly dark skinned may have been exposed to increased UV rays, which resulted in increased skin pigmentation. Sun protection is therefore highly recommended in the treatment of PIH, since it prevents its progression by protecting the skin against these harmful rays (Scheinfeld 2007).
While the use of sun protection especially in the South African climate is well publicised, its awareness may be limited within the broader community. This lack of awareness may be a contributing factor in our cohort since many participants indicated an aggravation of their PIH during summer. However, it is also possible that those who may have used homecare remedies which potentially contained banned substances, increased their susceptibility to sunburn due to UV sensitivity.

Our data is in accordance with several others (Nordlund 2007; Moshammer, Simic and Haluza 2017) whose research showed that prohibited substances promote sunburn by thinning the outer layers of the skin, increasing sun exposure, thus promoting skin darkening. Others have also demonstrated that PIH is worsened among those not using sunblock, especially when exposed to the sun during summer months (Ruvolo et al 2018), which is also consistent with our results.

Our study found a high incidence of sunburn in the cohort of black African students. Dark skinned individuals are probably more susceptible to sunburn and PIH development. Several others report similar findings, suggesting that excess sun exposure results in severe sunburn and skin pigmentary disorders (Rodrigues and Pandya 2015, Nestor et al. 2014; Eimpunth, Wanitphadeedecha and Manuskiatti 2013). Incorporating SPF creams into daily regimens is essential in decreasing the progression of PIH. In our study, we provided RAD® (SPF 15), by Environ to all participants.

This brand of sunscreen contains antioxidants which protect the skin against harmful environmental factors (Environ Skincare 2013). In addition, the noticeable therapeutic effects of RAD® in our control group may be linked to the antioxidant effects of the SPF, which provided UVA/B protection to all participants. Both UV A and UV B rays are key factors in PIH development and its progression (Wright et al. 2017). Sun protection against these rays mainly involves topically applied antioxidants, which prevents the penetration of harmful rays (Ebanks, Wickett and Boissy 2009). In addition, the antioxidants minimise the oxidative process of melanin production by inhibiting UV ray absorption (Sondheimer and Krutmann 2018).
5.3 The influence of Lemon and sandalwood oil on skin parameters

Overall, visible improvements were demonstrated in the skin for both oils utilised in our study. We observed significant physiological changes in the pore sizes for both oils, as well as improved pore conditions with fewer enlarged and blocked pores. Thus, both groups showed a reduction in the prevalence of comedones and acne. Our data thus suggests that both oils may have a potential role in decreasing the development of acne and PIH. Several studies support the astringent and lightening properties that lemon oil exerts on the skin, however, none of them elaborate their physiological mechanisms on pore size (Battaglia 2016; Valgimigli et al. 2012; Perdones et al. 2012). Lemon has also been identified as an effective penetration enhancer for topical preparations, thereby enabling maximum penetrative effects of the preparation (Dosoky and Setzer 2018).

Lemon oil naturally possesses anti-browning properties, thereby inhibiting tyrosinase in the early stages of melanin formation (Lante and Tinello 2014). Sandalwood oil is also reported to inhibit the biosynthetic pathway of tyrosinase required for melanin production by improving anti-inflammatory properties and suppressing the pathway of phenols to melanin (Moy and Levenson 2017). Sandalwood oils are antimicrobial and antiproliferative, thus promoting acne prevention and reduced PIH progression. Therefore, both lemon and sandalwood oil demonstrate properties that reduces PIH by acting as tyrosinase inhibitors in the primary stage of melanin formation.

The penetrative properties in lemon oil enables effective saturation of active products into the skin, while the cleansing features supports unclogging of blocked pores thereby improving product penetration (Kunicka-Styczynska, Sikora and Kalemba 2011). In addition, the acidity in lemon desquamates cells (Maldonado, Aban and Navarro 2013), suggestive of its inhibitory effect on hyperkeratinisation and prevention of acne formation (Baghel, Gidwani and Kaur 2017).

Our data demonstrated an overall improved skin texture for those treated with lemon oil, thereby supporting its use for the treatment and management of acne and PIH, concurring with various others (Valgimigli et al. 2012; Kanlayavattanakul and Lourith 2011, Dupuy et al. 2011).
Thus, pore size improvements in our study may be associated with the increased absorption effects of lemon oil and increased penetration. It is possible that the reduced pore size was also indicative of the restricted environment for bacterial growth and comedone formation. The improved pore size observed in our study limits the development of acne (blocked pores), therefore reducing PIH development.

Additional data testing demonstrated noticeable improvements in the physiology and appearance of the skin over time. While some parameters displayed consistent improvements, others revealed improvements followed by PIH worsening before improving again. These PIH progression patterns were similar to those reported by Anbar et al. (2016).

Our data highlighted that both lemon oil and sandalwood oil demonstrated an overall improved skin texture and appearance over time. While lemon oil positively improved the appearance of wrinkles, sandalwood significantly improved the sizes of facial spots and pore sizes. The presentation of skin roughness was also notably reduced for sandalwood oil in contrast to lemon oil. There was an overall improvement for all UV factors. Our results concur with others (Itoi-Ochi et al. 2016; Sharma et al. 2018; Thakur, Negi and Kush 2013), who support the characteristics and actions of lemon and sandalwood in improving the overall skin appearance.

Although many reports indicate numerous cosmetic benefits, there is a paucity of literature regarding the direct effects of sandalwood essential oil and its effects on PIH. However, sandalwood oil is known for treating skin diseases and acne (Dozmorov et al. 2014) due to its anti-inflammatory properties (Itoi-Ochi et al. 2016) which reduce acne inflammation and calm the skin. These properties result in less redness, inflammation and breakouts.

Therefore, due to the beneficial properties of sandalwood, it may be assumed that sandalwood may reduce the appearance of PIH and possibly inhibiting its progression. Sharma et al. (2018), confirmed that by targeting the mechanisms of acne, the development and progression of PIH is managed. Both lemon and sandalwood essential oils have been explored and found to exfoliate dead skin cells, lighten skin and reduce skin irritation (Thakur, Negi and Kush 2013), thus improving skin health. Due to these independent properties of both oils, the combination of lemon and sandalwood essential oil may be beneficial in combating PIH and its effects.
CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

This study investigated the use of lemon and sandalwood essential oils in the management of PIH. Our data highlights the effectiveness of both oils over a 24 week period. Furthermore, we compared the findings of the two oils to determine which oil demonstrated superior results. Our findings demonstrated unique characteristics of each oil that targeted the various elements of PIH.

Our data demonstrates that the two oils worked differently in progression of PIH. The high levels of vitamin C found in lemon oil may have contributed to the reduction of the tyrosinase enzyme responsible for melanin production and synthesis. The bleaching effect of these oils reduced tyrosinase levels, thereby preventing further darkening of the skin. These oils prevented the hyperkeratinisation process thus allowing penetration of the treatment into the epidermis. Both oils also potentially prevented hyperkeratinisation which subsequently improved skin conditions. The saturation of treatment product resulted in a smoother and clearer skin.

Both treatments, decreased the incidence of acne and the formation of PIH. Similarly, Sandalwood oil also worked very well to improve the various skin parameters. The sizes of acne spots were significantly reduced, due to the anti-inflammatory properties found in sandalwood oil, aiding in the reduced presentation of PIH. Penetration levels were considerably improved as well as the condition of the pores. This resulted in pores becoming unblocked and decreasing in size indicating improved penetration and a smoother skin appearance.

