Green synthesis, characterization, biological and electrochemical studies of indole pyrazole capped nanomaterials

By:

Senzekile Majola
(Reg No. 21512348)

Submitted in compliance with the criteria for a Master's degree in Chemistry at the University of Technology in Durban.

01 February 2021
DECLARATION

I, Senzekile Majola, state that the thesis submitted for a Master's degree in Chemistry at the Faculty of Applied Science at the Durban University of Technology is the result of my inquiry and has not been approved in substance for any degree and is not being concurrently submitted for any other degree. All the work was done by the author, except when the work was used as part of the jointly authored publications. The candidate agrees that appropriate credit has been granted within the thesis where reference has been made to the work of others.

Student Name : Senzekile Majola

Supervisor Name : Dr M. Sabela

Co-Supervisor 1: Professor R.M. Gengan

Co-Supervisor 2: Dr. T.R. Makhanya
DEDICATION

Dedicated to my late mother, uThokazi uKamaCwele for her undivided support and love that she has given throughout my studies in both the physical and spiritual world. My mother was never educated but her drive and passion for education have brought me to where I am, without her strong teachings I believe I would have not been the Senzekile that I am today. She may be gone, but I will treasure her teachings forever.

Missing you always
‘You never said I am leaving, you never said goodbye. You were gone before I knew it and only God knows why. A million times I have cried and if love alone could have saved you, you never would have died. In life, I loved you dearly and in death, I love you dearly still, in my heart I hold a special place only you can fill’.

Rest in Peace Thokazi

I dedicate this thesis to her
ACKNOWLEDGEMENTS

I acknowledge the assistance and guidance from different domains of life for the fulfillment of this dream. Foremost, convey my deepest gratitude to God almighty for the wisdom, strength, peace and good health enabled me to tackle this research and all praise is directed to him. For he has said in Jeremiah 29:11

“For I know the plans I have for you,
declares the Lord,
plans to prosper you and not harm you,
plans to give hope and a future”

My sincere appreciation, a deep sense of gratitude to my supervisor, and my academic role model Dr. M.I. Sabela for his guidance, amazing patience, and endless encouragement throughout my course of study since 2018. Further, I also take this opportunity to express my deepest gratitude to my Co-supervisors Professor R.M. Gengan and Dr. T.R. Makhanya. I am very grateful for always making time to assist and guide me throughout the project, their shared experience and support is highly appreciated.

My sincere appreciation goes to all the members of the Computational Modelling and BioAnalytical Chemistry (CMBAC) Research Group and Organic Research Group especially to Matshidiso Lephalala, Benni Hloma, Kwanle Kunene, Lydon Nadooi, Thokozani Ndaba, and Luyanda Hlengwa for their constant words of encouragement and willingness to offer a helping hand at all times.

I am forever grateful to my family (Mzuvele Majola, Phelelani Majola, Mthandeni Majola, and Melusi Majola) who have never left my corner with every decision I have taken in my life and for always being my number one supporters. boMchunu boMacingwane ngiYabonga (Thank you).

Lastly, the research has been carried out with financial support from the National Research Fund (NRF).
ABSTRACT

Green nanomaterial synthesis has become more popular and, with the need for greener approaches to counter higher costs and higher energy usage for chemical and physical processes, scientists are searching for cheaper methods of synthesis. The use of plant extracts has been one of the popular methods because they are known to reduce metal ions from their surface. Green synthesized nanomaterials are relatively unstable compared to chemical and physical methods hence new stabilizing agents (indole pyrazole ligands) have been introduced in this study. The nanomaterials are being applied in electrochemical and biological systems, their behavior may not be as efficient as the new capped nanomaterials. Hence, a comparison of capped and uncapped nanomaterials was studied.

Indole pyrazole capped selenium nanoparticles (TRPIDC-CH₃ SeNPs), Indole pyrazole capped silver nanoparticles (TRPIDC-CH₃ AgNPs), and Indole pyrazole capped cadmium sulphide quantum dots (TRPIDC-CH₃ CdSQDs) were successfully synthesized using plant extracts of allium sativum cloves, pelargonium, and moringa leaves, respectively. Green synthesized TRPIDC-CH₃ capped nanomaterials were characterized by UV-vis spectrophotometry, HR-TEM, and FTIR analysis. The results revealed no differences in shape, color, functional groups involved, or wavelength, but an increase in average diameter as compared to uncapped nanomaterials.

Furthermore, green-fabricated synthesized nanomaterials were tested to evaluate their cytotoxicity against MCF-7, A549, and HEK293 cells. The overall cytotoxicity was low: a dose-dependent increase in cytotoxic activity was observed for each of the nanomaterials, as the concentration increased from 50 µg/ml to 100 µg/ml. Interaction of TRPIDC-CH₃ capped and uncapped nanomaterials with human serum albumin (HSA) was investigated under physiological conditions (PBS, pH 7.3) by UV–Vis, and fluorescence. Fluorescence analysis at different temperatures revealed the quenching of HSA. The results showed a single class of binding site and a static (uncapped) and dynamic (TRPIDC-CH₃ capped) quenching mechanism between nanomaterials and HSA.
The thermodynamic results indicated van der Waals forces and hydrogen bonds (uncapped) and hydrophobic interactions (TRPIDC-CH$_3$ capped) were dominant. Dual enzyme electrode for the indirect detection of adenosine triphosphate (ATP), using a redox probe as a reference peak, was developed by co-immobilization of the enzymes glucose oxidase (GO) and hexokinase (Hex) and nanomaterials. The implementation of a simple electrochemical technique to co-immobilize enzymes on electrode surfaces demonstrates a significant improvement in the sensitivity, reproducibility and ease of fabrication of ATP biosensors. However, the addition of the TRPIDC-CH$_3$ ligand to QDs affected the surface area and conductive activity of the sensor leading to a decrease in sensitivity and weakening the electrochemical stability of the QDs. The concept proposed provides the technological basis for a new generation of fast, responsive and robust biosensors for the detection of ATP through indirect detection.

Keywords: Adenosine triphosphate (ATP); Indole pyrazole ligand (TRPIDC-CH$_3$); Selenium Nanoparticles (SeNPs); Cyclic voltammetry (CV); Square wave voltammetry (SWV); Hexokinase (Hex); Glucose oxidase (GO); Human serum albumin (HSA); MTT assay; MCF-7, A549, and HEK293 cells.
TABLE OF CONTENTS

DECLARATION .. i

DEDICATION ... ii

ACKNOWLEDGEMENTS ... iii

ABSTRACT ... iv

TABLE OF CONTENTS .. vi

LIST OF TABLES .. xii

LIST OF ACRONYMS AND SYMBOLS ... xiv

LIST OF FIGURES .. xvi

LIST OF CONFERENCES AND PUBLICATIONS ... xvi

Conference .. xxiii

Manuscripts One .. xxiii

Manuscripts Two .. xxiii

CHAPTER 1: INTRODUCTION .. 1

1.1 Green chemistry .. 1

1.2 Plants .. 2

 1.2.1 Allium Sativum (Garlic) .. 3

 1.2.2 Pelargonium graveolens ... 3

 1.2.3 Moringa Oleifera lam ... 4

1.3 Nanomaterials .. 5

1.4 Indole-Pyrazole ligand ... 6
CHAPTER 3: METHODOLOGY .. 23

3.1 Instrumentation .. 23

3.1.1 UV-Vis spectroscopy .. 23

3.1.2 pH meter .. 23

3.1.3 Fluorescence spectrophotometer ... 23

3.1.4 Fourier Transform Infrared spectroscopy ... 24

3.1.5 High resolution Transmission Electron Microscopy ... 24

3.1.6 Electrochemical technique .. 24

3.2 Reagents and materials .. 25

3.3 Indole pyrazole ligand (TRPIDC-CH₃) synthesis ... 26

3.4 Plants extract preparation and nanomaterials synthesis ... 27

3.4.1 TRPIDC-CH₃ capped Selenium Nanoparticles synthesis .. 27

3.4.2 TRPIDC-CH₃ capped Silver Nanoparticles synthesis .. 28

3.4.3 TRPIDC-CH₃ capped Cadmium Sulfide Quantum Dots synthesis 28

3.5 Phytochemical analysis .. 29

3.5.1 Test for Alkaloids .. 29

3.5.2 Test for Saponins .. 29

3.5.3 Tests for Flavonoids ... 30

3.5.4 Tests for Tannins and Polyphenols .. 30

3.5.5 Tests for Terpenoids ... 30

3.6 Determination of concentration for the nanomaterials ... 30
3.6.1 Calculation of the average number of atoms per nanomaterials 30
3.6.2 Determination of molar concentrations of nanomaterials solution 30
3.7 Cytotoxic activity of the nanomaterials ... 31
 3.7.1 1 Cell line .. 31
 3.7.2 Cell maintenance ... 31
 3.7.3 Cytotoxicity assay ... 31
 3.7.4 Statistical analysis ... 32
3.8 Protein interaction ... 33
 3.8.1 Binding ... 33
 3.8.2 UV-Vis absorption studies ... 33
 3.8.3 Fluorescence quenching studies .. 33
 3.8.4 Mode of binding ... 34
3.9 Preparation of standard, supporting electrolyte, and spiked samples. 35
3.10 Preparation and fabrication of GO:Hex/TRPIDC-CH₃ capped Nanomaterial /MWCNTs/GCE composite ... 35
3.11 Electrochemical measurements .. 36

CHAPTER 4: RESULTS AND DISCUSSION .. 37
4.1 CASE STUDY 1: Selenium Nanoparticles .. 37
 4.1.1 Characterization of *allium sativum* extract 37
 4.1.2 Characterization of TRPIDC-CH₃SeNPs ... 39
 4.1.2.1 UV-Visible ... 39
 4.1.3 Cytotoxicity activity ... 42
4.1.4 Protein interaction .. 44
4.1.5 Electrochemistry .. 49

4.2 CASE STUDY 2: Silver Nanoparticles 58
4.2.1 Characterization of extract ... 58
4.2.2 Characterization of AgNPs .. 59
4.2.3 Cytotoxicity activity .. 63
4.2.4 Protein interaction ... 64
4.2.5 Electrochemistry .. 69

4.3 CASE STUDY 3: Cadmium Sulfide quantum dots 77
4.3.1 Characterization of extract ... 77
4.3.2 Characterization of CdSQDs ... 78
4.3.3 Cytotoxicity activity .. 81
4.3.4 Protein interaction ... 83
4.3.5 Electrochemistry .. 88

CHAPTER 5: CONCLUSION ... 96

REFERENCES ... 98

Appendix A: fluorescence quenching results of uncapped SeNPs........ 115

Appendix B: fluorescence spectra of HSA-TRPIDC-CH₃ SeNPs at different temperatures .. 116

Appendix C: fluorescence spectra of HSA-SeNPs at different temperatures ... 117

Appendix D: fluorescence quenching results of uncapped AgNPs 118
Appendix E: fluorescence spectra of HSA-TRPIDC-CH$_3$ AgNPs at different temperatures ... 119

Appendix F: fluorescence spectra of HSA-SeNPs at different temperatures .. 120

Appendix G: fluorescence quenching results of uncapped CdSQDs 121

Appendix H: fluorescence spectra of HSA-TRPIDC-CH$_3$ CdSQDs at different temperatures ... 122

Appendix I: fluorescence spectra of HSA-CdSQDs at different temperatures .. 123

Appendix J: Cyclic voltammetry data of 0.02 mM ATP in the phosphate buffers of different pH values. (Scan rate = 100 mV/s) 124

Appendix K: cytotoxicity activity of the nanomaterials against the three cells .. 125
LIST OF TABLES

Table 3.1: Volumes of HSA, Nanomaterials, and buffer used for interaction studies. .. 33

Table 3.2: Volumes of K_2HPO_4 and KH_2PO_4 used for different pH values 35

Table 4.1: Characteristics of phytochemicals found in the *allium sativum* extract. .. 38

Table 4.2: The K_{SV}, K_q, K_b, and n of the HSA-TRPIDC-CH$_3$ SeNPs (and uncapped SeNPs). .. 46

Table 4.3: Thermodynamics parameters of HSA and nanoparticles interaction. 48

Table 4.4: Results for the detection of ATP in spiked samples analysed using the electrodes.. 57

Table 4.5: Characteristics of phytochemicals found in the *allium sativum* extract. .. 58

Table 4.6: The K_{SV}, K_q, K_b, and n of the HSA-TRPIDC-CH$_3$ AgNPs (and uncapped). .. 67

Table 4.7: Thermodynamics parameters of HSA and nanoparticles interaction. 68

Table 4.8: Results for the detection of ATP in spiked real samples analysed using the electrodes.. 76

Table 4.9: Characteristics of phytochemicals found in *Moringa oleifera* extract....... 77

Table 4.10: The K_{SV}, K_q, K_b, and n of the HSA-TRPIDC-CH$_3$ CdSQDs (& uncapped CdSQDs). .. 85

Table 4.11: Thermodynamics parameters of HSA and quantum dots interaction. ... 87

Table 4.12: Results for the detection of ATP in spiked real samples analysed. 95

Table 16.1: I_{pc}/I_{pa} data of capped and uncapped SeNPs .. 124

Table 16.2: I_{pc}/I_{pa} data of capped and uncapped AgNPs .. 124
Table 16.3: Ipᵈ/IPᵅ data of capped and uncapped CdSQDs 124

Table 17.1: Cytotoxicity activity of the nanomaterials against MCF-7 125

Table 17.2: Cytotoxicity activity of the nanomaterials against A549 125

Table 17.3: Cytotoxicity activity of the nanomaterials against HEK293 125
LIST OF ACRONYMS AND SYMBOLS