Sandalwood oil also had a positive benefit to all UV skin parameters. These included UV acne, UV spot and UV moisture levels in the skin. The soothing and anti-inflammatory properties of sandalwood prevented further irritation and breakouts while simultaneously improving penetration conditions. This enabled treatment product to be well absorbed into the skin, improving overall skin appearance.
UV moisture levels increased demonstrating sandalwood oil as an emollient barrier, preventing transepidermal water loss in the skin, as a result showing significant improvements in the condition of skin roughness. Due to acne and acne scarring being the main cause of PIH, sandalwood validated its effectiveness by considerably reducing these features hence reducing the incidence of PIH.

It is also noted that the control group showed significant improvements in their overall skin appearance. These improvements can possible be attributed to the sunblock used in the study. The RAD® by Environ contains antioxidants that have been proven to reduce the harsh effects of PIH. In addition, RAD® also contains vitamin A that encourages cell renewal and restoration, which is vital for post acne scarring. In conclusion, the combination of both oils incorporated into one treatment product may enhance results as the lemon desquamates and cleanses, thus allowing the sandalwood oil to penetrate and reduce inflammation.

6.2 Limitations

A limitation in our study was the high participant dropout rate. Participants were students, hence data received were homogenous. The researcher did not take into the account the menstrual cycle of participants. During this phase, the hormone activity increases, perhaps resulting in aggravated PIH symptoms. It may have been possible that many participants were on their menstrual cycle during consultations. Therefore, results for that consultation may not have been accurate and precise.

6.3 Recommendations

The following recommendations should be considered for future studies:

- The study sample size should be increased to improve validity of the study
- All Fitzpatrick scale skin types be included to determine efficacy of treatment.
- Diverse participants from various backgrounds should be included to determine the efficacy of these treatments on other ethnic groups and genders
- Newer equipment should be utilised to provide extensive data reports. During the duration of the study, more advanced and unconventional machinery emerged. It is recommended that the study use the Vichy® 3D or Luminosity® machines displaying broad results and features, allowing further insight into the study. These machines will also provide awareness on the transepidermal water loss prevented by the treatment products.
• Document a menstrual cycle schedule for all participants. This schedule would allow the researcher to identify recommended times for consultation. This will avoid hormone activities influencing with the findings and results.

• It is suggested that a combination product of lemon and sandalwood oil be developed and tested. Individually, these oils possess properties to combat PIH, it is therefore recommended that they should be combined for experimental investigation. The combination treatment should be tested on other pigmentary and skin conditions.
LIST OF REFERENCES

Appendix 1: IREC approval

31 March 2017

IREC Reference Number: REC 62/16

Ms R Ganesh
108 Pine Road
Clairwood

Dear Ms Ganesh

The relative effectiveness of Lemon (citrus limon) and Sandalwood (santalum album) essential oils in the treatment of post-inflammatory facial pigmentation in African females 18-35 years in eThekwinini

The Institutional Research Ethics Committee acknowledges receipt of your notification regarding the piloting of your data collection tool.

Kindly ensure that participants used for the pilot study are not part of the main study.

In addition, the IREC acknowledges receipt of your gatekeeper permission letters.

Please note that FULL APPROVAL is granted to your research proposal. You may proceed with data collection.

Yours Sincerely,

Professor J K Adam
Chairperson: IREC
Appendix 2: Request for permission to conduct research

108 Pine Road, Clairwood Durban 4052

08 February 2017

The Director
Research and Postgraduate Support
Durban University of Technology

APPLICATION FOR PERMISSION TO CONDUCT RESEARCH IN THE DEPARTMENT OF SOMATOLOGY, FACULTY OF HEALTH SCIENCES.

Dear Prof Moyo

My name is Ronell Ganesh and I am currently registered for my Master’s Degree through the Department of Chiropractic and Somatology: Somatology at the Durban University of Technology.

My research dissertation is titled, “The effectiveness of Lemon (Citrus limon) and Sandalwood (Santalum album) essential oils in the treatment of facial post-inflammatory pigmentation in African females aged 18-35 years in EThekwini”. The aim of this study is to explore the effectiveness of the two mentioned essential oils in the treatment of pigmentation as well as their overall effect on the skin.

I therefore require permission to invite students to participate in my study should they meet my study’s inclusion criteria. Your approval is highly appreciated, if you have any questions or concerns please contact me on 074 514 6116 or my supervisors, Mrs D Borg on (031) 373 2390 or via email on dorindab@dut.ac.za and Prof N Govender on (031) 373 2796 email nalinip@dut.ac.za

Kind regards

Miss Ronell Ganesh
074 514 6116/ (03 2756 ronellg@dut.ac.za

97
Appendix 3: Letter of Information and Consent – English

LETTER OF INFORMATION AND CONSENT

Title of the Research Study:
The effectiveness of lemon and sandalwood essential oils in the treatment of facial post-inflammatory pigmentation in females aged 18-35 in the EThekwini area

Principal Investigator/s/researcher: Miss Ronell Ganesh

Co-Investigator/s/supervisor/s: Mrs Dorinda Borg - supervisor (Med: Higher Education) Dr Nalini Govender – co-supervisor

Brief Introduction and Purpose of the Study:
Pigmentation is a common dermatologic condition that is found in all skin types but is most prominent in skin of color. Any inflammation or injury to the skin can almost immediately be accompanied by in pigmentation. The treatment of post inflammatory pigmentation may be challenging as the goal is to reduce the pigmentation without causing additional irritation to the skin. A variety of topical treatments and ointments are available to treat hyperpigmentation, however, these treatments can interfere with the skin at several different levels due to high chemical levels within them. This has caused an increased need by consumers for safe, effective and affordable methods of treating this condition. Therefore the primary purpose of the study is to investigate the effectiveness of the lemon and sandalwood essential oils in the treatment of facial post inflammatory pigmentation in females aged 18-35 years. The secondary purpose of this research will investigate whether these oils improve the overall condition of the skin.

Outline of the Procedures:
In order to be included in this study, you will need to fulfil the following criteria:
• You must meet with the inclusion criteria of the study
• You must have POST-INFLAMMATORY PIGMENTATION. This will be diagnosed by the dermatologist based on images taken and information provided by you

The following criteria will exclude you from participation in this study:
• If you do not meet the inclusion criteria

You will be required to consult with the researcher for a total of five times during the period of the study, on the first consultation, photos will be taken and sent for diagnosing. If diagnosed with the above mentioned condition you will be included in the study. Follow up visits are included during these consultations. A detailed schedule will be handed to you which includes the procedures that will take place during these consultations. Each consultation will take between 20-30 minutes. Consultations will take place at the Somatology Clinic at the Durban University of Technology during operating times.
This is a double-blind placebo controlled study. What does this mean?

In this study, the placebo is a cream that looks similar as the treatment blend but contains no essential oil. Double-blind means that neither the researcher nor the participant knows whether the blend or placebo is allocated to you. Thus there is a 33% chance that you will receive a blend of cream or the placebo. A total of 75 participants will take part in this study of which 25 participants will receive the lemon blend, 25 participants will receive the sandalwood blend and 25 participants will receive the placebo cream which will be aqueous cream. Participants allocation will be randomly assigned to the 3 groups.

Essential oils, when blended correctly are regarded as safe. However, sometimes, it is possible that you may react to the treatment. To eliminate the chances of this, I will perform a 24 hour allergy test. Please contact the researcher if you are concerned about any symptoms or reactions you may be experiencing further into the study.