A549: Lung cancer cells
AgNO₃: Silver Nitrate
AgNPs: Silver nanoparticles
ATP: Adenosine triphosphate
CdSO₄: Cadmium sulfate
CdSQDs: Cadmium sulphide quantum dots
CV: Cyclic voltammetry
DMEM: Dulbecco's Modified Eagle Medium
FTIR: Fourier transform infrared spectroscopy
GCE: Glassy carbon electrode
HEK293: Human embryonic kidney cells
HR-TEM: High resolution Transmission Electron Microscopy
HSA: Human Serum Albumin
K₂HPO₄: Dipotassium hydrogen phosphate
K₃Fe(CN)₆: Potassium hexacyanoferrate
KH₂PO₄: Potassium dihydrogen
MCF – 7: Breast cancer cells
MWCNTs: Multi-Walled Carbon Nanotubes
Na₂SeO₃: Sodium selenite
PBS: Phosphate buffer solution
QDs: Quantum dots

SeNPs: Selenium nanoparticles

SPR: Surface plasmon resonance

SWV: Square wave voltammetry

TRPIDC-CH₃: Indole pyrazole ligand

TRPIDC-CH₃AgNPs: Indole pyrazole capped silver nanoparticles

TRPIDC-CH₃CdSQDs: Indole pyrazole capped cadmium sulphide quantum dots

TRPIDC-CH₃SeNPs: Indole pyrazole capped selenium nanoparticles

UV-Vis: Ultraviolet-visible spectroscopy

VA: Voltammetry analysis
LIST OF FIGURES

Figure 1.1: 12 principles of green chemistry by Anastas and Warne......................... 2

Figure 1.2: *Allium sativum* cloves. .. 3

Figure 1.3: *Pelargonium graveolens* leaves. ... 4

Figure 1.4: *Moringa Oleifera Lam* leaves. ... 5

Figure 1.5: Structure Indole-Pyrazole ligand (TRPIDC-CH₃) used. 6

Figure 1.6: Structure of Adenosine triphosphate (ATP). .. 7

Figure 1.7: Helical structure of Human Serum Albumin (HSA)................................. 9

Figure 3.1: Plausible mechanism for [3+2] annulation reaction for the synthesis of TRPIDC-CH₃ ligand ... 26

Figure 3.2: Schematic diagram for the plant extract preparation and synthesis of TRPIDC-CH₃SeNPs. ... 27

Figure 3.3: Schematic diagram for the plant extract preparation and synthesis of TRPIDC-CH₃AgNPs. ... 28

Figure 3.4: Schematic diagram for the plant extract preparation and synthesis of TRPIDC-CH₃CdSQDs. ... 29

Figure 4.1: FTIR spectrum of *allium sativum clove* extract. ... 38

Figure 4.2: Green synthesized TRPIDC-CH₃ SeNPs. .. 39

Figure 4.3: UV-Vis spectrum of TRPIDC-CH₃ SeNPs (red) and uncapped SeNPs (dark cyna) synthesized from Na₂SeO₃ using *allium sativum* cloves extract...... 40

Figure 4.4: HR-TEM images of (A) TRPIDC-CH₃ SeNPs, (B) SeNPs and Size distribution histogram prepared by image j software of (C) TRPIDC-CH₃ SeNPs and (D) SeNPs. ... 41

xvi
Figure 4.5: FTIR spectrum of TRPIDC-CH₃ SeNPs (pink) and uncapped SeNPs (violet). ... 42

Figure 4.6: morphology of MCF-7 cell (100x magnification), treated with (A) TRPIDC-CH₃ SeNPs, (B) DMSO (1%), (C) untreated... 43

Figure 4.7: (A) Absorbance spectrum of HSA upon the addition of TRPIDC-CH₃ SeNPs (B) Linear fit for both the systems (C) Absorbance spectrum of HSA upon the addition of SeNPs (D) Plot of 1/(A - A₀) versus 1/[Q] for both systems. 45

Figure 4.8: (A) Fluorescence spectrum of HSA in the presence of different concentrations of TRPIDC-CH₃ SeNPs. (B) a linear fit of the complex intensities vs increasing concentration of TRPIDC-CH₃ SeNPs at 345 nm at different temperatures. (C) Stern–Volmer curves for the binding of HSA with TRPIDC-CH₃ SeNPs at different temperatures. (D) log[(F₀ / F)/F] versus log[Q] plots for HSA versus TRPIDC-CH₃ SeNPs at different temperatures. ... 47

Figure 4.9: Van’t Hoff plot of (Purple) HSA-TRPIDC-CH₃ SeNPs and (Brown) HSA-SeNPs... 48

Figure 4.10: FTIR spectra of HSA before and after interactions with TRPIDC-CH₃ SeNPs... 49

Figure 4.11: (A) Cyclic voltammograms of 0.02 mM ATP at (i) bare GCE, (ii) MWCNTs/GCE , (iii) SeNPs/MWCNTs/GCE,(iv) TRPIDC-CH₃ SeNPs/MWCNTs/GCE, (v) GO:Hex/SeNPs/MWCNTs/GCE and (vi) GO:Hex/TRPIDC-CH₃ SeNPs/MWCNTs/GCE. (B) histogram displaying the current responses at corresponding electrodes... 50

Figure 4.12: Effects of pH in 0.1 M PBS using (A) GO:Hex/TRPIDC-CH₃ SeNPs/MWCNTs/GCE (B) corresponding plot of current vs pH, (C) GO:Hex/SeNPs/MWCNTs/GCE using 0.02 mM ATP and (D) corresponding plot of current vs pH... 51

Figure 4.13: Effects of scan rate from 10 to 100 mV/s (A) GO:Hex/TRPIDC-CH₃ SeNPs/MWCNTs/GCE (B) corresponding plot of current vs scan rate, (C)
Figure 4.14: Effects of deposition time on the oxidation current from 30 to 150 s in 0.02 mM ATP (A) GO:Hex/TRPIDC-CH$_3$ SeNPs/MWCNTs/GCE (B) GO:Hex/SeNPs/MWCNTs/GCE. ... 52

Figure 4.15: (A) SWV voltammogram GO:Hex/TRPIDC-CH$_3$ SeNPs/MWCNTs/GCE at different concentrations (0.02 – 0.15 mM), (B) Corresponding calibration curve showing linear dependence of the peak currents versus concentration of ATP, (C) SWV voltammogram GO:Hex/SeNPs/MWCNTs/GCE and (D) Corresponding calibration curve. .. 53

Figure 4.16: Square wave voltammograms of (A) GO:Hex/TRPIDC-CH$_3$ SeNPs/MWCNTs/GCE and insert of line graph showing the effect of current and (B) GO:Hex/SeNPs/MWCNTs/GCE with insert of line graph showing the effect of current. The reproducibility line graphs (C) GO:Hex/TRPIDC-CH$_3$ SeNPs/MWCNTs/GCE and (D) GO:Hex/SeNPs/MWCNTs/GCE. .. 54

Figure 4.17: FTIR spectrum of *pelargonium graveolens* leaf extract. 59

Figure 4.18: Green synthesized TRPIDC-CH$_3$ AgNPs.. 60

Figure 4.19: UV-Vis spectrum of TRPIDC-CH$_3$ AgNPs (lime) and uncapped AgNPs (red) synthesized. ... 61

Figure 4.20: HR-TEM images of (A) TRPIDC-CH$_3$ AgNPs (B) AgNPs and Size distribution histogram prepared by image j software of (C) TRPIDC-CH$_3$ AgNPs (D) AgNPs. ... 62

Figure 4.21: FTIR spectrum of TRPIDC-CH$_3$ AgNPs (yellow) and uncapped AgNPs (grey). ... 63

Figure 4.22: Absorbance spectra of HSA upon the addition of (A) TRPIDC-CH$_3$ AgNPs and (B) AgNPs (C) Linear fit for both the systems (D) Plot of 1/(A - A$_0$) versus 1/[Q] for both systems. ... 65
Figure 4.23: (A) Fluorescence spectrum of HSA in the presence of different concentrations of TRPIDC-CH$_3$ AgNPs. (B) a linear fit of the absorbances complex and increasing concentration of TRPIDC-CH$_3$ AgNPs at 345 nm at different temperatures. (C) Stern–Volmer curves for the binding of HSA with TRPIDC-CH$_3$ AgNPs at different temperatures. (D) log([(F$_0$/F)/F]) versus log[Q] plots for HSA versus TRPIDC-CH$_3$ AgNPs at different temperatures. ... 67

Figure 4.24: Van’t Hoff plot of (Black) HSA-TRPIDC-CH$_3$ SeNPs and (Red) HSA-SeNPs. .. 68

Figure 4.25: FTIR spectra of HSA before and after interactions with TRPIDC-CH$_3$ AgNPs. .. 69

Figure 4.26: (A) Cyclic voltammograms of 0.02 mM ATP at (i) bare GCE, (ii) MWCNTs/GCE, (iii) SeNPS/MWCNTs/GCE, (iv) TRPIDC-CH$_3$ AgNPs/MWCNTs/GCE, (v) GO:Hex/AgNPs/MWCNTs/GCE. and (vi) GO:Hex/TRPIDC-CH$_3$ AgNPs/MWCNTs/GCE. (B) histogram displaying the current responses at corresponding electrodes. ... 70

Figure 4.27: Effects of pH in 0.1 M PBS using (A) GO:Hex/TRPIDC-CH$_3$AgNPs/MWCNTs/GCE (B) corresponding plot of current vs pH, (C) GO:Hex /AgNPs/MWCNTs/GCE using 0.02 mM ATP and (D) corresponding plot of current vs pH Effect of Scan Rate. .. 71

Figure 4.28: Effects of scan rate from 10 to 100 mV/s (A) GO:Hex/TRPIDC-CH$_3$AgNPs/MWCNTs/GCE (B) corresponding plot of current vs scan rate, (C) GO:Hex/AgNPs/MWCNTs/GCE using 0.02 mM ATP and (D) corresponding plot of current vs scan rate. .. 72

Figure 4.29: Effects of deposition time on the oxidation current from 30 to 150 s in 5 mM ATP (A) GO:Hex/TRPIDC-CH$_3$AgNPs/MWCNTs/GCE (B) GO:Hex/AgNPs/MWCNTs/GCE. .. 73

Figure 4.30: (A) SWV voltammogram GO:Hex/TRPIDC-CH$_3$ AgNPs/MWCNTs/GCE at different concentrations (0.02-0.12 mM), (B) Corresponding calibration curve showing linear dependence of the peak currents versus concentration of ATP, (C)
SWV voltammogram GO:Hex/AgNPs/MWCNTs/GCE and (D) Corresponding calibration curve. ... 74

Figure 4.31: (A) Square wave voltammogram GO: Hex/ TRPIDC-CH₃AgNPs/MWCNTs/GCE at different concentrations of ATP (0 – 0.24 mM) and (B) Corresponding line graph of concentration vs current, showing the effect of current, (C) Square wave voltammogram GO:Hex/AgNPs/MWCNTs/GCE at different concentrations of ATP (0 – 0.24 mM) and (D) Corresponding line graph of concentration vs current, showing the effect of current. ... 75

Figure 4.32: FTIR spectrum of moringa oleifera leaf extract... 78

Figure 4.33: Green synthesized TRPIDC-CH₃ CdSQDs. ... 79

Figure 4.34: UV-Vis spectrum of TRPIDC-CH₃ CdSQDs (uncapped CdSQDs) synthesized. .. 79

Figure 4.35: HR-TEM images of (A) TRPIDC-CH₃ CdSQDs (B) CdSQDs and Size distribution histogram prepared by image j software of (C) TRPIDC-CH₃ CdSQDs (D) CdSQDs.. 80

Figure 4.36: FTIR spectrum of TRPIDC-CH₃ CdSQDs (purple) and uncapped CdSQDs (pink)... 81

Figure 4.37: morphology of MCF-7 cell (100x magnification), treated with (A) Uncapped CdSQDs, (B) DMSO (1%), (C) untreated.. 82

Figure 4.38: Absorbance spectra of HSA upon the addition of (A) TRPIDC-CH₃ CdSQDs and (B) CdQDs (C) Linear fit for both the systems (D) Plot of 1/(A - A₀) versus 1/[Q] for both systems. ... 84

Figure 4.39: (A) Fluorescence spectrum of HSA in the presence of different concentrations of TRPIDC-CH₃ CdSQDs. (B) a linear fit of the absorbances complex and increasing concentration of TRPIDC-CH₃ CdSQDs at 345 nm at different temperatures. (C) Stern–Volmer curves for the binding of HSA with TRPIDC-CH₃ CdSQDs at different temperatures. (D) log[(F₀ / F)/F] versus log[Q] plots for HSA versus TRPIDC-CH₃ CdSQDs at different temperatures... 86
Figure 4.40: Van’t Hoff plot of (Black) HSA-TRPIDC-CH₃ CdSQDs and (Red) HSA-CdSQDs. .. page 87

Figure 4.41: FTIR spectra of HSA before and after interactions with TRPIDC-CH₃ CdSQDs. .. page 88

Figure 4.42: (A) Cyclic voltammograms of 1 mM [Fe(CN)₆]³⁻/⁴⁻ in 10 mL PBS (0.1 M, pH 7) (i) bare GCE, (ii) MWCNTs/GCE, (iii) CdSQDs/MWCNTs/GCE, (iv) TRPIDC-CH₃ CdSQDs/MWCNTs/GCE, (v) GO:Hex/CdSQDs/MWCNTs/GCE, and (vi) GO:Hex/TRPIDC-CH₃ CdSQDs/MWCNTs/GCE. (B) histogram displaying the current responses at corresponding electrodes... page 89

Figure 4.43: Effects of pH in 0.1 M PBS using (A) GO:Hex/TRPIDC-CH₃ CdSQDs/MWCNTs/GCE (B) corresponding plot of current vs pH, (C) GO:Hex/CdSQDs/MWCNTs/GCE using 0.02 mM ATP and (D) corresponding plot of current vs pH .. page 90

Figure 4.44: Effects of scan rate from 10 -100 mV/s (A) GO:Hex/TRPIDC-CH₃ CdSQDs/MWCNTs/GCE (B) corresponding plot of current vs scan rate, (C) GO:Hex/CdSQDs/MWCNTs/GCE using 0.02 mM ATP and (D) corresponding plot of current vs scan rate... page 91

Figure 4.45: Effects of deposition time on the oxidation current from 30 to 150 s in 5 mM ATP (A) GO:Hex/TRPIDC-CH₃ CdSQDs/MWCNTs/GCE (B) GO:Hex/CdSQDs/MWCNTs/GCE .. page 92

Figure 4.46: (A) SWV voltammogram GO:Hex/TRPIDC-CH₃ CdSQDs/MWCNTs/GCE at different concentrations (0.02–0.15 mM), (B) Corresponding calibration curve showing linear dependence of the peak currents versus concentration of ATP, (C) SWV voltammogram GO:Hex/CdSQDs/MWCNTs/GCE and (D) Corresponding calibration curve. ... page 93

Figure 4.47: (A) Square wave voltammogram GO: Hex/ TRPIDC-CH₃ CdSQDs/MWCNTs/GCE at different concentrations of ATP (0 – 0.24 mM) and (B) Corresponding line graph of concentration vs current, showing the effect of current, (C) Square wave voltammogram GO:Hex/CdSQDs/MWCNTs/GCE at different
concentrations of ATP (0 – 0.24 mM) and (D) Corresponding line graph of concentration vs current, showing the effect of current.
LIST OF CONFERENCES AND PUBLICATIONS

Conference

Manuscripts One

Authors: Sennzekile Majola, Myalowenkosi Sabela, Robert M. Gengan, Talent R. Makhanya
Year: January 2021
Title: Enzyme-indole pyrazole capped SeNPs based electrochemical biosensor for sensitive detection of ATP
Status: Submitted

Manuscripts Two

Authors: Sennzekile Majola, Myalowenkosi Sabela, Robert M. Gengan, Talent R. Makhanya
Year: January 2021
Title: Green Synthesis and Biological studies of indole pyrazole capped Cadmium Sulphide Quantum Dots
Status: In preparation
CHAPTER 1: INTRODUCTION

This chapter provides details about green chemistry and the role it plays in the green synthesis of nanomaterials using plant extract since plants are known to reduce certain metal ions. We also discuss the significance of plants such as Allium sativum (Garlic), Pelargonium graveolens, and Moringa oleifera Lam which will be used to synthesize new nanomaterials (SeNPs, AgNPs and CdSQDs) that will be capped using pyrazole ligand and its application study in the electrochemical determination of Adenosine triphosphate (ATP), and spectroscopic investigations on the interaction between nanomaterials and protein (HSA), in comparison to the uncapped nanomaterial. This chapter also presents the overall aim and objectives, followed by an outline of the thesis.

1.1 Green chemistry

Green Chemistry is the application of chemical expertise and information to limit or remove the use or generation of dangerous compounds during the preparation, manufacture and use of chemicals to minimize threats to human health and the environment (de Marco et al. 2019). It is important to establish a clean synthetic approach ('green chemistry') to obtain nanomaterials aimed at various applications in order to pursue an environmentally friendly space. The eco-friendly solvent system, reducing and capping agent are known to be three essential features for a green synthesis (Zhang et al. 2010). Green synthesis is becoming increasingly popular, and with the need for greener methods to counter higher costs and higher energy requirements of chemical and physical processes.

Conventional approaches for nanomaterial synthesis usually require dangerous reductants, such as sodium borohydride or hydrazine, which also contain unsafe by-products. Greener routes have been studied for more than a decade to reduce the environmental effects of nanomaterials synthesis. The principles of green chemistry were proposed by Anastas and Warner, who established 12 principles (Figure 1.1) defining green chemistry (Anastas et al. 1998). The three key principles for the preparation of nanomaterials in a green synthesis approach are the preference of a solvent medium ideally water, an environmentally safe reducing agent and a non-toxic material for stabilization (Rauwel et al. 2015). Synthesis processes should be
conducted close to ambient temperature and pressure and under neutral pH in which to be energy efficient.

![Diagram of the 12 Principles of Green Chemistry]

Figure 1.1: 12 principles of green chemistry by Anastas and Warne.

1.2 Plants

Plants are sources of many biologically active compounds that are being used in pharmaceutical, agricultural, and cosmetics industries (Machalova et al. 2015). Plants play important part in the development of vital environmental services. Without plants, humans and other living organisms cannot live in a way living should be. Plant extracts have been frequently used in medicine, food, nanomaterials synthesis, and biosensing to name a few, and offer stark advantages over other biomolecules (protein, enzyme, peptide, and DNA) (Ocsoy et al. 2018). Plants are known to reduce metal ions from their surface and their metabolites such as sugars, alkaloids, terpenoids, phenolic acids, polyphenols, flavonoids, and proteins play a vital role in the bioreduction of metal ions and capping of resulting nanomaterials (Makarov et al. 2014).

As a result, nanomaterial aggregation could be effectively prevented and post-surface alteration could be easily completed. Zhang and co-worker showed that the use of plant extract overshadows microorganisms in nanomaterial biosynthesis (Zhang et al. 2010). Therefore, the approach on based plant extracts are a green alternative to nanomaterials synthesis. The green synthesis of nanomaterials using plant extracts is advantageous because it is cost-effective, environmentally friendly, short
development, and production times. In this study plant extracts of *Allium sativum*, *Pelargonium graveolens*, and *Moringa Oleifera* are used to synthesize nanomaterials.

1.2.1 Allium Sativum (Garlic)

Allium sativum (Garlic) is a plant species that is native to north-eastern Iran and Central Asia. It is a common vegetable that belongs to the *Allium* family, and is commonly used in many countries and cultures considering the potential health benefits and flavor (Phan *et al.* 2019). In countries such as the United States, the United Kingdom, Australia, and Germany *Allium sativum* is commonly used as herbal medicines. In the Mediterranean, it is economically important because it is the main agricultural product (Abbas *et al.* 2019; Chan *et al.* 2019). The *Allium sativum* plant's bulb (Figure 1.2) is the most commonly used part of the plant, is normally divided into numerous fleshy sections called cloves. *Allium sativum* cloves either cooked or raw is used for consumption and medicinal purposes. They have an overpowering, spicy flavor that mellows and sweetens noticeably with cooking (Abbas *et al.* 2019; Phan *et al.* 2019).

![Figure 1.2: Allium sativum cloves.](image)

1.2.2 Pelargonium graveolens

Pelargonium graveolens (Figure 1.3) which is commonly called *rose-scented geranium* or *rose geranium* is an aromatic plant that belongs to the *Geraniaceae* family, and is highly used in sanitary products, in cosmetics, and in food preparation because of their terpenoid-rich essential oil (Mohamadlou *et al.* 2017; Bergman *et al.* 2019). Most *Pelargonium* species are native to South Africa and neighboring
countries and have approximately 280 species with a wild variety of floral and leaf morphology variants, with approximately 30 species that are odoring, like *Pelargonium graveolens* (Blerot *et al.* 2018). Amongst the scented *Pelargonium* species, the *Pelargonium graveolens* is the most characteristic cultivars and it is often used to replace the expensive *Rosa damascena* essential oil when a hybrid with the *Pelargonium roas* (Blerot *et al.* 2018).

![Pelargonium graveolens leaves](image)

Figure 1.3: *Pelargonium graveolens* leaves.

1.2.3 **Moringa Oleifera lam**

Moringa oleifera Lam also known as horseradish tree, drumstick tree or tree of life is a drought-resistant tree that is native to the sub-Himalayan tracts of India, it belongs to the *Moringaceae* genus and it is the most cultivated among the species of the *Moringaceae* family (Oyeyinka *et al.* 2018). Almost all parts of this tree have been found to be very useful. The tree trunk is used to make gums, leaves (Figure 1.4) as forage, flower nectar in honey, and powdered seeds for water purification (Oyeyinka *et al.* 2018; Zhao *et al.* 2019). *Moringa Oleifera* leaves has been used as an alternative food source to fight malnutrition, and are reported to contain substantial amounts of vitamin A, C, and E, as well as appreciable amounts of proteins, iron, total phenols, magnesium, calcium, manganese, copper, and potassium (Hekmat *et al.* 2015; Tiloke *et al.* 2019). The flowers and fruits of *Moringa Oleifera* have also been found to contain appreciable amounts of carotenoids (Saini *et al.* 2014).
1.3 Nanomaterials

The synthesis of nanomaterials using various plant materials is an emerging field of nanotechnology, which is critical for preventing the use of harmful chemicals and promotes the production of an eco-friendly technique. Nanomaterials (1-100 nm) of varying shapes and sizes have drawn significant interest due to their unique electronic, chemical and optical properties comparable to bulk materials (Kumar et al. 2017). Nanotechnology provides expanded research, such as reproductive science and technology, conversion of agriculture and food waste to energy and other valuable by-product through chemical sensors, disease prevention, cleaning of water, and treatment in plants using various nanocides (Siddiqui et al. 2015).

Nanoparticles are a broad class of materials of one dimension less than 100 nm, exhibiting characteristic colors and properties of different sizes and shapes that can be used in bioimaging applications. (Khan et al. 2019). Nanoparticles possess good physicochemical characteristics that cannot be found in a single molecule and a bulky metal. They have gained significant interest due to their remarkable chemical, physical and biological properties and are used in fields such as food processing, biolabelling and medicinal drugs (Mohammadlou et al. 2017).

Quantum dots (QDs) are fluorescent semiconductor nano-crystals with a normal size range of 1 to 12 nm. These types of nanomaterials have distinct tunable electrical and optical properties attributable to quantum containment effects such as high photostable, high quantum yield large absorption, long fluorescence life, and narrow and size-dependent emission spectra (Borovaya et al. 2015; Qin et al. 2018).
According to these unique characteristics, QDs have gained significant attention in the fields of bioimaging, biosensors, solar power generation and biomedical science, and periodic table groups II-VI have been used to create various forms of QDs, such as ZnS, CdS, CdSe, CdTe and PbS (Al-Shalabi et al. 2016; Jacob et al. 2017). In this study, the following nanomaterials were synthesized via a green method using plant extracts, Indole pyrazole capped selenium nanoparticles (TRPIDC-CH$_3$ SeNPs), Indole pyrazole capped silver nanoparticles (TRPIDC-CH$_3$ AgNPs), and Indole pyrazole capped cadmium sulphide quantum dots (TRPIDC-CH$_3$ CdSQDs).

1.4 Indole-Pyrazole ligand

Pyrazoles are five-membered aromatic heterocycles containing two adjacent nitrogen atoms. This platform is an important template for the creation and design of different medicinal drugs as it exhibits many biological properties such as hypoglycemic, analgesic, antipyretic, antibacterial, anti-inflammatory, anti-hyperglycemic and sedative-hypnotic activity (Dadiboyena et al. 2011). Pyrazoles are available from natural sources, but synthetic molecules dominate the pharmaceutical industry because they can be synthesized from basic substrates.

The problem with extracting pyrazoles from living organisms is their limited capacity to metabolize compounds that contain two nitrogen atoms adjacent to each other. The chemistry of fused pyrazoles has drawn considerable interest due to their pharmacological significance in the treatment of numerous health problems. Thus, one of our co-authors developed a method to synthesize indole pyrazole ligands (Makhanya 2019). In this research, we used the TRPDC-CH$_3$ ligand (Figure 1.5) and coated it with nanomaterials in the form of a capping agent and observed its behavior.

![Figure 1.5: Structure Indole-Pyrazole ligand (TRPIDC-CH$_3$) used.](image-url)
1.5 Adenosine triphosphate (ATP)

Adenosine triphosphate (ATP) is a multifunctional nucleotide, which is produced during cellular respiration and photosynthesis, and it acts as a primary energy source in living organisms (Freitas et al. 2017; Wang et al. 2018; Manjubaashini et al. 2019; Peteu et al. 2020). ATP plays an essential role in cellular metabolism, biosynthesis, and the regulation of biochemical pathways in DNA replication, cell physiology, and transcription, (Wang et al. 2018). It also acts as a motioning mediator in the cascade for the modulation of the central and peripheral nervous systems.

Studies have shown that ATP can be used as an indicator for viability, proliferation, and cell injury (Zhu et al. 2018; Manjubaashini et al. 2019). ATP is a significant indicator in the pathogenies of some diseases such as hypoglycaemia, Alzheimer’s disease hypoxia, ischemia and Parkinson’s disease. Therefore, the detection of ATP is very useful for monitoring in the biochemical studies, clinic diagnosis, food quality control, and environmental analyses (Lu et al. 2015; Wang et al. 2018). Electrochemical detection of ATP will be studied by immobilizing the nanomaterials onto a bare glassy carbon electrode.

![Figure 1.6: Structure of Adenosine triphosphate (ATP).](image)

1.6 Electrochemical biosensors

Electrochemical sensors and biosensors are effective analytical instruments that are low-cost, lightweight and self-contained. Advanced functional nanomaterials have a tremendous potential to boost both selectivity and sensitivity by tuned signal amplification. The design of nanomaterials with minimal toxicity and environmental effect is also needed for realistic applications in real-world biomedical applications. The synthesis of metal nanoparticles, bio-functional nanoparticles and nanocomposites or nanohybrids have intrigued the nature of biosensor.
(Maduraiveeran et al. 2018). Electrochemical techniques counteract the drawbacks of simple techniques since it is possible to create a biosensor that is quicker in reaction time, low cost, responsive and selective to the specific compound of interest. The goal is to create an electrochemical biosensor with excellent catalytic activity and conductivity by immobilizing nanomaterials on a bare electrode.

Nanomaterials based nanosensors provide significant advantages, including improved chemical, physical and biological properties. They have a higher surface-to-volume ratio, which makes for higher sensing responses as well as improved optical, magnetic and electrical properties. Nanomaterials possess major advantages over macro-scale materials for biological and biomedical applications (Maduraiveeran et al. 2018). Due to the growing importance of biosensors, the choice of biological recognition device/element/material is essential for the creation of a novel biosensor. Biosensing material has to be stable under the operation and storage conditions of the biosensor and there are various forms of nanomaterials, such as quantum dots, nanoparticles and carbon nanotubes, which can be used for biosensor development (Manjubaashini et al. 2019).