Risks or Discomforts to the Participant:
There will be no risk to you as an allergy test will be conducted prior to you participating in the study. A pilot study will be conducted prior to the study to eliminate any potential risk to you.

Benefits:
Benefits to the participant: The blend of cream may improve the appearance of pigmentation on the participant. You will receive a sun block with an SPF 15
Benefits to the researcher: The accolade of a Masters degree in Somatology as well as potential publications in related Journals

Reason/s why the participant may be withdrawn from the study:
You may withdraw at any time from the research study, there will be no consequences for this.

Remuneration:
There is no direct remuneration for participation in the study. Participation in this study is voluntary. Completion of participating in this study will award you with a complimentary treatment at the Somatology clinic

Costs of the study:
There will be no costs for participation in the study

Confidentiality:
All information gathered by you will be kept strictly confidential and the results will be used for academic purposes only. Photos, images and information given by you will be viewed and assessed by a Dermatologist for diagnosis.

Research-related Injury:
To avoid any adverse reactions an allergy test will be conducted prior to you being included in the study.

If you have any questions or enquiries related to the study, please contact the following personnel:

Principle Investigator: Ronell Ganesh Cell: 074 514 6116
Supervisor: Mrs Dorinda Borg Tel: (031) 373 2390

Or the Institutional Research Ethics Administrator on (031) 373 2900. Complaints can be reported to the DVC: TIP, Prof F Otieno on (031) 373 2382 or dvctip@dut.ac.za
INCWADI YOLWAZI NEMVUME

Isihloko Socwaningo:
Ukusebenza kukalamula kanye namafutha emvelo e-sandalwood ekwelapheni ubuso obukade buvuuvukele ebantwini besifazane abaphakathi kweminyaka eyi 18-35 endaweni yaseThekwini.

Um/abancwani : Nksz Ronell Ganesh
O/abasebenzisana nomcwani: Nkskz Dorinda Borg - supervisor (Med: Higher Education)
Dkt Nalini Govender – co-supervisor

Isingeniso esifushane kanye nenhluso yocwanoinga

Uhlaka lwenqubo:
Ukuze ube ingxenye yalolu cwaningo, uzodinga lokhu okulandelayo:
- Kumele uhluminyana nezidingo zocwanoinga
- Kuzomele kube ukuthi WAKE WABA NOBUSO OBUVUVUKELE. Lokhu kuzovezwa udokotela wesikhumba ngesikhathi ezithathwa kanye neseminingweni ezimendaweni ezobekukhulu uwe.

Lokhu okulandelayo kuzokwenza ukuthi ungabandakanywa kulolu cwaningo:
- Uma ungahlangabezane nezidingo zocwanoinga
Lolu cwaningo lulawulwa i-double-blind placebo. Lokhu kusho ukuthini?

Ubangazi Kobambe Iqhaza
Bungakanhela bunyoba l-alergy test izokwenziwa ngaphambi kokuba umbembe iqhaza kulolu cwaningo. I-pilot study izokwenziwa ngaphambi kokuqala ucaningo ukuze sigweme nanoma ubumbe ubungozi.

Izinzuzo:

Isi/izizathu zo/sokuhoxa kobambe iqhaza ocwaningweni:
Ungakwazi ukuhoxa nanoma ingasiphi isikhathi kulolu cwaningo, akuzubakhona nhlawulo.

Ukukhokhelwa:
Akukho kokhelo eqondene ngqo nobambe iqhaza kulolu cwaningo. Uyazinikela ekubambeni iqhaza kulolu cwaningo. Ukuholondela iqhaza luze lu yiluzo lelu yicwaningo kugqaca kubungozi akuzubakhona nhlawulo.

Imali yocwaningo:
Akuzukuba khona mali ekhokwayo ukuze umbe umbe iqhaza kulolu cwaningo

Imfihlo:
Yonke imininingwane eqoqwe uwe izogcinwa iyimfihlo ebese imphumela isetshenziselwa ukufunda kuhle. Izithombe kanye nemininingwane oyikhihlole izohlolola udokotela wesikhumba ukuze athole inkinga yesikhumba sakho.

Ukulimala okuhlobo bekocwaningo
Ukuze ngweme ukulimala kwsikhumba sakho kulolu cwaningo, kuzokwenziwa l-alergy test ngaphambi kokuba ubambe ingxenye yocwaningo.

Uma unanoma imiphi imibuzo emayelana nocwaningo, sicela uthinte laba abalandalayo
Umcwaningi: Ronell Ganesh Umakhalekhukhwini: 074 514 6116
Olekelela umcwaningi: Nksz Dorinda Borg Ucingo: (031) 373 2390

Noma i- Institutional Research Ethics Administrator on (031) 373 3790. Ungathumela izikhala ku- DVC: TIP, Solwazi F Otieno on (031) 373 2382 or dvctip@dut.ac.za
Appendix 5: Consent form – English

CONSENT

Statement of Agreement to Participate in the Research Study:

• I hereby confirm that I have been informed by the researcher, Ronell Ganesh, about the nature, conduct, benefits and risks of this study - Research Ethics Clearance Number: ___________.
• I have also received, read and understood the above written information (Participant Letter of Information) regarding the study.
• I am aware that the results of the study, including personal details regarding my sex, age, date of birth, initials and diagnosis will be anonymously processed into a study report.
• In view of the requirements of research, I agree that the data collected during this study can be processed in a computerised system by the researcher.
• I may, at any stage, without prejudice, withdraw my consent and participation in the study.
• I have had sufficient opportunity to ask questions and (of my own free will) declare myself prepared to participate in the study.
• I understand that significant new findings developed during the course of this research which may relate to my participation will be made available to me.

____________________ __________ ______
Full Name of Participant Date Time Signature / Right
Thumbprint

I, Ronell Ganesh, herewith confirm that the above participant has been fully informed about the nature, conduct and risks of the above study.

Full Name of Researcher Date Signature

Full Name of Witness (If applicable) Date Signature
Appendix 6: Consent form – isiZulu

IMVUME

Isitatemende sokuvuma ukuba ingxenye yocwaningo:

- Ngiyavuma ukuthi umcwaningi u-Ronell Ganesh ungazisile ngobunjalo bocwaningo, ukuziphatha, umhlomulo kanye nobungozi balolu cwaningo- iNombolo ye-Research Clearance:__________________.
- Nginikiye, ngafunda futhi ngaqondisisisa imininingwane ebhalwe ngenhla (Incwadi Yemininingwane yoMbambiqhaza) mayelana nocwaningo.
- Ngiyazi ukuthi imiphumela yocwaningo, okuhlenganisa imininingwane yami emayelani nobulili, iminyaka, usuku lokuzalwa, izinhlamvu zokuqala zamagama kanye nokubonwa kwezifo ezikumina kuzofakwa embikweni wocwaningo ngokungavezwa kwegama lami.
- Ngenxa yalokhu okudingwa ucwaningo, ngiyavuma ukuthi lemininingwane etholwe kulolu cwaningo ingasetshenziswa ifakwe kwimpyutha.
- Ngingakwazi ukuhoxa ekubambeni iqhaza kulolu cwaningo nanoma inini.
- Ngibe nethuba elanele lokuba futhi (ngokuzithandela kwami) ngizivumele ukuthi ngikulungele ukubamba iqhaza kulolu cwaningo.
- Ngiaqondisisisa ukuthi konke okusha okuvelayo kulolu cwaningo okuqondene name ngingakwazi ukukuthola.