1.7 Human Serum Albumin (HSA)

Human Serum Albumin (HSA) is a multi-domain protein with a helical structure (Figure 1.7) with a molecular weight of approximately 66 kDa (585 amino acid residues) and a blood plasma protein concentration of roughly 35-50 mg/ml, making it an abundant protein in the blood (Chugh et al. 2019). HSA is an essential carrier protein in the human circulatory system and the key function of HSA is the transport and synthesis of bioactive molecules such as hormones, fatty acids, metals, vitamins and pharmaceuticals, it is used as a reference protein for numerous biochemical, biophysical and physicochemical research (Pranth et al. 2017). HSA is known for its unique ligand-binding capacity due to its multiple hydrophobic binding sites which bind particularly medium-sized hydrophobic compounds (Khulu 2015). Spectroscopic methods have been used to investigate the interaction, such as FTIR, cyclic voltammetry (CV), UV-Visible and fluorescence spectroscopy and they are powerful tools for investigating the intra or intermolecular interactions in bio-macromolecules (Rezanejad Bardajee et al. 2017).
1.7.1 Nanomaterial-Protein binding

HSA is noted for its extensive ligand-binding proteins, which can be both endogenous and exogenous. Complex interactions between nanoparticles and biological systems are required to ensure the safe and effective use of nanoparticles in biomedical applications. It is important to ensure the biocompatibility of nanoparticles developed (Chakraborti et al. 2013). When the nanoparticles enter into the biological fluids, they interact with the plasma proteins, and a protein corona is formed around the nanoparticles. The protein corona it significant roles in modulating nanoparticles toxicity and mobility, and interactions can alter the normal functioning and conformation of the proteins leading to unexpected biological reactions (Prasanth et al. 2017).

Human serum albumin interacts with the bulk of small molecules primarily by electrostatic, followed by hydrogen, hydrophobic, van der Waals and covalent interactions. In recent years, the emerging role of protein-nanomaterial interactions has been thoroughly studied in the field of nanomedicine and nanotoxicity, as nanomaterials are known to change the structure and functions of proteins (Mahanthappa et al. 2018). Such studies can provide insight into the definition of the effect of nanomaterials on proteins that play a pivotal role in biomedical applications. We will therefore carry out a spectroscopic investigation of the interaction between TRPIDC-CH₃ capped nanomaterials and HSA protein.
1.7.2 Binding sites and Domains of HSA

HSA consist of three similar domains I, II, and III which are further divided into two subdomains each A and B. The three domains design provides a variation of binding sites and the flexibility of its structure allows it to adapt readily to ligand (Chugh et al. 2019). The main ligand binding sites of HSA are located in the hydrophobic subdomains II-A and III-A, and subdomain III-A has a higher binding affinity (Prasanth et al. 2017). They are two Sudlow drug binding sites I and II, where Sudlow's I drug binding site is located in subdomain II-A and binds bulky heterocyclic anions such as warfarin. While Sudlow's II drug binding site is located in subdomain IIIA, it binds aromatic carboxylates like ibuprofen (Khulu 2015; Chugh et al. 2019).
1.8 Problem statement

Nanomaterials can be synthesized by chemical and physical methods, however, these methods are expensive, labor-intensive, and potentially hazardous to the environment and living organisms. Recently, there is a greater thrust towards green methods because they are eco-friendly, cost-effective, and involve a single-step synthesis. However, green synthesized nanomaterials are relatively unstable compared to chemical and physical methods. Hence new stabilizing agents are being sought after. Although nanomaterials are being applied in electrochemical and biological systems, their behavior may not be as efficient as the new capped nanomaterials. Hence a comparison of capped and uncapped nanomaterials will be studied.

1.9 Aim and Objectives

Aim

The aim is to synthesize indole pyrazole capped nanomaterials (AgNPs, SeNPs and CdSQDs) using plant extracts (pelargonium graveolens, Allium sativum, and moringa oleifera) and evaluate their biological and electrochemical properties in comparison to the uncapped nanomaterials.

The objectives are to:

- Prepare moringa oleifera leaf, allium sativum cloves and pelargonium graveolens leaf extracts.
- Characterize the plant extracts by UV-Vis, FTIR, and perform phytochemical analysis.
- Synthesize AgNPs, SeNPs, and CdSQDs using extracts of pelargonium graveolens, Allium sativum, and Moringa oleifera, respectively, and capped with an indole pyrazole ligand.
- Characterize the nanomaterials by UV-Vis, HR-TEM, and FTIR.
- Evaluate the biological and electrochemical activities of the nanomaterials
1.10 Thesis Outline

This thesis is divided into five chapters. Following the introduction (Chapter 1), further chapters in this thesis are divided as follows:

Chapter 2: Literature Review

The chapter describes the literature reviews of the study including an insightful understanding of green synthesis, Adenosine triphosphate (ATP), electrochemical biosensors, and protein binding.

Chapter 3: Methodology

A description of the materials and methods used in the design of the experimental works is presented in this chapter. The experimental study including, green synthesis using plant extract, cytotoxicity activity, protein interaction, fabrication of modified electrode, and characterization studies are presented.

Chapter 4: Results and Discussion

A discussion of the results obtained from the experimental methods is presented here. The assessment of the pyrazole capped and uncapped nanomaterials are discussed here.

Chapter 5: Concluding Remarks and Future Perspectives

A summary of the overall conclusions is presented in this chapter.

References

The last chapter comprises of a list of references cited throughout this thesis.
CHAPTER 2: LITERATURE REVIEW

This chapter provides literature review of the study including an insightful understanding of plant extracts and nanomaterials used. It gives a brief overview of the applications of the green synthesized nanomaterials, the electrochemical determination of ATP by immobilizing the nanomaterials onto a bare electrode, its historical aspect. The interaction studies of the nanomaterial and Human serum albumin protein are presented here which can be helpful in drug delivery.

2.1 Plants used in this study

Green chemistry is an approach that has paved the way towards sustainable processes by minimizing the waste produced, usage of non-toxic starting materials, being more cost-effective and environmentally friendly. The use of plants in the process of nanomaterials synthesis is more beneficial than other processes since the nanomaterials are produced extracellular (Nabikhan et al. 2010). Plant extracts have been a source of inspiration for designing complex nanomaterials with high surface area and potent applications in commercial products, biosensors, catalysis, as well as environmental technologies (Sharma et al. 2016). *Allium sativum, Pelargonium graveolens*, and *Moringa Oleifera* were used to synthesize TRPIDC-CH$_3$ SeNPs, TRPIDC-CH$_3$ AgNPs, and TRPIDC-CH$_3$ CdSQDs, respectively.

2.1.1 *Allium Sativum*

Allium sativum is important because of its therapeutic function and its biological activities such as antibacterial, antifungal, and antioxidant properties (Shrestha et al. 2016; Rose et al. 2018). The biological and health properties of allium sativum are derived from its polyphenols, flavonoids, saponins, Maillard reaction, enzymes, and organosulfur compound (vinyl dithiins, ajoene, diallyl polysulfides, S-allyl cysteine, alliin) (Chen et al. 2018; Rose et al. 2018). The sulfur-containing compounds are suggested to be responsible for the pungent aroma, are the main compounds responsible for its physiological effects (Abbas et al. 2019). *Allium sativum* has been used as traditional medicine for centuries to treat diarrhea, tumor, constipation, and aches. In modern times, the consumption of *Allium sativum* reduces the risk of type 2 diabetes, the risk of cardiovascular disease, and the risk of developing various cancers (Rose et al. 2018; Abbas et al. 2019).
Many studies have reported the synthesis of different nanomaterials using different parts of the *Allium sativum* plant. Modi *et al* synthesized zinc oxide nanoparticles (ZnONPs) with *allium sativum* skin extract having an average size of 7.77 nm (Modi *et al*. 2019). Anu *et al* synthesized SeNPs using *allium sativum* cloves and tested their cytotoxicity, the nanoparticles showed eco-friendly features and limited cytotoxicity if compared with chemically synthesized selenium nanoparticles (Anu *et al*. 2017). AgNPs synthesized using an aqueous extract of *Allium sativum* were found to have a significant antibacterial activity by Saha *et al* (Saha *et al*. 2019).

Satgurunathana *et al* reported that SeNPs synthesized from *allium sativum* cloves can be feed to the freshwater prawn *Macrobrachium rosenbergii* post-larvae and its improved the survival, growth, and concentrations of biochemical constituents in M. rosenbergii post-larvae (Satgurunathan *et al*. 2017). Ryavanaki *et al* synthesized sensitive detection of lead Ions (Ryavanaki *et al*. 2020). Amatya *et al* bio-synthesized of copper nanoparticles (CuNPs) using *allium sativum* cloves extract to investigate antibacterial activity (Amatya *et al*. 2020). Karunanithy *et al* reported the bio-synthesis of Zn doped AgTe materials with the help of *allium sativum* skin powder (Karunanithy *et al*. 2019).

2.1.2 Pelargonium graveolens

The *Pelargonium graveolens* is being used for its antimicrobial activity in the food industry and the medical field because of its antibacterial, antifungal, and antioxidant activity (Machalova *et al*. 2015; Hamidpour *et al*. 2017). Traditionally, the plant has been used to treat wounds, colds, and sore throats, inflammation, heavy menstrual flow, insomnia, asthma, nausea and vomiting (Hamidpour *et al*. 2017). Hydrosols of *Pelargonium graveolens* are still used as a remedy for the treatment of stomach ulcers, fatigue, breast inflammation, genital infection, and colds. The essential oils and organic extracts of the plant are used in pharmacological and food industries for their bioactive substance (Ennaifer *et al*. 2018). Besides terpenoid, the Pelargonium graveolens is reported to contain substantial amounts of flavonoids, alkaloids, phenolic acids, total phenols, and tennis (Pandian *et al*. 2013; Machalova *et al*. 2015; Mohammadiou *et al*. 2017; Ennaifer *et al*. 2018).
Many studies have reported the synthesis of different nanomaterials using pelargonium graveolens leaf extract, mainly for AgNPs. Mohammadlou et al reported the hydrothermal synthesis of AgNPs using the pelargonium graveolens leaf extract (Mohammadlou et al. 2017). Jafarizad et al synthesized gold nanoparticles (AuNPs) using pelargonium leaf extract and studied in-vitro on the nanoparticles (Jafarizad et al. 2015). Fardsadegh et al reported SeNPs using pelargonium leaf extract, the nanoparticles indicated higher antibacterial activities (Fardsadegh et al. 2019b). Vahidi et al synthesized zinc oxide (ZnONPs) nanoparticles using pelargonium leaf extract (Vahidi et al. 2019). Pawlowska and Sadowski reported the use of pelargonium leaf extract to synthesize copper nanoparticles. (Pawlowska et al. 2017).

2.1.3 Moringa Oleifera lam

Moringa Oleifera Lam tree is rich in nutrients such as proteins, fiber, and minerals and it plays a vital role in human nutrition (Oyeyinka et al. 2018). Numerous studies have shown the potential use of different parts of *Moringa Oleifera* in food applications such as in making amala, a stiff dough made from yam and plantain flour (Karim et al. 2015), soup making (Babayeju et al. 2014), yoghurt (Hekmat et al. 2015), bread (Chinma et al. 2014), and herbal biscuits (Alam et al. 2014). *Moringa Oleifera Lam* leaf extract has several properties including antioxidant, anti-inflammatory, anticancer, antifungal, and hypotensive activity (El-bakry et al. 2016; Tiloke et al. 2019). Due to the phytochemical constituents such as polyphenols, flavonoids, phenolic acids, carotenoids, fatty acids niazirin I and II, niazinin, and niazimicin, traditional healers use the *Moringa Oleifera Lam* leaves and addition of water to heal wounds, and treat headaches (El-bakry et al. 2016).

Moringa oleifera is reported to contain tannins, steroids, triterpenoids, flavonoids, saponins, and alkaloids which are known as alternative reducing agents in synthesizing nanomaterials when employing plant extracts (Pratiwi et al. 2019). Many authors have reported the use of different parts of the *Moringa oleifera* tree, Seetha et al used *Moringa oleifera lam* leaf extract to synthesize AgNPs and copper nanoparticles (CuNPs) (Seetha et al. 2020). Kalugendo and Kousalya synthesized AgNPs using the *Moringa oleifera* seed (Kalugendo et al. 2019). Aisida et al synthesized iron oxide nanorods using *Moringa oleifera* leaf extract (Aisida et al. 2020). Ezhilarasi et al reported the synthesis of nickel oxide nanoparticles (NiONPs)

2.2 Nanomaterials used in this study

Biosynthesis of nanomaterials has received increasing consideration due to the growing need to develop environmentally friendly nanomaterial (Shameli et al. 2012). Biosynthesis of nanomaterials has been proposed as a cost-effective and environmentally friendly way of fabricating nanomaterials. Synthesis of nanomaterials using plant extracts has emerged as an alternative approach. The method is advantageous because it is simple, cost-effective, gives high yields, and is environmentally friendly (Tippayawat *et al.* 2016). Green fabrication of metal and metal oxide nanomaterials using different parts of plants (e.g., flower, leaf, stem, and root) is an innovative part of nanotechnology and they have natural bioreductants and stabilizers, such as alkaloids, carbohydrates, polyphenols, proteins, flavonoids enzymes, and phenolic acids, which are key roles in the green synthesis of nanomaterials (Sheikhlou *et al.* 2020).

2.2.1 Selenium Nanoparticles (SeNPs)

SeNPs displayed numerous advantages, such as high drug loading capacity, low cytotoxicity, enhanced antitumor efficacy, and controlled size. Thus, SeNPs have been used as one pre-eminent antitumor drug delivery vehicle (Xia *et al.* 2020). SeNPs are reported to kill cancer cells owing to their pro-oxidant behavior inside the cancer cells and studies showed that SeNPs also target matrix metalloprotein, by inhibiting metastasis in cancer cells (Rajkumar *et al.* 2020). One promising area of research is the application of nanotechnology towards selenium fabrication and use. SeNPs are particularly suitable as they possess high surface area to volume ratios, increased surface area, and increased interactions with biological targets, leading to higher availability and absorption by the host. Also, SeNPs have lower toxicity than their elemental form (Chung *et al.* 2020).
Selenium metal is one of the overbearing trace minerals since it plays an essential role for human health. Selenium nanoparticles (SeNPs) received attention due to its biocompatibility and low toxic nature apart from its high specific surface area, high surface activity, abundant surface active centers, high catalytic efficiency and adsorbing ability (Anu et al. 2017). SeNPs have developed as potential novel therapeutic agents exhibiting good optical and photo-electric properties and high photo-conductivity, making them admirable as rectifiers and solar cells. Their high reactivity with other inorganic elements has been explored in the synthesis of other functional materials such as cadmium selenium (CdSe), lead selenium (PbSe) and zinc selenium (ZnSe) for the use in diagnostic and imaging studies (Maiyo et al. 2017). SeNPs are found to reduce alcohol-induced cardiomyopathy by reducing the lethal factors such as oxidative stress and apoptosis effects caused by alcohol consumption and are naturally found in the human body at around 5 nm to 200 nm in size (Chandramohan et al. 2018).

SeNPs have emerged as a novel form of selenium, finding a role in medicine as delivery vehicles, by advantage of their unique properties (Maiyo et al. 2017). Limited works have been reported about the green synthesis of SeNPs. Chandramohan et al synthesized hollow SeNPs using a potato extract. The results indicated that the potato extract reduces the toxicity of hollow SeNPs and lower concentrations of hollow SeNPs could be used for various biomedical applications in future (Chandramohan et al. 2018). Alagesan and Venugopal reported the green synthesis of selenium nanoparticle using leaves extract of Withania somnifera (poison gooseberry), SeNPs were spherical within the diameter range of 45 - 90 nm (Alagesan et al. 2019). Fardsadegh et al used an oleo vera leaf extract to synthesize spherical SeNPs, which had high antibacterial and antifungal activities (Fardsadegh et al. 2019a). Mellinas et al did a microwave-assisted synthesis of SeNPs using theobroma cacao L. bean shell extract (Mellinas et al. 2019). Kapur et al reported green Synthesis of SeNPs from Broccoli (Kapur et al. 2017).

2.2.2 Silver Nanoparticles (AgNPs)

Silver nanoparticles (AgNPs) have been receiving wide attention due to their numerous applications such as biomolecular detection and diagnostic, therapeutic, catalysis, micro-electronics fields, and sensing to name a few. Due to their nontoxicity
towards humans, they are a popular choice when compared to the other metals and materials (Ali et al. 2016). Due to their unique physical, chemical, and biological properties, AgNPs are applied in many different areas, such as bio labeling, medicine, electrochemistry and food packaging and AgNPs have been widely used in many different industries showing their excellent antibacterial, antiviral and antifungal activities (Mohammadlou et al. 2017).

Most methods for producing AgNPs require numerous chemicals, which not only is expensive but also could produce a hazardous residue. Therefore, green synthesis of AgNPs is desirable to provide an eco-friendly, and cleaner synthesis route. Plant extracts work so well in the green synthesis of AgNPs under mild experimental conditions and replacing hazardous chemicals by polyphenols, flavonoids, proteins, saponins or sugar as reducing agents (Ali et al. 2016; Baraka et al. 2017; Kumar et al. 2017). Synthesis of AgNPs attracts attention due to its numerous applications in different fields. Plants’ extracts are usually used for the green synthesis of AgNPs as a suitable alternative to the chemical and physical methods (Baraka et al. 2017).

Sabela et al reported a one-pot biosynthesis of AgNPs using Iboza Riparia and Ilex Mitis extracts for cytotoxicity on human embryonic kidney cells (Sabela et al. 2018). Saha and Bandyopadhyay synthesized AgNPs using allium sativum (Saha et al. 2019). Ali and co-workers synthesized AgNPs using apple extract and evaluated its antibacterial properties: nanoparticles in suspension showed activity against Gram-negative and Gram-positive bacteria (Ali et al. 2016). Kumar et al synthesized AgNPs using Andean blackberry fruit extract. They observed spherical shaped AgNPs with an average size of 12 nm (Kumar et al. 2017). Mohammadlou et al used a hydrothermal green synthesis for AgNPs using pelargonium leaf extract and evaluated their antifungal activity (Mohammadlou et al. 2017). Baraka et al reported the synthesis of AgNPs using natural pigments extracted from Alfalfa leaves and its use for antimicrobial activity (Baraka et al. 2017).

2.2.3 Cadmium Sulfide Quantum Dots (CdSQDs)

Cadmium sulfide quantum dots (CdSQDs) have been identified as a potential candidate to diagnose cancerous cell and have been synthesized through a broad range of physical and chemical techniques such as microwave heating, microemulsion
synthesis, and ultrasonic (Shivaji et al. 2018). CdSQDs have attracted significant attention for electronics, photodiodes, sensors, and solar cells because of their wide bandgap energy that can be changed by varying their particle size and morphologies (Qin et al. 2018). They are the most vital semiconductors of groups II-VI among numerous semiconductor materials.

Due to their size-dependent photoluminescence tunable in the visible spectrum, the main interest of CdSQDs is their photoluminescent properties which make the quantum dots suitable for biological and biomedical research (Garmanchuk et al. 2019). The chemical synthesis of QDs produces a measure of toxic components that prevent them for biological applications and plant synthesis of quantum dots is very considerable due to their low costs, short production time, safety, and large production amounts (Gholami et al. 2020). QDs such as cadmium sulfide provides several advantages, such as ease of preparation, size-dependent emission wavelength, high-quantum yield, and photostability (Hsu et al. 2012).

The use of plant extracts for the preparation of QDs has gained more attention. Shivaji et al. synthesized CdSQDs using tea leaf extract and explored the biological activity of the QDs in bioimaging and antibacterial activities (Shivaji et al. 2018). Qin et al. developed a novel green route to prepare bio-compatible CdSQDs using the white-rot fungus Trametes versicolor (Qin et al. 2018). One-pot synthesis of CdSQDs from naturally available fruit sap Opuntia ficus-indica was synthesized by Kandasamy and co-workers (Kandasamy et al. 2019). Gholami et al. biosynthesized spherical CdSQDs with a size distribution between 2 - 7 nm using aqueous extracts of the hairy roots of raphanus sativus (Gholami et al. 2020).

2.3 Nanomaterial-Protein binding

Spectroscopic investigations on the interaction between nanomaterials and protein have significance in the field of chemistry, materials science, and biology. The protein nano-conjugate possesses numerous potential applications related to bio-analytical science, bio-sensors, bio-catalysis, and bio-based nano-devices (Ambika et al. 2015). Since HSA is known to undergo different pH-dependent conformational transitions, it is an ideal candidate for studying protein-ligand interaction (Chatterjee et al. 2012). Structural characterization and binding energies of the complexes are the main
features in the understanding of biological and pharmaceutical properties since interactions occur via the binding sites of HSA (Khulu 2015). HSA holds some ligands in a stressed environment thereby allowing for their metabolic alteration and also reduces possible toxins by transporting them to disposal sites. HSA also acts as a nitric oxide carrier, leading to covalent alteration of macro-molecules (Khulu 2015). Here we perform spectroscopic investigations on the interaction between nanomaterials and HSA.

Beg et al. reported spectroscopic interaction of AgNPs with human serum albumin and overall, the AgNPs show versatile biological activities and may be applied in the field of nanomedicine (Beg et al. 2017). Mahanmmadlou et al. reported spectroscopic and electrochemical studies on the molecular interaction between copper sulfide (CuSNPS) nanoparticles and bovine serum albumin (BSA): the results revealed that the CuS NPs interact with BSA by inducing the conformational changes in secondary structure and reducing the a-helix content of BSA (Mahanthappa et al. 2018). Rezanejade Bardajee et al. reported spectroscopic studies on the interactions of capped CdSQDs with HSA and BSA, the results affirmed the complex formation between the synthesized QDs and HSA or BSA (Rezanejade Bardajee et al. 2017). Prananth and Sudarsanakumar reported the spectroscopic and thermodynamic analysis on the interaction of L-cysteine-capped SeNPs and HSA (Prasanth et al. 2017).

2.4 Detection of ATP

There is a great demand for the determination of ATP, due to its role as universal energy sources for protein synthesis and metabolic activities (Manjubaashini et al. 2019). Multiple approaches have been developed to detect ATP, such as the isotope tracing method (Chen et al. 2012), high-performance liquid chromatography (HPLC) (Feng et al. 2020), photo-electrochemical aptasensor surface-enhanced Raman scattering, optomagnetic aptasensor (Tian et al. 2017), fluorescent spectroscopy (Liu et al. 2019), and chemiluminescence resonance energy transfer (Sang et al. 2019). Even though these methods provide satisfactory sensitivity and stability, they are time-consuming, expensive equipment and large background interferences are commonly involved, hence limit their potential application fields. (Wang et al. 2018; Liu et al. 2019). An electrochemical method for the determination of biological entities such as
ATP is advantageous due to it being cheaper, has high selectivity and sensitivity, and is more convenient (Manjubaashini et al. 2019).

Enzyme immobilization using electrochemically deposited polymers is well described in the literature and allows directed modification of electrode surfaces. A novel immobilization technique based on the electrochemically induced, localized deposition of enzyme-containing polymer suspensions has been reported (Kueng et al. 2004). This immobilization shows high selectivity for the immobilization site, sufficient control on the overall immobilization process, the potential to operate at miniaturized electrode surfaces, and excellent long-term stability of the protein within the polymer matrix. The skill has successfully been applied for the formation of a double layer biosensor with one layer containing glucose oxidase and one layer containing catalase (Kurzawa et al. 2002). Electrochemical biosensors based on glucose oxidase (GO) with hexokinase (Hex) seem to be a suitable method for the determination of ATP, due to its sensitivity, rapid response, and continuous monitoring (Zhu et al. 2018).

Herein we report the determination of ATP in nutritional supplements using a modified Glassy carbon electrode (GCE) modified with nanomaterials and dual enzyme composite as a working electrode. Enzymes are most frequently used in the construction of biosensors as their recognition is highly selective or even specific to their substrates and their conversion is of high catalytic efficiency (Weber 2014). Hence, if enzymes are combined with a transducer, the resulting biosensor offers high selectivity and sensitivity towards the targeted analyte. Enzymes operate at physiological conditions and can be therefore perfectly applied in in vivo and in vitro measurements.

Jiang et al reported the development of an electrochemical biosensor for sensitive detection of ATP in rat brain with in vivo microdialysis (Jiang et al. 2019). Xiao et al developed an electrochemical aptamer-based assay that is described for the ultrasensitive and highly specific determination of ATP (Xiao et al. 2019). Wang et al constructed a paper-based electrochemical biosensing electrode for rapid and accurate detection of ATP and verified assay of ATP in human serums, cancer cells, and normal cells with satisfactory results (Wang et al. 2018). Manjubaashini et al reported the electrochemical determination of ATP using rhodamine 6G capped gold nanoparticles (FCGN) modified carbon felt (CF) as a working electrode.
(Manjubaashini et al. 2019). Shao et al reported a highly sensitive electrochemical biosensor for the detection of ATP, based on porous anodic alumina (PAA) and SiO$_2$ nanoparticles combining with several oligonucleotides to construct a sandwich structure (Shao et al. 2018).
CHAPTER 3: METHODOLOGY

This chapter focuses on major methodologies used in this study, which compromise of synthesis of pyrazole ligand and nanomaterials and their application. The first subsection describes the instrumentation, the characterization techniques that were used to confirm the nanomaterials followed cytotoxicity activity. This is followed by a descriptive section for the preparation of all the working standards and the preparation for enzyme activity for analysis. The second subsection is based on the application of the nanomaterials where the electrochemical determination of ATP using a GC electrode is modified with the nanomaterials and a dual enzyme reaction. Lastly, the spectroscopic investigations on the interaction between nanomaterials and protein (HSA).

3.1 Instrumentation

The characterization techniques used for synthesized nanomaterials were UV–Vis, HR-TEM and FTIR whilst the spectroscopic investigations on the interaction between nanomaterials and protein were performed using FTIR, UV-Vis, and fluorescence and for electrochemical detection of ATP, 797 VA computrace. pH meter was used to adjust the pH of the buffer solutions.

3.1.1 UV-Vis spectroscopy

The Agilent Cary 60 UV-Vis Spectrophotometer was used to determine the UV-visible spectra of the synthesized nanomaterials and for the interaction between HSA protein and nanomaterials. UV- Visible spectra of all solutions were recorded in the range of 200 - 800 nm against a blank solution with a 1.0-cm quartz cell at room temperature.

3.1.2 pH meter

A pH/ion meter coupled with a stirrer (Hannan instruments Microprocessor) was used to adjust the pH of the buffer solutions.

3.1.3 Fluorescence spectrophotometer

The Varain cary eclipse Fluorescence spectrophotometer was used to determine the fluorescence quenching data HSA-nanomaterial complex. All the solutions were
recorded in the range of 290 - 500 nm against a blank solution with a 1.0-cm quartz cell at room temperature with excitation wavelength at 280 nm.

3.1.4 Fourier Transform Infrared spectroscopy

The analysis of functional groups of the nanomaterials. The Agilent Cary 630 FTIR spectrometer with a wide range of sample interfaces and high performing optics, including Agilent’s unique and revolutionary DialPath (an easy to use liquid sample FTIR module) for measuring liquids was used at the range of 4000 to 400 cm\(^{-1}\).

3.1.5 High resolution Transmission Electron Microscopy

A JEOL 2100 High-resolution Transmission Electron Microscope (brightfield, darkfield, diffraction STEM, EDX) was used for the optical microscopic viewing of the nanomaterials at 200 kV acceleration voltage, for the particle sizes and morphology of the nanomaterials. The samples were dissolved in ethanol and sonicated for an hour before being placed on a carbon film and then air-dried at room temperature.