Igama eliphelele lombambiqhaza **Usuku** **Isikhathi** **Isiginisha**

Isithupha sokunene

Mina, Ronell Ganesh, ngiyaqinisekisa ukuthi obambe iqhaza ongenhla waziswe ngokugcwele ngokohlobo, ukuziphatha nobungozi bocwaningo olungenhla.

Igama eliphelele lomcwaningi **Usuku** **Isiginisha**

Igama eliphelele lofakazi (uma kunesidingo) **Usuku** **Isiginisha**
DO YOU HAVE FACIAL DISCOLOURATION OR UNEVEN SKIN TONE?

Have you had any recent change to your complexion and skin tone due to any scarring or blemishes? Is this affecting your self-esteem and confidence?

FACIAL TREATMENT

Is now available for females between 18-35 years that meet the study criteria

For more information please contact:
Ronell Ganesh – Cell: 074 514 6116
WhatsApp: 076 7000 611
Email: ronellg@dut.ac.za
NGABE UBUSO BAKHO
BUGQHUNQILE NOMA IBALA
LESIKHUMBA SAKHO ALIFANI?

Usuke waba nokushintsha kwebala lesikhumba ngenxa yokulimala noma izisihla? Ngabe lokhu kunomthelela ekuzethembeni kwakho?

UKWELASHWA KOBUSO
Sekuyatholakala kubantu besifazane abaphakathi kweminyaka eyi 18-35 abahlangabezana nezidingo zocwaningo

Ngeminye imininingwane sicela uxhumane no:
Ronell Ganesh –
Umakhalekhukhwini: 0745146116
u-WhatsApp: 076 7000 611
i-Email: ronellg@dut.ac.za
Thank you once again for agreeing to complete this questionnaire. Please read through the questions below and answer to the best of your ability. Any information you provide will be kept strictly confidential.

1. **GENERAL INFORMATION** (please tick were applicable)

<table>
<thead>
<tr>
<th>Participant no:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupation:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age:</th>
<th>18-22 years</th>
<th>22-24 years</th>
<th>24-28 years</th>
<th>28-32 years</th>
<th>32-35 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race (for statistical purposes):</td>
<td>African</td>
<td>Coloured</td>
<td>Indian</td>
<td>White</td>
<td>Other (specify)</td>
</tr>
</tbody>
</table>

2. **LIFESTYLE/ GENERAL HEALTH INFORMATION** (please tick most applicable option)

<table>
<thead>
<tr>
<th>2.1 How is your general health</th>
<th>Excellent</th>
<th>Good</th>
<th>Fair</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 Do you exercise? If yes, how often?</td>
<td>Yes</td>
<td>No</td>
<td>1-2 times a week</td>
<td>2-4 times a week</td>
</tr>
<tr>
<td>2.3 Do you smoke cigarettes? If yes, how many do you smoke per day?</td>
<td>Yes</td>
<td>No</td>
<td>1-5 per day</td>
<td>5-8 per day</td>
</tr>
<tr>
<td>2.4 Do you drink alcohol? If yes, how often?</td>
<td>Yes</td>
<td>No</td>
<td>1-2 times a week</td>
<td>More than 4 times a week</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>----</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>2.5 Do you eat fruit and vegetables? If yes, how often?</td>
<td>Yes</td>
<td>No</td>
<td>1-3 per day</td>
<td>3-5 per day</td>
</tr>
<tr>
<td>2.6 How much water do you drink?</td>
<td>Yes</td>
<td>No</td>
<td>1-3 glasses per day</td>
<td>3-6 glasses per day</td>
</tr>
<tr>
<td>2.7 Have you been diagnosed with any health related conditions?</td>
<td>Yes</td>
<td>No</td>
<td>If Yes, please specify:</td>
<td></td>
</tr>
</tbody>
</table>

3. SKIN INFORMATION

3.1 Are you currently using any skin care products? If yes, please indicate the brand/make of the range and the reason for use of each product?

3.2 Does anything bother you regarding the condition of your skin. If yes, please specify

3.3 Have you either had or regularly go for any of the following skin care treatments (please tick)

<table>
<thead>
<tr>
<th>Procedure/Treatment</th>
<th>Yes</th>
<th>No</th>
<th>If Yes, please specify how often</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1 Waxing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.2 Threading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.3 Permanent hair removal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.4 Laser</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.5 Peels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.6 Deep cleanse facials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.7 Advanced/specialized facials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.8 Bleaching</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3.9 Lightening/whitening treatments

4.1 Please tick if you have previously used any of the following skin medications/preparations for pigmentation or uneven skin tone.

<table>
<thead>
<tr>
<th>Medication/Preparation</th>
<th>If yes, how long you have been using the selected medication/preparation (Please tick)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-3 months ago</td>
</tr>
<tr>
<td>4.1.1 Roaccutane™</td>
<td>Yes</td>
</tr>
<tr>
<td>4.1.2 Oratane®</td>
<td>Yes</td>
</tr>
<tr>
<td>4.1.3 Retin A®</td>
<td>Yes</td>
</tr>
<tr>
<td>4.1.4 Cortisone</td>
<td>Yes</td>
</tr>
<tr>
<td>4.1.5 Antibiotics</td>
<td>Yes</td>
</tr>
<tr>
<td>4.1.6 Vitamin supplements</td>
<td>Yes</td>
</tr>
<tr>
<td>4.1.7 Thyroid</td>
<td>Yes</td>
</tr>
<tr>
<td>4.1.8 Retinoids</td>
<td>Yes</td>
</tr>
<tr>
<td>4.1.9 Hydroquinone</td>
<td>Yes</td>
</tr>
<tr>
<td>4.1.10 Azelaic acid</td>
<td>Yes</td>
</tr>
<tr>
<td>4.1.11 Other, please specify:</td>
<td></td>
</tr>
</tbody>
</table>

*If none of the above is applicable to you, please proceed to question 5
5. GENERAL QUESTIONS

5.1 When did you first notice the appearance of this uneven skin tone?

5.2 Have you been exposed to any trauma or condition that may have resulted in this uneven tone?

5.2.1 If No, do you know what could be the cause of your uneven skin tone/pigmentation?

5.3 Does any member/s of your family have facial pigmentation?

5.4 Have you been treating your pigmentation? If yes, how?

5.5 If yes, do you think the pigmentation has worsened or improved over time? Please explain

Thank You
Appendix 10: Questionnaire – isiZulu

INHLLOLOVO

1. **IMININGAWANE EJWAYELEKILE** (sicela ufake lolu phawu (√) kokukhethayo)

<table>
<thead>
<tr>
<th>Inombolo yobambe iqhaza:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Iminyaka</td>
<td>Weminya ka</td>
<td>Weminya ka</td>
<td>Weminya ka</td>
<td>Weminya ka</td>
<td>Weminya ka</td>
</tr>
<tr>
<td>Ubuhlanga (ngenhloso yezibalo)</td>
<td>umAfrika</td>
<td>Ikhaladi</td>
<td>owase Ndiya</td>
<td>Umlungu</td>
<td>Okunye (chaza)</td>
</tr>
</tbody>
</table>

2. **INDELA YOKUPHILA/ Ulwazi MGEZEMPILO** (sicela ufake lolu phawu (√) kokukhethayo)

<table>
<thead>
<tr>
<th>2.1 Injani impilo yakho?</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhle kankhulu</td>
<td>Inhle</td>
<td>Kuyancengeka</td>
<td>Kuyabheda</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.2 Ngabe uyazivocavoca? Uma uthi yebo, kuba kangaki?</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yebo</td>
<td>Cha</td>
<td>1-2 ngeviki</td>
<td>2-4 ngeviki</td>
<td>Nsukuzonke</td>
</tr>
</tbody>
</table>
2.3 Ngabe uyawubhema ugwayi? Uma uthi yebo, ubhema ogwayi abangaki ngosuku?

| Yebo | Cha | 1-5 ngosuku | 5-8 ngosuku | 8 noma ngaphezulu ngosuku |

2.4 Ngabe uyabuphuza utshwala? Uma uthi yebo, kuba kangaki?

| Yes | Cha | 1-2 ngeviki | Ngaphezu kokune ngeviki | Nsukuzonke |

2.5 Uyazidla izithelo nezaqathi? Uma uthi yebo, kuba kangaki?

| Yebo | Cha | 1-3 ngosuku | 3-5 ngosuku | 5 noma ngaphezulu ngosuku |

2.6 Mangakanani amanzi owaphuzayo?

| Yebo | Cha | Ingilazi e-1-3 ngosuku | Izingilazi ezi-3-6 ngosuku | Izingilazi ezi-6 noma ngaphezulu ngosuku |

2.7 Ngabe zikhona izimo zezempilo esezike zahlonzwa kuwe?

| Yebo | Cha | Uma uthi yebo, sicela uchaze: |

3. ULWAZI NGESIKHUMBA

3.1 Ngabe bakhona okhilimu besikhumba obasebenzisazo? Uma uthi yebo, sicela usikhanyisele ngegama/ngohlobo lokhilimu nesizathu sokusebenzisa ukhilimu ngamunye?

3.2 Ngabe kukhona okukukhathazayo ngesimo sesikhumba sakho. Uma uthi yebo, sicela uchaze

3.3 Usuke noma ujwayele ukusebenzisa okokunakekela isikhumba kulokhu okulandelayo (sicela ufake lolu phawu √)
<table>
<thead>
<tr>
<th>Inqubo/ukwelashwa</th>
<th>Yebo</th>
<th>Cha</th>
<th>Uma uthi yebo, sicela uchaze ukuthi kuba kangaki</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1 Ukususa iziboya</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.2 Ukuncothulwa kwezinwele/iziboya ezingadingeki</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.3 Ukususa izinwele unomphelo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.4 i-Laser</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.5 Peels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.6 Imikhiqizo ekhetekile yokugeza ubuso</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.7 Imikhiqizo ephambili esetshenziswa ebusweni</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3.8 Ukwenza ubuso bube nebala elimpofu

3.3.9 Imikhiqizo eyenza isikhumba sikhanye ngebala

4.1 Sicela ufake lolu phawu (√) uma usuke wasebenzisa eminye yemithi yebala lesikhumba noma yebala elingafani

<table>
<thead>
<tr>
<th>Imithi/Ukulungiselela</th>
<th>Uma uthi yebo, usukusebenzise isikhathi esingakanani lokhu okukhethile (sicela ufake u-√)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>izinyan ga ezi-0-3 ezedlule</td>
</tr>
<tr>
<td></td>
<td>izinyan ga ezi-0-6 ezedlule</td>
</tr>
<tr>
<td></td>
<td>izinyan ga ezi-6-9 ezedlule</td>
</tr>
<tr>
<td></td>
<td>izinyan ga ezi-9-12 ezedlule</td>
</tr>
<tr>
<td></td>
<td>izinyan ga ezi-12-18 ezedlule</td>
</tr>
<tr>
<td></td>
<td>Ngaphe zu kwezinyanga ezi-18</td>
</tr>
<tr>
<td>4.1.1 i- Roaccutane™</td>
<td>Yebo Cha</td>
</tr>
<tr>
<td>4.1.2 i-Oratane®</td>
<td>Yebo Cha</td>
</tr>
<tr>
<td>4.1.3 i-Retin®</td>
<td>Yebo Cha</td>
</tr>
<tr>
<td>4.1.4 i-Cortisone</td>
<td>Yebo Cha</td>
</tr>
<tr>
<td>4.1.5 Ama-Antibiotics</td>
<td>Yebo Cha</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Amaphilisi amavithamini</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>4.1.7</td>
<td>i-Thryoid</td>
</tr>
<tr>
<td>4.1.8</td>
<td>Ama-Retinoids</td>
</tr>
<tr>
<td>4.1.9</td>
<td>i-Hydroquinone</td>
</tr>
<tr>
<td>4.1.10</td>
<td>i-Azelaic Acid</td>
</tr>
</tbody>
</table>

4.1.11 Okunye, sicela uchaze:

Uma kungekho okuqonqene nawe ngenhla, sicela uqhubekele esigabeni sesi-5 semibuzo
5. IMIBUZO EJWAYELEKILE

5.1 Uqale nini ukuqaphela ukubona ukungafani kwesikhumba?

5.2 Uke waba sesimeni sokuhlukumezeka noma isimo okungenzeka sibe nomphumela ekubeni nesikhumba esingafani?

5.2.1 Uma uthi cha, ngabe uyazi ukuthi senziwa yini isikhumba ukuthi sibe nombala ongafani?

5.3 Ngabe likhona ilunga noma amalunga omndeni wakho anenkinga yebala lobuso?

5.4 Ngabe usuke walapha inkinga yebala lesikhumba sakho? Uma uthi yebo, waselapha kanjani?

5.5 Uma uthi yebo, ucabanga ukuthi inkinga yebala isidlebelekile noma ibe ngcono ngokuhamba kwesikhathi? Sicela uchaze.

Ngiyabonga
To: Whom it may concern
From: Professor A. Mosam (please add your achievements)
Date: 29 May 2015
RE: Diagnosis of participants for research study titled “The effectiveness of Lemon and Sandalwood essential oils in the treatment of facial post-inflammatory pigmentation in females aged 18-35 in the EThekwini area”

This serves to confirm that I, Professor A Mosam, have agreed to diagnose participants for facial post-inflammatory pigmentation in females for the above mentioned study. Diagnosis for this condition will be made according to the following information provided to me by the researcher (Miss R Ganesh):

- Photos (3 angles) that will be taken by the researcher according to requirements I have provided
- A case history form

A diagnosis will then be given according to the above.
I have also requested that photos be forwarded to me at 12 and 24 weeks for monitoring.

Please feel free to contact me should you require additional information

Yours sincerely

[Signature]
Prof A Mosam
MB ChB, FC Derm(SA), MMed(Derm), PhD(UKZN)
Associate Professor/Principal Specialist

Office of the Head of Department
Dermatology, School of Clinical Medicine
Postal Address: P/Bag X3, Congella, Durban, 4013, South Africa
Telephone: +27 (0) 31 560 4531/4565
Fax/num: +27 (0) 31 560 4434
Email: mosama@ukzn.ac.za
Website: www.ukzn.ac.za
BASIC INSTRUCTION ON TREATMENT USAGE

STEP ONE
Remove make up and cleanse face with cleanser, wash hands

Add two pea size amounts of cream into your hands

STEP THREE
Gently massage product into the skin, ensuring product is evenly distributed and absorbed

STEP FOUR
Add pea size RAD cream into the skin following the above procedure

STEP FIVE
If weather is hot, repeat step 4 during the day

STEP SIX
At night, repeat step one, two and three
Appendix 13: Process of consultations

When participants respond to the advert, the following processes will take place:

<table>
<thead>
<tr>
<th>1ST CONSULTATION</th>
<th>2ND CONSULTATION</th>
<th>3RD CONSULTATION</th>
<th>4TH CONSULTATION</th>
<th>5TH CONSULTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY ONE</td>
<td>DAY TWO</td>
<td>EIGHT WEEKS</td>
<td>SIXTEEN WEEKS</td>
<td>TWENTY-FOUR WEEKS</td>
</tr>
</tbody>
</table>

The study will be briefly explained to the participant. If the participant wishes to pursue her participation, a questionnaire together with photographs will then be taken and sent to the dermatologist for clinical diagnosis 24 hour allergy test with the different blends of cream and sunblock will be conducted.