3.1.6 Electrochemical technique

The 797 VA Computrace was used to perform all electroanalytical measurements (Metrohm Herisau, Switzerland). Voltametric curves were recorded at room temperature using a three-electrode system. The working electrode was a glass carbon electrode (GCE), an Ag/AgCl (saturated AgCl, 3M KCl) was used as a reference electrode and a platinum wire was used as a counter electrode. The 797 VA computrace performs both qualitative and quantitative measurements, qualitative measurements were done using cyclic voltammetry (CV) and quantitative measurements using Square Wave voltammetry (SWV).
3.2 Reagents and materials

Allium Sativum cloves (garlic) purchased from a local supermarket in Durban (South Africa), *Pelargonium graveolens* leaves purchased from a local market in Durban (South Africa), *Moringa Oleifera* leaves were collected from a nearby suburb Phoenix in Durban (South Africa), Multi-Walled Carbon Nanotubes (MWCNTs), supplied by Alfa Aesar chemical reagent company. Dimethyl sulfoxide (CH$_3$)$_2$SO, ≥ 99.7 % purity for HPLC), Methanol (CH$_3$OH, ≥ 99.9 % purity for HPLC), and Human Serum Albumin lyophilized powder (≥ 97 % purity) were purchased from Sigma Aldrich (South Africa). Glucose Oxidase type x-s from aspergillus, Hexokinase sulfate-free from baker's yeast, Glutaraldehyde grade II, Glycerin, Adenosine 5′-triphosphate disodium salt hydrate (C$_{10}$H$_{14}$N$_{5}$Na$_2$O$_{13}$P$_3$ · xH$_2$O), Silver nitrate (AgNO$_3$, ≥ 99.9 % purity) Cadmium sulfate (CdSO$_4$, ≥ 99.99 % purity), Sodium Sulphide (Na$_2$S, ≥ 98 % purity), Sodium selenite (Na$_2$SeO$_3$≈ 99 % purity), Potassium hexacyanoferrate trihydrate (K$_3$Fe(CN)$_6$), Potassium hexacyanoferrate (K$_3$Fe(CN)$_6$), Potassium dihydrogen phosphate (KH$_2$PO$_4$), Dipotassium hydrogen phosphate (K$_2$HPO$_4$) all purchased from Sigma Aldrich (South Africa), The human embryonic kidney cells (HEK293), Breast cancer cells (MCF – 7) Lung cancer cells (A549), Dulbecco’s Modified Eagle Medium (DMEM), 20 µL MTT all purchased from Sigma Aldrich (USA), The Glassy Carbon electrode (GCE) was supplied by Metrohm Ion Analysis. All reagents were of analytical grade, were used without any further purification and deionized water was used for the preparation of samples.
3.3 Indole pyrazole ligand (TRPIDC-CH₃) synthesis

A [3+2] cycloaddition reaction was used by Makhanya et al to synthesize TRPIDC-CH₃ ligand by reacting p-tolualdehyde, 4-methyl-3 thiosemicarbazide and indole, under reflux, in the presence of indium chloride as a Lewis acid catalyst. The product obtained was 3-phenyl- 2, 3-dihydropyrazolo [3, 4-b] indole-1(4H)-carbothioamide (Makhanya 2019). A Plausible mechanism for this reaction is presented bellow.

![Plausible mechanism for [3+2] annulation reaction for the synthesis of TRPIDC-CH₃ ligand.](image)

Figure 3.1: Plausible mechanism for [3+2] annulation reaction for the synthesis of TRPIDC-CH₃ ligand.
3.4 Plants extract preparation and nanomaterials synthesis

Three different plant extracts were used to synthesize both TRPIDC-CH₃ capped and uncapped nanomaterials. To synthesize the capped nanomaterial, TRPIDC-CH₃ ligand was used and for uncapped TRPIDC-CH₃, the ligand was omitted.

3.4.1 TRPIDC-CH₃ capped Selenium Nanoparticles synthesis

An accurate mass (5 g) of *Allium Sativum* cloves without an outer layer was weighed, then washed thoroughly with deionized water, dried and grounded using mortar and pestle. Approximately 10 ml of oil extract from the grounded *Allium Sativum* cloves was filtered using a muslin cloth thereafter with Whatman No. 1 filter paper and then stored in the refrigerator at 4 °C for further use. The nanoparticles were prepared by mixing 2 mL of *Allium Sativum* extract, 20 mL of 20 mM Na₂SeO₃ solution and 2 mL of TRPIDC-CH₃ solution in a 50 ml beaker. TRPIDC-CH₃ solution was prepared by dissolving the ligand in 10 % DMSO. The resulting pale yellow homogeneous mixture took 72 hrs to change to brick red when heated in a magnetic stirrer at 160 rpm at 60 °C. Figure 3.2 below is a schematic diagram for the plant extract preparation and synthesis of TRPIDC-CH₃ SeNPs.

![Figure 3.2: Schematic diagram for the plant extract preparation and synthesis of TRPIDC-CH₃ SeNPs.](image-url)
3.4.2 TRPIDC-CH₃ capped Silver Nanoparticles synthesis

The *Pelargonium graveolens* leaves were washed three times with tap water to remove the dirt from the surface followed by deionized water and dried in hot air overnight. The dried leaves were powdered using mortar and pestle: 1 g of the powdered leaves was added into 100 mL of deionized water and boiled for 5 minutes. The mixture was filtered using a Whatman No.1 filter paper and stored in the refrigerator at 4 °C for further use. To synthesis the TRPIDC-CH₃ capped Silver nanoparticles (TRPIDC-CH₃ AgNPs), 6 mL of pelargonium graveolens extract was mixed with 50 mL of 5 mM AgNO₃ and 6 mL of TRPIDC-CH₃ solution. The mixture was incubated at 37 °C until the color change to dark-brown as show in Figure 3.3.

![Diagram of TRPIDC-CH₃ capped Silver Nanoparticles synthesis](image)

Figure 3.3: Schematic diagram for the plant extract preparation and synthesis of TRPIDC-CH₃AgNPs.

3.4.3 TRPIDC-CH₃ capped Cadmium Sulfide Quantum Dots synthesis

The *Moringa Oleifera* leaves leaves were washed with deionized water and air-dried for 3 days. Thereafter 3 g of the leaves were added to 30 mL of methanol and incubated in the dark for 24 hours. Then the *Moringa Oleifera Lam* extract was filtered through a Whatman No.1 filter paper and store at 4 °C for further use. 2 mL of 0.025 M CdSO₄ and 2 mL of TRPIDC-CH₃ solution was added to 30 mL of the *Moringa*
Oleifera extract and was incubated for 3 days in the dark. After the 3 days of incubation, 0.5 mL of 0.025 M Na$_2$S was added and incubated for another 4 days to produce TRPIDC-CH$_3$ capped cadmium sulfide quantum dots (TRPIDC-CH$_3$CdSQDs). The colour was bright yellow. The schematic diagram for the plant extract preparation and synthesis of TRPIDC-CH$_3$CdSQDs is shown in Figure 3.4.

![Schematic diagram for the plant extract preparation and synthesis of TRPIDC-CH$_3$CdSQDs](image)

Figure 3.4: Schematic diagram for the plant extract preparation and synthesis of TRPIDC-CH$_3$CdSQDs.

3.5 Phytochemical analysis

3.5.1 Test for Alkaloids

2 mL of extract was added in 3 ml of 2% (v/v) HCl and then a few drops of Mayer’s reagent was added. The presence of basic alkaloids suggests the emergence of the dull white precipitate.

3.5.2 Test for Saponins

2 mL of the extract was shaken vigorously in a test tube for 30 seconds. The consistency of thickness foam even after 30 minutes suggested the presence of saponins.
3.5.3 Tests for Flavonoids

2 mL of test solution was treated with a few drops of ferric chloride solution: the development of blackish-red color suggests the presence of flavonoids.

3.5.4 Tests for Tannins and Polyphenols

4 mL extract was treated with 4 mL FeCl₃: the formation of green colour indicated the presence of tannins and the dark-blue indicated the presence of polyphenols.

3.5.5 Tests for Terpenoids

Test for terpenoids was conducted by mixing 3 ml of the extract with 2 mL of CHCl₃ in a test tube. Thereafter, 2 mL of concentrated H₂SO₄ was added gently to form a ring layer that interfaced with a reddish-brown colour, thus indicating the presence of terpenoids.

3.6 Determination of concentration for the nanomaterials

3.6.1 Calculation of the average number of atoms per nanomaterials

The average number of nanomaterials can be estimated using the HR-TEM images of nanomaterials. The average core diameters of the particles (D, nm) are calculated and summarized using ImageJ software. Assuming a spherical shape and a uniform structure; (Liu et al. 2007; Elnoby et al. 2018), the average number of nanomaterials atoms (N) for each type of nanosphere is calculated by Equation. (1) (Liu et al. 2007; Elnoby et al. 2018), where ρ is the density for nanomaterials (g/cm³) and M stands for the atomic weight of the nanomaterial element.

\[
N = \frac{\pi \rho D^3}{6M}
\]

(1)

3.6.2 Determination of molar concentrations of nanomaterials solution

The molar concentration of nanosphere solutions (C) was determined by dividing the \((N_{\text{Total}})\) total number of gold atoms (total, equal to the original amount of salt added to the reaction solution) by the average number of nanomaterial atoms per nanosphere (N) according to Equation (2), where V is the volume of the reaction solution in litre.
and NA is the constant of Avogadro. It is believed that the reduction from nanomaterial ions to atoms is 100% complete. (Liu et al. 2007; Elnoby et al. 2018).

\[C = \frac{N_{\text{Total}}}{N_{VNA}} \]

(2)

3.7 Cytotoxic activity of the nanomaterials

3.7.1 1 Cell line

The cell lines used in this study are MCF-7 (breast), A549 (lung), and HEK293 (normal human embryonic kidney). These cells were stored in 25 cm² tissue culture flasks. On arrival, the cells were incubated at 37°C in a humidified incubator (Snijders Hepa, United Scientific, Cape Town, South Africa) in a 5% CO₂ environment. The cells were transferred to two different 75 cm² flasks (Greiner, Germany) after three days, once they were found to be 80% confluent.

3.7.2 Cell maintenance

All cell culture experiments were conducted in the laminar flow cabinet (Scientific Engineering INC) to maintain sterility. The laminar flow cabinet was sterilized by exposure to UV-light and swabbing with 70% ethanol before experimentation. MCF-7, A549, and HEK293 cells were grown in two separate monolayers in Dulbecco’s Modified Eagle Medium (DMEM) (Sigma-Aldrich, Inc) (glucose (4.5 g L⁻¹), one mM L-glutamine, and one mM sodium pyruvate). The DMEM was supplemented with 1% antibiotic (penicillin/streptomycin) solution (Sigma-Aldrich, Inc) and 10% heat-inactivated foetal calf serum (FCS). MCF-7, A549, and HEK293 cell lines were subcultured every 2-3 days, once the flasks had become 80% confluent, to maintain them in the exponential growth phase.

3.7.3 Cytotoxicity assay

The MTT assay was carried out in 96 well, flat-bottom microtiter plates (Costar, Corning, USA) according to the protocol described by Majeed et al. and Wu et al., with minor modifications. For the MTT assay, doxorubicin was used as a standard. The MTT assay was commonly used to determine the rate of cell proliferation dependent on the mitochondrial reduction of tetrazolium salt. The synthesized nanomaterials’ anticancer activity was assessed against two cancer cell lines, which include breast
(MCF-7) and lung (A549), and normal human embryonic kidney cell lines. Different concentrations (50 and 100 μg / mL) of A1-A6 nanoparticles were evaluated in triplicates for 48 h in this study, and findings are expressed as an average ± standard deviation.

An aliquot of 90 μL (1 x 104 cells) of the MCF – 7, A549, and HEK293 cell suspension was transferred to the microtiter plates. Sterile distilled water was added to the outer wells to prevent evaporation of the medium. The plates were incubated in a 37°C humidified incubator for 24 h to allow the cells to attach to the wells. An aliquot of 10 μl of the test nanoparticles was added to the wells at two concentrations (100 μg/mL and 50 μg/mL). In control wells, 10 μl of DMSO (1%), DMEM (medium control), and the positive control 10 μl doxorubicin was added to the well. The plates were incubated at 37°C for 48 hours in a humidified incubator with 5% CO2. After incubation, 10 μl of MTT reagent (Sigma, St Louis, USA) were added to the plates, and they were incubated for a further 4 hours at 37°C in a humidified incubator with 5% CO2.

After incubation, 100 μl of DMSO was added to the wells and the plates were incubated for an additional 1 hour. DMSO was added to dissolve the insoluble formazan crystals that will be formed by the MTT reagent once it enters the cells. The Absorbance of the plates was read at a wavelength of 590 nm on an ELISA microplate reader (Digital Analogue Systems, Italy) (Wu et al. 2014; Majeed et al. 2016). The percentage of cytotoxicity will be determined using the following equations:

\[
\text{% Cell Viability} = \frac{\text{Absorbance of treated cells}}{\text{Absorbance of untreated cells}} \times 100
\]

The Absorbance of untreated cells

\[
\text{% Cytotoxicity} = 100 - \text{% Cell Viability}
\]

3.7.4 Statistical analysis

Each experiment was done in a triplicate and the results are described as mean ± standard deviation (SD). The statistical significance of the variations between the groups was evaluated using a one-way ANOVA test followed by a post-hoc Bonferroni test and mean values with a probability value of p<0.05 were deemed statistically important.
3.8 Protein interaction

3.8.1 Binding

HSA was dissolved in a PBS (0.10 M, pH 7.3) and was stored in the dark at 4 °C for further use. An exact 50 μL of stock solutions of HSA was added to a 2000 μL centrifuge tubes, successive additions of the nanomaterial while varying the volumes of nanomaterials from 0 to 30 μL (Table 3.1) and top up with phosphate buffer. All test solutions were incubated for 40 min at 37 °C before each measurement and the interaction between HSA and the nanomaterials was monitored using UV-Vis spectroscopy and FTIR.

Table 3.1: Volumes of HSA, Nanomaterials, and buffer used for interaction studies.