If the participant presents with no signs of an allergic reaction, she may be included in the study. If the participant shows signs of an allergic reaction, the area will be washed with cool, clean water and calamine lotion will be applied. The participant will then be referred to the DUT Isilempilo clinic for further medical attention. Following this, the information letter and informed consent will completed. Thereafter the selected creams and sun protection will be randomly allocated to the participant. Basic instructions on how to use the cream and sun protection will be explained to the participant. images will be taken by the skin analyser.

Participants skin will be cleansed. Images will be taken by the machine as well as follow up photos. The participant will be able to discuss any questions or enquiries with the researcher.

Participants skin will be cleansed. Images will be taken by the machine as well as follow up photos. The participants will be able to discuss any questions or enquiries with the researcher.

Images will be taken by the machine as well as final photos. The participant will need to complete a short questionnaire on the progress of their skin. Photos taken will be sent to the Dermatologist for final assessment and conclusions. A manual assessment sheet will also be completed by the researcher. The participant will qualify for a free treatment at the Somatology clinic, Durban University of Technology, for participating in the study.
Appendix 14: Manuscript

Manuscript in preparation

Target Journal: Indian Journal of Dermatology, Venerology and Leprology

Title: The effectiveness of lemon and sandalwood essential oil in the treatment of post inflammatory pigmentation in females aged 18-35 years

Ronell Ganesh¹, Dorinda Borg¹, Anisa Mosam², Glenda Matthews³, Nalini Govender⁴

¹Dept of Somatology, Faculty of Health Sciences, Durban University of Technology, Durban, South Africa

²Dept of Dermatology, School of Clinical Medicine, Durban, South Africa

³Dept of Statistics, Faculty of Health Sciences, Durban University of Technology, Durban, South Africa

⁴Dept of Basic Medical Sciences, Faculty of Health Sciences, Durban University of Technology, Durban, South Africa

Keywords: Post inflammatory pigmentation, acne, essential oils, natural remedies

Corresponding author

Mrs Ronell Ganesh

ronellg@dut.ac.za

Word count:
Abstract

Background: Post inflammatory pigmentation (PIH) is a common dermatologic disorder prominent in darker skinned woman of childbearing age. It affects both the physical and physiological features of those affected, thereby altering their quality of life. The high costs and safety of treatment options available for PIH are questionable, thus creating an interest in the effects of natural remedies on PIH.

Objectives: To evaluate the effects of lemon and sandalwood essential oils on PIH in African females aged 18-35 years. It determined the progression of PIH using sandalwood and lemon essential oil using a Skin Analyser® machine. Comparisons were made between both oils to determine their effectiveness in PIH treatment.

Methods: This was a prospective, quantitative and double-blinded study with an experimental design, conducted at the Durban University of Technology. Black female students, aged 8-35 years, were randomly assigned to experimental and control groups. A pre-test post-test method was used and included follow up consultations at 0 weeks, 8, 16 and 24 weeks.

Results: Most participants were aged between 18-22 years, with 61.7% reporting the use of daily homecare treatments (cleansers and moisturisers). Fifty four (54%) reported a family history of pigmentation, and 52% reported acne concerns associated with low self-esteem. Waxing was identified as the preferred hair removal method. Physical skin improvements in facial spots, pore sizes, UV features, were noted for both oils. However, a statistically significant difference was demonstrated for sandalwood oil.

Conclusion: Our data highlights waxing as the preferred hair removal method. Waxing predisposes women to inflammation, blockage of pores and burns, and subsequent PIH development. The increased incidence of pigmentation may be associated with the higher usage of waxing. Overall, visible improvements were demonstrated in the skin for both oils. We observed significant physiological changes in the pore sizes for both oils, and improved pore conditions with fewer enlarged and blocked pores. Thus, both groups showed a reduction in the prevalence of acne. Our data thus suggests that both oils may have a potential role in decreasing the development of acne and PIH.
Introduction

There has been a global regeneration in cosmeceutical markets for improved facial aesthetic appearance (Sharma and Sharma 2012). Whilst the biosafety of cosmetics were significantly acceptable in the early 1950s, concerns arose when skin lightening products showed links to harsh reactions (Nohynek et al. 2010). These concerns peaked when harmful side effects of various skin lightening chemicals in products such as arbutin, kojic acid and hydroquinone were reported (Zhu and Gao 2008; Huang et al. 2012). Such harmful effects include irritation, inflammation, thinning of skin, scarring, kidney, liver, or nerve damage (Shroff, Diedrichs and Craddock 2018), subsequently increasing access to natural products. Pigmentary disorders rank amongst the five common complaints amongst blacks, arabs and south Asians (Konda, Geria and Halder 2012). This has led to an increased usage of skin creams with bleaching properties amongst many black South African women (Dlova, Hendricks and Martincgh 2012). Those affected pursue treatment regimens that improve the appearance of pigmentation and overall skin tone (Swanson, Leo and Finlay 2014), predisposing them to poor self-confidence (Jiang et al. 2018). This subsequently affects their quality of life (Yadav 2018), which substantiates the exploration of natural cosmetics (Walters and Roberts 2008). Based on this premise, this study aimed to determine the effectiveness of lemon and sandalwood essential oils on post inflammatory pigmentation in African females.

Methods

This was a prospective, quantitative and double-blinded study with an experimental design. Participants were randomly assigned to experimental and control groups by the supervisor. The study was conducted at the Somatology clinic, Durban University of Technology, South Africa. A pre-test, post-test method was used. Participants were included or excluded from the study based on the following criteria.

Study Sampling and recruitment

The study population included African females aged between 18-35 years who met the inclusion criteria. Purposive sampling was used to identify and recruit participants. The sample size as determined by consultation with the biostatistician was forty five participants (n=45); Deepak 2014).
Recruitment was supported by the placement of advertisements [Appendix 7 (English); Appendix 8 (IsiZulu)] in both the Ritson and Steve Biko campuses, DUT as well as Durban and surrounding areas.

Participants who received confirmation of a clinical diagnosis from the consultant dermatologist, were then given a 24 hour allergy test. The test was done by the researcher and was used to determine the presence or absence of any allergies that participants may have to the selected blends of cream or the sunblock (SPF 15). The allergy test was done by the researcher on the inner elbow of all participants. Prior to the allergy test, the inner below was cleaned with hibitane and cotton wool, followed by the application of each blend of cream (lemon with aqueous), (sandalwood with aqueous) and the sunblock. The participants were asked to return after ± 24 hours for an allergy assessment. None of the participants reacted negatively to the allergy testing. The experimental product was a fragrance and preservative free aqueous based cream. One hundred millilitre (100ml) cream was given to the participants, either independently (control) or combined with 50 drops lemon oil or sandalwood oil (experimental) which were 100% aromatherapy based oil. Following clinical diagnosis and allergy testing the participants were randomly allocated into group 1 (lemon), group 2 (sandalwood), group 3 (control).

Data analysis

Demographic data obtained from the questionnaire and clinical data obtained from the skin analyser® machine were analysed. This data was collected, coded and captured onto a spreadsheet using statistical analysis SPSS (Version 25.0). A p-value < 0.05 was considered a statistically significant result. Data was tested for normality and continuous data was summarised in terms of the mean, standard deviation, minimum and maximum. One-way analysis of variance (ANOVA) and sample t-test were completed on skin parameters. Findings from the study were triangulated. Data from the questionnaire and Skin Analyser ® (LD6021) were analysed. The study was analysed using descriptive data obtained from the questionnaire, focusing on lifestyle and skincare data. Comparisons between the parameters and descriptive were presented. Open ended questions from the questionnaire was analysed for the triangulation of data. Changes in the parameters over time were presented graphically and repeated measures ANOVA was used to detect whether there was a significant change over time and if there were treatment differences.
Results

Demographic characteristics

The demographic profile of the study population is shown in Table 1. Of the 62 Black African females recruited, 61 were students, 87.1% were aged between 18-22 years, whilst 12.9% were aged 23-27 years. With regard to lifestyle characteristics, 75% reported the use of healthy diets and 38% reported the recommended daily water intake. Only 4 participants reported smoking and alcohol consumption. Based on these low numbers, this data was excluded from further analyses. Only 33.9% of the total sample reported waxing as an option of hair removal whilst 19.6% reported threading as a preference. Furthermore, 42.9% reported the regular use of deep cleanse facials, and 61.7% indicated the use of daily homecare treatments. In contrast, 17% reported the use of some form of pigmentation treatment, whilst 54.3% reported a family history of pigmentation. Of note, only 48 participants completed the follow-up consultations.

Photographic evidence

Physical changes of the skin were observed between treatment groups as shown in Figures 4.1-4.3 (a-f). An overall improvement was observed in skin pore sizes, texture as well as an overall reduction in PIH facial features amongst those who used the lemon oil (Figure 4.1) and sandalwood oil treatment (Figure 4.2). Improvements in skin pore sizes and texture was also observed amongst those who were in the control group (Figure 4.3). This could be attributed to the presence of SPF. Our data highlights a visible reduction in the appearance of skin pigmentation and acne in both experimental groups.
Figure 0.1: Physical changes in facial appearance for lemon oil at (a) baseline (0 weeks), (b) (24 weeks); for sandalwood oil at (c) baseline (0 weeks), (d) 24 weeks; and control with aqueous cream and SPF(e-f)
Descriptive analyses of the skin parameters

T-tests were used to provide before and after comparisons for the lemon and sandalwood study groups between 0 weeks (baseline) to 24 weeks (post treatment). The mean and standard deviation for lemon (Table 4.2) and sandalwood oil (Table 4.3) are displayed. Significant improvements was observed for facial spots amongst those who used the lemon treatment ($p = 0.05$) and sandalwood oil ($p = 0.05$). Similarly pore sizes were also significantly reduced in lemon oil ($p = 0.02$) and sandalwood oil ($p = 0.01$) in contrast to the control (Table 4.2 - 4.3). Statistically significant differences were noted on the UV spots ($p = 0.05$), facial wrinkles ($p = 0.01$), indicating a reduced appearance of wrinkles in those on lemon oil.

Table 0.1: Evaluation of skin parameters at baseline (0 weeks) and post treatment (24 weeks) amongst those using the lemon treatment ($n = 15$)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline mean±SD (0 weeks)</th>
<th>Control (aqueous cream and SPF) mean±SD (0 weeks)</th>
<th>Control (aqueous cream and SPF) mean±SD (24 weeks)</th>
<th>Lemon essential oil mean±SD (24 weeks)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facial spot</td>
<td>68.67±21.24</td>
<td>64.60±20.85</td>
<td>58.67±22.68</td>
<td>59.06±20.61</td>
<td>0.047*</td>
</tr>
<tr>
<td>Pore size</td>
<td>70.94±17.12</td>
<td>73.60±15.88</td>
<td>68.80±18.17</td>
<td>62.56±19.87</td>
<td>0.021*</td>
</tr>
<tr>
<td>Skin roughness</td>
<td>87.17±19.44</td>
<td>84.47±25.70</td>
<td>87.20±15.85</td>
<td>87.94±17.04</td>
<td>0.772</td>
</tr>
<tr>
<td>Facial wrinkles</td>
<td>80.44±17.78</td>
<td>72.27±20.05</td>
<td>66.87±20.61</td>
<td>70.33±21.69</td>
<td>0.005*</td>
</tr>
<tr>
<td>UV acne</td>
<td>16.44±14.91</td>
<td>16.87±14.98</td>
<td>23.53±23.67</td>
<td>17.50±20.92</td>
<td>0.783</td>
</tr>
<tr>
<td>UV facial spot</td>
<td>81.72±23.20</td>
<td>88.73±15.32</td>
<td>83.33±18.48</td>
<td>76.28±25.45</td>
<td>0.345</td>
</tr>
<tr>
<td>UV moisture lev</td>
<td>93.61±7.95</td>
<td>95.53±0.743</td>
<td>91.93±10.07</td>
<td>93.22±7.04</td>
<td>0.816</td>
</tr>
</tbody>
</table>

*$p < 0.05$ was considered statistically significant
Table 0.2: Evaluation of skin parameters at baseline (0 weeks) and post treatment (24 weeks) amongst those using the sandalwood treatment (n = 15)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline mean±SD (0 weeks)</th>
<th>Control mean±SD (aqueous cream and SPF) (0 weeks)</th>
<th>Control mean±SD (aqueous cream and SPF) (24 weeks)</th>
<th>Sandalwood essential oil mean±SD (24 weeks)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facial spot</td>
<td>63.67±25.92</td>
<td>64.60±20.85</td>
<td>58.67±22.68</td>
<td>53.53±22.37</td>
<td>0.050*</td>
</tr>
<tr>
<td>Pore size</td>
<td>83.80±12.92</td>
<td>73.60±15.88</td>
<td>68.80±18.17</td>
<td>73.07±13.68</td>
<td>0.009*</td>
</tr>
<tr>
<td>Skin roughness</td>
<td>90.93±13.19</td>
<td>84.47±25.70</td>
<td>87.20±15.85</td>
<td>85.33±11.88</td>
<td>0.166</td>
</tr>
<tr>
<td>Facial wrinkles</td>
<td>71.27±21.59</td>
<td>72.27±20.05</td>
<td>66.87±20.61</td>
<td>72.53±22.49</td>
<td>0.773</td>
</tr>
<tr>
<td>UV acne</td>
<td>18.27±17.61</td>
<td>16.87±14.98</td>
<td>23.53±23.67</td>
<td>15.40±8.95</td>
<td>0.561</td>
</tr>
<tr>
<td>UV facial spot</td>
<td>90.80±10.83</td>
<td>88.73±15.32</td>
<td>83.33±18.48</td>
<td>78.87±22.22</td>
<td>0.050*</td>
</tr>
<tr>
<td>UV moisture lev</td>
<td>94.07±6.79</td>
<td>95.53±0.743</td>
<td>91.93±10.07</td>
<td>85.07±18.53</td>
<td>0.088</td>
</tr>
</tbody>
</table>

*p < 0.05 was considered statistically significant

Changes in skin parameters over time among all groups

Variations in skin parameters among those treated with lemon oil, sandalwood oil and the control groups based at different consultations, are shown (Figure 4.3a-g). There was a statistically significant improvement noted in facial spots (p=0.01) with those on the sandalwood treatment in contrast to lemon oil. Similarly, a statistically significant difference was noted for pore size (p = 0.001) in those treated with sandalwood oil in comparison to those on lemon oil.