<table>
<thead>
<tr>
<th>Volume of HSA (μL)</th>
<th>Volume of Nanomaterials (μL)</th>
<th>Volume of Phosphate Buffer (μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0</td>
<td>1950</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>1945</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>1940</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
<td>1935</td>
</tr>
<tr>
<td>50</td>
<td>20</td>
<td>1930</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
<td>1925</td>
</tr>
<tr>
<td>50</td>
<td>30</td>
<td>1920</td>
</tr>
</tbody>
</table>

3.8.2 UV-Vis absorption studies

The UV-Vis measurements were studies using the following equation (5) (Prasanth et al. 2017).

\[
\frac{1}{(A_0 - A)} = \frac{1}{(A_c - A)} + \frac{1}{(A_c - A)} \times \frac{1}{K_b [Q]} \tag{5}
\]

where A is the absorbance of HSA at various concentrations of the nanoparticles, \(A_0\) is the absorbance of HSA alone, and \(A_c\) is the absorbance of HSA - nanoparticles complex. \([Q]\) is the concentration of the nanoparticles. The binding constant \(K_b\) is determined from the slope of the plot of \(\frac{1}{(A_0 - A)}\) versus \(\frac{1}{[Q]}\).

3.8.3 Fluorescence quenching studies

Fluorescence was determined by exciting HSA at 280 nm and the emission spectrum was measured at 290–450 nm since tryptophan fluorescence is used as a local
environment probe for protein structure, dynamics and ligand binding. The change in fluorescence intensity at a specific wavelength was calculated using Stern–Volmer equation (6) to analyze the fluorescence quenching data (Pansare et al. 2018)

\[
\frac{F_0}{F} = 1 + KSV [Q] = 1 + Kq\tau_0 [Q] \tag{6}
\]

Where \(F_0\) and \(F\) are the fluorescence intensity of HSA in the absence and presence of the quencher \([Q]\), respectively, \(K_{SV}\) is the Stern–Volmer quenching constant, \(K_q\) is the bimolecular quenching constant, and \(\tau_0\) is the lifetime of the fluorophore in the absence of the quencher(\(\sim 10^{-8}\) s). where \(K_b\) is the binding constant and \(n\) is number of binding sites

\[
\log \left(\frac{F_0 - F}{F} \right) = \log K_b + n \log [Q] \tag{7}
\]

3.8.4 Mode of binding

The thermodynamic parameters change in enthalpy \((\Delta H)\) and change in entropy \((\Delta S)\) were determined after measuring \(K_b\) at different temperatures and the results were analyzed according to van’t Hoff equation (8)

\[
\ln(K_b) = -\frac{\Delta H}{R} + \frac{\Delta S}{R} \tag{8}
\]

Where \(R\) (8.314 J mol\(^{-1}\) K\(^{-1}\)) and \(T\) represent the universal gas constant and absolute temperature, respectively. For hydrogen bonding or van der Waals interactions, \(\Delta H\), and \(\Delta S\) are negative, for hydrophobic interactions \(\Delta H\) and \(\Delta S\) are positive, and for electrostatic interactions, \(\Delta H\) is positive or negative, and \(\Delta S\) is positive (Prasanth et al. 2017). The change in Gibbs free energy \((\Delta G)\) can be further calculated from different terms of enthalpy change \((\Delta H)\) and entropy change \((\Delta S)\) according to the equation (9).

\[
\Delta G = -RT \ln K_b = \Delta H - T\Delta S \tag{9}
\]

The positive sign of \(\Delta H\) and negative sign of \(\Delta G\) indicates that the binding process is an endothermic and spontaneous and the negative sign of \(\Delta H\) and \(\Delta G\) indicates that the binding process is exothermic and spontaneous (Mahanthappa et al. 2018).
3.9 Preparation of standard, supporting electrolyte, and spiked samples.

The supporting electrolyte of phosphate buffer (PBS) was prepared from K_2HPO_4 (0.1 M) and KH_2PO_4 (0.1 M) salts. The salts were dissolved in deionized water at room temperature and different volumes of each solution were mixed to adjust the pH accordingly as shown in Table 3.2. The 5 mM ATP standard solution was dissolved in PBS of pH 7 at room temperature. The Vita-thion and Swanson peak tablets samples dissolved in PBS were spiked with ATP standards (0.02 mM, 0.05 mM and 0.07 mM).

<table>
<thead>
<tr>
<th>pH</th>
<th>The volume of 0.1 M K_2HPO_4 (mL)</th>
<th>The volume of 0.1 M KH_2PO_4 (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>8.5</td>
<td>91.5</td>
</tr>
<tr>
<td>6</td>
<td>13.2</td>
<td>86.8</td>
</tr>
<tr>
<td>7</td>
<td>61.5</td>
<td>38.5</td>
</tr>
<tr>
<td>8</td>
<td>90.8</td>
<td>9.2</td>
</tr>
<tr>
<td>9</td>
<td>94</td>
<td>6</td>
</tr>
</tbody>
</table>

3.10 Preparation and fabrication of GO:Hex/TRPIDC-CH$_3$ capped Nanomaterial/MWCNTs/GCE composite

The GCE was manually cleaned by polishing with alumina and electrochemically by cycling 50 times in the potentials range 0.0 to 2.0 V in 5 % nitric acid. This assured the elimination of any physiosorbed or chemisorbed materials from the electrode surface. The MWCNTs (5 mg) were dispersed in 1 mL of N,N-dimethylformamide (DMF), and sonicated until a paste was formed. A 1:1 mixture of MWCNTs paste and TRPIDC-CH$_3$ capped nanomaterial was sonicated for 45 min forming a runny paste. Thereafter it was manual deposited onto the electrode surface followed by air dried at 40 °C for 30 min and then allowed to cool to room temperature. The enzyme solution containing 8 mg/mL hexokinase, 2 mg/mL glucose oxidase and 1 μL glycerine was prepared in 1 mL PBS. Lastly, the enzyme solution was drop casted onto the TRPIDC-CH$_3$ capped nanomaterial/MWCNTs/GCE and allowed to dry in 4 hrs, followed by addition of glutaraldehyde (25%) for a 17 min enzymes cross-linkage.
3.11 Electrochemical measurements

Approximately 10 mL of PBS supportive electrolyte was applied to the electrochemical cell under which either a bare glass carbon electrode or a modified glass carbon electrode was submerged prior to electrochemical measurements. An aliquot solution (ATP) was then injected into the electrochemical cell and the working electrode was given a pre-concentration potential while the solution was swirling at 400 rpm. Stirring was stopped at the end of the pre-concentration cycle and the balance time of 5s permitted the solution to be silent. Voltammograms were then recorded using a scanning rate of 100 mV/s by scanning the potential in a positive direction.

After each measurement, the working electrode was separated from the instrument and rinsed with deionized water. The electrochemical characterization of different modified electrodes was investigated using CV and SWV. The CV was carried out in 10 mL PBS (pH=7.0) containing 1 mM K$_4$[Fe(CN)$_6$]/K$_3$[Fe(CN)$_6$] (redox probe) with a potential range of −0.2 V to 0.8 V and scan rate of 100 mV. The optimization of experimental conditions, calibration curve, selectivity and sample analysis were investigated using SWV in a potential range of - 0.2 V to + 0.8 V (SeNPs and CdSQDs) and -0.1 V to 0.4 V for the AgNPs with support electrolyte of 10 mL of 0.1 M PBS (pH=7.0) with 1 mM redox probe.
CHAPTER 4: RESULTS AND DISCUSSION

This chapter presents the results and discussion of the experimental analysis involving the synthesis and characterisation of the nanomaterials, application of capped pyrazole nanomaterials in the fabrication of the GCE, and the use of enzymes for the development of a biosensor. The various electrode was used to study the electrochemical behavior of both the ATP. Cytotoxicity activity using MTT assay and protein interaction were studied using UV-Vis absorption and Fluorescence quenching. This chapter is divided into three case studies presenting results of Silver nanoparticles, Selenium nanoparticles, and Cadmium sulfide quantum dots respectively.

4.1 CASE STUDY 1: Selenium Nanoparticles

In this sub-section, the results of capped and uncapped TRPIDC-CH₃ SeNPs is discussed. Furthermore, the biological activities using HSA and anticancer activity against MCF-7 and A549, separately, are elaborated. The electrochemical behavior of ATP was determined using cyclic and square wave voltammetry using a glassy carbon electrode (GCE) modified with TRPIDC-CH₃ SeNPs and uncapped SeNPs. This decorated GCE was further evaluated in conjunction with glucose oxidase (GO) and hexokinase (Hex) enzymes.

4.1.1 Characterization of *Allium sativum* extract

4.1.1.1 Phytochemical screening

Allium sativum has been reported to contain phytochemicals such as polyphenols, flavonoids, saponins, and terpenoids (Chen *et al.* 2018; Rose *et al.* 2018). To determine which phytochemicals will be able to reduce and stabilize the SeNPs, a phytochemical screening test was performed. The qualitative phytochemical screening test that was performed indicated the presence of alkaloids, flavonoids, saponins, and terpenoids. The FTIR results (Figure 4.1, page 43), showed presence of O-H (flavonoids and saponins), C-N (alkaloids), and C=C (terpenoids) in their chemical structures, confirming that the main reducing and stabilizing compounds were the phytochemicals that tested positives as shown in Table 4.1. These results are in agreements with literature.
Table 4.1: Characteristics of phytochemicals found in the *allium sativum* extract.

<table>
<thead>
<tr>
<th>Compound class</th>
<th>Phytochemical test</th>
<th>Literature</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids</td>
<td>++</td>
<td>+</td>
<td>(Yee 2019; Maccelli et al. 2020)</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>++</td>
<td>+</td>
<td>(Yee 2019; Maccelli et al. 2020; Sut et al. 2020)</td>
</tr>
<tr>
<td>Saponins</td>
<td>++</td>
<td>+</td>
<td>(Phan et al. 2019; Yee 2019)</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>++</td>
<td>+</td>
<td>(Yee 2019)</td>
</tr>
</tbody>
</table>

++ positive current study; + literature

4.1.1.2 FTIR Studies

The FTIR spectrum (Figure 4.1) of pure *allium sativum* cloves extract, shows many absorption bands thereby indicating various biomolecules that are present. The absorption peak at 3311.74 cm\(^{-1}\) is attributed to O-H group stretch. The absorption peak at 2848.32 cm\(^{-1}\) is assigned to the C-H stretch. The peak at 1628.86 cm\(^{-1}\) is attributed to the C=C group stretch. The absorption peak at 1412.12 cm\(^{-1}\) is attributed to the O-H group bend. The absorption peak at 1038.08 cm\(^{-1}\) is due to the stretching of the C-N group. Satgurunathan *et al.* reported the presence of C=C and C-H groups in the *allium sativum* cloves extract (Satgurunathan *et al.* 2017). Ezhuthuparakkal *et al.* reported that O-H, C-N, and C-H groups were present (Ezhuthuparakkal *et al.* 2017).

![FTIR spectrum of allium sativum clove extract](image)

Figure 4.1: FTIR spectrum of *allium sativum* clove extract.
4.1.2 Characterization of TRPIDC-CH₃SeNPs

TRPIDC-CH₃ SeNPs (Figure 4.2) were synthesized through a simple and eco-friendly method from Na₂SeO₃ using *Allium sativum* cloves extract as an effective reducing agent and TRPIDC-CH₃ ligand as a stabilizing agent. *Allium sativum* cloves extract was a clear yellow solution. Na₂SeO₃ appeared as a colourless solution. Upon the addition of *Allium sativum* cloves extract and TRPIDC-CH₃ ligand, the Na₂SeO₃ solution changed to pale yellow, and finally, the colour changed to brick red there by indicating the formation of TRPIDC-CH₃ SeNPs. Similar colour changes were obsovered for the uncapped SeNPs. Also, Fardsadegh *et al* synthesized SeNPs from Na₂SeO₃ with aloe vera extract and produces brick red colored SeNPs (Fardsadegh *et al.* 2019a). It has also been reported that *wathania somnifera* leaf extract (Alagesan *et al.* 2019), cabbage extract (Gunti *et al.* 2019) and potato extract (Chandramohan *et al.* 2018) produced brick red coloured SeNPs.

![Figure 4.2: Green synthesized TRPIDC-CH₃ SeNPs.](image)

4.1.2.1 UV-Visible

The formation of TRPIDC-CH₃ SeNPs using *Allium sativum* cloves extract was confirmed by UV–Visible spectroscopy scanned in the range of 200 – 800 nm. A strong absorption band was observed at 270 nm which showed the reduction of selenite into selenium nanoparticles (Figure 4.3). The TRPIDC-CH₃ SeNPs showed an increase in absorbance by 1 %. In other studies where *Allium sativum* cloves were used, the maximum absorption band was recorded at 260 nm (Anu *et al.* 2017) and 267 nm (Satgurunathan *et al.* 2017). Chandramohan *et al* reported a synthesis of SeNPs using potato extract with an absorption band seen at 200-300 nm region (Chandramohan *et al.* 2018). To assess their stability, the nanoparticles were allowed to stand for 30 days and observed daily for any colour changes: no colour changes
were observed. The sample was run by UV-Visible and there was no change to the absorption thereby indicating good stability of the nanoparticles.

![UV-Vis spectrum of TRPIDC-CH₃-SeNPs (red) and uncapped SeNPs (dark cyan) synthesized from Na₂SeO₃ using Allium sativum cloves extract.](image)

Figure 4.3: UV-Vis spectrum of TRPIDC-CH₃-SeNPs (red) and uncapped SeNPs (dark cyan) synthesized from Na₂SeO₃ using Allium sativum cloves extract.

4.1.2.2 Morphology and Particle Size Analysis

The formation of TRPIDC-CH₃-SeNPs and the morphology was confirmed by HR-TEM analysis. The HR-TEM image of TRPIDC-CH₃-SeNPs, (Figure 4.4a) shows spherical nanoparticles that are monodispersed in nature. This particle size non-homogeneity may be attributed to the agglomerated shape of nanoparticles. The HR-TEM image and their size distribution (Figure 4.4c) showed that the average diameter and standard deviation of TRPIDC-CH₃-SeNPs (22 ± 9.0 nm), with a size distribution of particles with a diameter in the range of 6 – 75 nm. Allium sativum contains saponins (Chen et al. 2018), which produce smaller nanoparticles because structurally they have more hydrophilic glycoside moieties (Sabela et al. 2018). The results are consistent with previous studies on the use of plant extracts to synthesize SeNPs (Anu et al. 2017; Ezhuthupurakkal et al. 2017; Satgurunathan et al. 2017). Uncapped SeNPs (Figure 4.4b and d) showed with an average diameter of 20 nm synthesized parallel with TRPIDC-CH₃-SeNPs.
Figure 4.4: HR-TEM images of (A) TRPIDC-CH$_3$ SeNPs, (B) SeNPs and Size distribution histogram prepared by image j software of (C) TRPIDC-CH$_3$ SeNPs and (D) SeNPs.