Sandalwood oil showed a statistically significant difference was observed for sandalwood in reducing skin roughness (p = 0.001) in comparison to those treated with lemon oil. Although lemon treatment oil was successful in demonstrating an overall improvement, skin roughness within this group increased over time. In contrast, facial wrinkles were significantly reduced among those on the lemon treatment (p = 0.031) compared to sandalwood oil. Significant quadratic changes were observed for all UV factors among those treated with sandalwood oil. Improvements were further noted in UV acne incidences (p = 0.022), while UV spots showed a significance difference (p = 0.133). UV moisture levels within the skin also displayed improvements (p = 0.209).
Figure 0.2: Images illustrating the changes in the percentages of the skin parameters over time in the treatment and control groups, (a) facial spot, (b) pore size, (c) skin roughness, and (d) facial wrinkles.
Figure 0.5: Images illustrating the changes in the percentages of the skin parameters over time in the treatment and control groups, (a) UV acne, (b) UV spot, (c) UV moisture
Discussion

Students enrolled at a university, average between 18-22 years, considered young mature aged, making up majority of the university population (Mallman and Lee 2017; Sitek, Żądzińska and Rosset 2012). Age, race and increased hormonal factors that influence PIH are high within this cohort, endorsing their susceptibility to PIH. The prevalence of acne was 83%. A key contributor to PIH development was acne. It affects over 90% adolescents, and persists into adulthood (Fabbrocini et al. 2010). A recent report suggested that both psychological and social outcomes affects almost 85% of people aged between 12-24 years are (Luqman 2019). A large proportion of our population presented with acne, which was similar to that reported by Sitek, Żądzińska and Rosset (2012). Sitek’s group emphasised that career choice decisions combined with financial and family problems, are major contributors to PIH development and progression within this age group. This age group is also more vulnerable to being young parents and increased contraceptive use (Kubiak and Rotsztejn 2012). The use of contraceptives is associated with hormone replacements and increased melanin production, which consequently results in PIH development (Eliason et al. 2014). Others have also demonstrated increased melanin production as the contributing factor for various pigmented disorders, including PIH (Mahdalena, Jusuf and Putra 2018; Natale et al. 2016). Hormones involved in pregnancy progression exerts similar effects on the non-pregnant female (Kubiak and Rotsztejn 2012), hence, pregnant woman and woman on contraception were excluded. 20% of participants were young mothers and presented with existing pigmentation.

Our study demonstrated a reduction in the appearance and features of UV acne among those that were on prior treatment in contrast to those that were not. Cutaneous injuries and inflammation such as acne often lead to PIH (Callender et al. 2011). Acne is characterised by large sebaceous glands and increased sebum production. Acne was found mainly around the face and on the upper trunk regions in our cohort. Our data concurs with Tanghetti et al. 2014 who found similar characteristics in their cohort.

Post-acne pigmentation and pigmented scars are usually outcomes of acne scarring (Al Qarqaz and Al-Yousef 2018). In our cohort, varying stages of acne and observable scarring was noted. Scarring, particularly on the facial regions is associated with reduced self-confidence which subsequently affects the quality of life. This consequently affects the morale of the affected individual resulting in low self-esteem and poor self-confidence (Thompson 2015).
Our study revealed sunburn as a possible main cause of PIH. Participants reported severe progression of their PIH when exposed to the sun. Exposure to the sun increases the production of vitamin D, which also depends on melanin for its production (Felton et al. 2016). Melanin synthesis occurs through the absorption and distribution of both UVA and UVB rays into the skin (Swalwell et al. 2014). Hence, increased melanin levels in dark skinned people predisposes them to absorb more vitamin D and UV rays (Bonilla et al. 2014). The effects of the blue light (modern technology) on skin pigmentation has recently emerged, however there is no literature supporting these effects.

The South African summer temperatures create unfavourable conditions for PIH patients (Wright et al. 2017). Ultraviolet radiation triggers uneven pigmentation in the skin (Young et al. 2009). Thus, it is possible that our participants who are mostly dark skinned may have been exposed to increased UV rays, which resulted in increased skin pigmentation. Sun protection is therefore highly recommended in the treatment of PIH, since it prevents its progression by protecting the skin against these harmful rays (Scheinfeld 2007). While the use of sun protection especially in the South African climate is well publicised, its awareness may be limited within the broader community. This lack of awareness may be a contributing factor in our cohort since many participants indicated an aggravation of their PIH during summer. However, it is also possible that those who may have used homecare remedies which potentially contained banned substances, increased their susceptibility to sunburn due to UV sensitivity.

Our data is in accordance with several others (Nordlund 2007; Moshammer, Simic and Haluza 2017) whose research showed that prohibited substances promote sunburn by thinning the outer layers of the skin, increasing sun exposure, thus promoting skin darkening. Others have also demonstrated that PIH is worsened among those not using sunblock, especially when exposed to the sun during summer months (Ruvolo et al 2018), which is also consistent with our results. Our study found a high incidence of sunburn in the cohort of black African students. Dark skinned individuals are probably more susceptible to sunburn and PIH development. Several others report similar findings, suggesting that excess sun exposure results in severe sunburn and skin pigmentary disorders (Rodrigues and Pandya 2015, Nestor et al. 2014; Eimpunth, Wanitphadeedecha and Manuskiatti 2013). Incorporating SPF creams into daily regimens is essential in decreasing the progression of PIH. In our study, we provided RAD® (SPF 15), by Environ to all participants.
Our data highlighted that both lemon oil and sandalwood oil demonstrated an overall improved skin texture and appearance over time. While lemon oil positively improved the appearance of wrinkles, sandalwood significantly improved the sizes of facial spots and pore sizes. The presentation of skin roughness was also notably reduced for sandalwood oil in contrast to lemon oil. There was an overall improvement for all UV factors. Our results concur with others (Itoi-Ochi et al. 2016; Sharma et al. 2018; Reddy et al. 2011; Thakur, Negi and Kush 2013), who support the characteristics and actions of lemon and sandalwood in improving the overall skin appearance.

Limitations

High participant dropout rates due to the study being conducted over a 24-week period. Participant were trusted to use the treatment daily and correctly as instructed. Due to the study being conducted within a university setting, almost all participants were students, hence lacking a variety of data received. The researcher did not take into the account the menstrual cycle of participants. Therefore, consultation results during this period would not be accurate and precise due to hormonal changes.

Conclusion

The prevalence of common factors that influence the onset of PIH such as age, race and increased hormonal factors are high within this cohort, endorsing their susceptibility to PIH development. Our data also highlights waxing as the preferred hair removal method. However, waxing predisposes women to inflammation, blockage of pores and burns, leading to PIH. Therefore the increased incidence of pigmentation in our study may be associated with the higher usage of waxing. Overall, visible improvements were demonstrated in the skin for both oils. We observed significant physiological changes in the pore sizes for both oils, and improved pore conditions with fewer enlarged and blocked pores. Thus, both groups showed a reduction in the prevalence of acne. Our data thus suggests that both oils may have a potential role in decreasing the development of acne and PIH.

Conflict of interest

The authors report no conflict of interest