4.1.2.3 FTIR studies

The FTIR spectrum of synthesized TRPIDC-CH$_3$ SeNPs in Figure 4.5 (pink) in comparison with uncapped SeNPs (violet), shows a broad absorption peak at 3240.92 cm$^{-1}$, which shifted from 3255.83 cm$^{-1}$, and is assigned to O-H stretch. The peak positioned at 2933.74 cm$^{-1}$, shifted from 2937.14 cm$^{-1}$, corresponds to C-H stretching vibrations of the alkane group. The peak at 1623.56 cm$^{-1}$ shifted from 1630.71 cm$^{-1}$ is attributed to the C=C stretching of the alkene group. The peak at 1397.75 cm$^{-1}$ shifted from 1394.02 cm$^{-1}$ can be assigned for the bending of the O-H group. The peak at 1017.56 cm$^{-1}$ shifted from 1019.43 cm$^{-1}$ can be assigned for stretching of the C-N group. Further, the peaks in the fingerprint region positioned at 624.33 cm$^{-1}$ indicates the organosulfur compounds which are known to responsible for the aroma of *allium sativum* (Ezhuthupurakkal *et al.* 2017). The absorption peaks that showed shifts suggests that the addition of the TRPIDC-CH$_3$ ligand was adsorbed on the surface of SeNPs. These results confirm the formation of the TRPIDC-CH$_3$ SeNPs, accomplished
by the presence of various flavonoids, saponins, alkaloids, terpenoids, and other biopolymeric agents in *allium sativum* clove extract in *allium sativum* clove extract.

Figure 4.5: FTIR spectrum of TRPIDC-CH₃ SeNPs (pink) and uncapped SeNPs (violet).

4.1.3 Cytotoxicity activity

The cytotoxicity effects of TRPIDC-CH₃ SeNPs and uncapped SeNPs against MCF-7, A549, and HEK923 cells were determined by the MTT assay. Investigating the cytotoxicity of these nanoparticles to a cancer cell line was necessary to examine how the nanoparticles affected the viability and proliferation of the cells. The percentage cytotoxicity of the nanoparticle was investigated at concentrations of 100 µg/ml and 50 µg/ml, as indicated in Appendix K (Tables 17.1, 17.2, and 17.3.) All experiments were conducted in triplicate and the average absorbance readings were calculated according to the negative solvent control (at 1 % DMSO). The results are displayed in Tables in Appendix K.

There was an overall low cytotoxic effect of the synthesized nanoparticles against MCF-7, A549, and HEK293 cells: the highest percentage activity of 56.9±0.016 % was observed with TRPIDC-CH₃ SeNPs at a 100 µg/ml Appendix K (Table 17.1) against MCF-7. Furthermore, cell growth inhibition of 60.9±0.13 % was seen with uncapped SeNPs against A549. Although overall cytotoxicity was low, a dose-dependent increase in cytotoxic activity was observed for each of the nanoparticles,
as the concentration increased from 50 µg/ml to 100 µg/ml. Low cytotoxic activity was observed with all the screened nanoparticles against HEK293.

The results obtained are comparable to those of Shaheen et al., who reported the cytotoxicity activity of GO-ZnO nanocomposites assessed using the MTT assay against MCF-7. Various concentrations of the synthesized nanoparticles ranging from 10 to 100 µg/ml were used. Cell viability was decreased in dose depended approach to 37 %, 47 %, 55 %, 62 %, 79 % and 90 % for MCF-7 cells at the concentrations of 100, 80, 60, 40, 20, and 10 µg/mL, respectively (Shaheen et al. 2018). El-Sayed et al synthesized the culture extract of Monascus purpureus ATCC16436 grown on sugarcane bagasse under solid-state fermentation and assessed their anticancer activity against MCF-7, HepG2, and normal cell lines NHEM. The results showed that the synthesized samples were less toxic to normal cells (El-Sayed et al. 2020).

The microscopic analysis showed the morphological characteristics of untreated or treated cells. The control cells appeared in normal form and were bound to the surface. Nevertheless, the MCF-7 cells that were exposed to TRPIDC-CH₃ SeNPs (Figure 4.6a) lost their normal shape and cell adhesion ability, shrinking and decreasing in cell density (Figure 4.6). Such changes have also been documented using plant-synthesized AgNPs in various cancer cell lines (Vivek et al. 2012), indicating that the cytotoxic effect of synthesized AgNPs could be due to the antineoplastic properties and their ability to cause cell death by multiple molecular mechanisms (Farah et al. 2016).

![Figure 4.6: morphology of MCF-7 cell (100x magnification), treated with (A) TRPIDC-CH₃ SeNPs, (B) DMSO (1%), (C) untreated.](image-url)
4.1.4 Protein interaction

In this sub-section, we discuss the spectroscopic interaction of TRPIDC-CH₃ SeNPs with HSA protein in comparison with the uncapped SeNPs. Its UV-Vis, Fluorescence, FTIR investigation are discussed and the modes of binding involved in the complex formation.

4.1.4.1 UV-Vis absorption studies

UV-Vis absorption is a simple and relevant measurement to study structural changes and to prove the formation of a complex. As shown in Figure 4.7, there is a strong absorption band at around 280 nm which was primarily due to $\pi \rightarrow \pi^*$ transition (Pansare et al. 2018). HSA shows an absorption peak at 280 nm which is mainly due to the absorption of tryptophan residue (Ishtikhar et al. 2015; Mahanthappa et al. 2018). Absorbance of this peak (280 nm) gradually increases, without any change in peak position, upon increasing the concentration of TRPIDC-CH₃ SeNPs (or uncapped SeNPs). These observations indicate that there is a structural change (micro-environment) in HSA and the formation of a ground-state complex between HSA and TRPIDC-CH₃ SeNPs (or HSA and uncapped SeNPs) (Prasanth et al. 2017; Pansare et al. 2018).

Figure 4.7b shows the linear fits of increasing concentration of TRPIDC-CH₃ SeNPs and uncapped SeNPs at 280 nm which confirms the positive correlation between the concentration of TRPIDC-CH₃ SeNPs and uncapped SeNPs The equilibrium established between HSA and TRPIDC-CH₃ SeNPs (or HSA and uncapped SeNPs) during the complex formation is distinct by the chemical equation (10), where K_b is the binding constant. K_b can be obtained according to the method described by Hildebrand group equation (5). The values of $1/(A-A_0)$ were calculated and plotted against quencher concentration $1/[Q]$ according to equation (5) as shown in Figure 4.7A and B. After the linear fit, the calculated value of K_b is based on the slope, and the intercept of the plot is about 6.75x10⁵ M⁻¹ for TRPIDC-CH₃ SeNPs (1.20x10⁶ M⁻¹ uncapped SeNPs). Based on these results uncapped SeNPs showed better interaction.

\[
\text{HSA} + \text{TRPIDC-CH₃ SeNPs} \xrightarrow{K_b} \text{HSA...TRPIDC-CH₃ SeNPs} \quad (10)
\]

\[
K_b = \frac{[\text{HSA...TRPIDC-CH₃ SeNPs}]}{[\text{HSA}] \times [\text{TRPIDC-CH₃ SeNPs}]} \quad (11)
\]
Figure 4.7: (A) Absorbance spectrum of HSA upon the addition of TRPIDC-CH$_3$ SeNPs (B) Linear fit for both the systems (C) Absorbance spectrum of HSA upon the addition of SeNPs (D) Plot of $1/(A - A_0)$ versus $1/[Q]$ for both systems.

4.1.4.2 Fluorescence quenching study

Figure 4.8a shows fluorescence of HSA with fixed increasing concentrations of TRPIDC-CH$_3$ SeNPs at 310 K. The fluorescence intensity of HSA at the characteristic broad emission band at 345 nm decreased when the concentration of TRPIDC-CH$_3$ SeNPs increased and no obvious wavelength shift was observed: this indicated a strong interaction between HSA and TRPIDC-CH$_3$ SeNPs. Comparable results for the uncapped SeNPs at Appendix A: were observed. The fluorescence intensity of HSA is mostly from the tryptophan residues when the excitation wavelength is 280 nm (Bardajee et al. 2016). Thus, the decrease is due to the interaction between TRPIDC-CH$_3$ SeNPs and tryptophan, the adding of TRPIDC-CH$_3$ SeNPs causes a change in the structure of HSA and it exposes the tryptophan to the aqueous solution, therefore the molecular conformation of the HSA was effected, which agreed to the recent studies (Bardajee et al. 2016).
The Stern−Volmer equation (6) was used to analyze the fluorescence quenching data. The Stern-Volmer plots of F₀/F vs [Q] at three different temperatures (298, 304, and 310 K) is presented in Figure 4.8c, and values of K_{SV} and K_q estimated by slope, K_q was calculated from fluorescence lifetime (10⁻⁸ s) of HSA. The estimated K_{SV} and K_q at three different temperatures are assembled in Table 4.2. Fluorescence quenching processes are generally categorized as either dynamic quenching or static quenching and can be distinguished by their varying temperature dependency. The quenching constants decrease with the rise in temperature for static quenching, and the reverse trend for dynamic quenching is observed (Prasanth et al. 2017).

Based on Table 4.2 results of the K_{SV} and K_q, it can be implied that the essence of the quenching is not static, but probably dynamic, resulting in forming complexes between TRPIDC-CH₃ SeNPs and HSA. Static quenching for uncapped SeNPs. By plotting the double logarithm curve log (F₀-F)/F versus log[Q] (Figure 4.8d), K_b and n were calculated from intercept and slope (Table 4.2). The value K_b decreased with increasing temperature, showing the instability of the HSA-SeNPs system at higher temperatures, and the reverse effect was observed for HSA-TRPIDC-CH₃ SeNPs. The value of n also indicated that there was one independent class of binding site on HSA for the abovementioned systems which were ~ 1 (Table 4.2).

| Table 4.2: The K_{SV}, K_a, K_b, and n of the HSA-TRPIDC-CH₃ SeNPs (and uncapped SeNPs). |
|---|---|---|---|---|---|---|
| SeNPs | T (K) | K_{SV} (10^6 M⁻¹) | K_a (10^14 M⁻¹ S⁻¹) | r² | K_b (M⁻¹) | n | r² |
| TRPIDC-CH₃ | 298 | 5.87 | 5.87 | 0.997 | 5.46x10⁷ | 1.13 | 0.995 |
| | 304 | 6.78 | 6.78 | 0.999 | 1.56x10⁹ | 1.37 | 0.998 |
| | 310 | 6.89 | 6.89 | 0.996 | 1.92x10⁹ | 1.37 | 0.998 |
| Uncapped | 298 | 7.53 | 7.53 | 0.996 | 8.17x10⁷ | 1.17 | 0.999 |
| | 304 | 6.74 | 6.74 | 0.995 | 7.94x10⁷ | 1.16 | 0.999 |
| | 310 | 5.38 | 5.38 | 0.991 | 1.23x10⁷ | 1.07 | 0.998 |
Figure 4.8: (A) Fluorescence spectrum of HSA in the presence of different concentrations of TRPIDC-CH₃SeNPs. (B) a linear fit of the complex intensities vs increasing concentration sof TRPIDC-CH₃ SeNPs at 345 nm at different temperatures. (C) Stern–Volmer curves for the binding of HSA with TRPIDC-CH₃ SeNPs at different temperatures. (D) log[(F₀ / F)/F] versus log[Q] plots for HSA versus TRPIDC-CH₃ SeNPs at different temperatures.

4.1.4.3 Mode of binding

Biological molecules bind with smaller molecules through interactions like hydrogen bonding, van der Waals forces, electrostatic, hydrophobic and hydrophilic interactions (Pansare et al. 2018). Thermodynamic properties like change in entropy (ΔS), change in enthalpy (ΔH), and change in free energy (ΔG) were employed to determine the strategic forces involved in the formation between HSA and TRPIDC-CH₃ SeNPs (or uncapped) complex. Using equation (8), ΔH and ΔS values were attained by the van’t Hoff plot ln(Kb) vs 1/T (Figure 4.9), and change in free energy (ΔG) is determined from the Gibbs–Helmholtz equation (9) (Mahanthappa et al. 2018).

Table 4.3 shows the thermodynamic parameters (ΔH, ΔS, and ΔG) of HSA-TRPIDC-CH₃ SeNPs and HSA-SeNPs complexes. Based on Table 4.3, the positive sign of ΔH
and negative sign of ΔG indicates that the binding process is endothermic and spontaneous. The positive signs of ΔH and ΔS indicate the involvement of hydrophobic interactions HSA-TRPIDC-CH$_3$ AgNPs complex formation. For HSA-SeNPs complex formation, van der Waals or hydrogen bonding were involved because of the negative sign of ΔH and ΔS with the binding process that is exothermic and spontaneous. The hydrophobic interactions are relatively stronger than van der Waals forces or hydrogens bond (Atkins et al. 2011).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>TRPIDC-CH$_3$ SeNPs</th>
<th>Uncapped SeNPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔH (kJ mol$^{-1}$ K$^{-1}$)</td>
<td>226.46</td>
<td>-170.97</td>
</tr>
<tr>
<td>ΔS (J mol$^{-1}$ K$^{-1}$)</td>
<td>908.98</td>
<td>-415.33</td>
</tr>
<tr>
<td>ΔG (kJ mol$^{-1}$ K$^{-1}$)</td>
<td>-44.00</td>
<td>-47.30</td>
</tr>
</tbody>
</table>

Table 4.3: Thermodynamics parameters of HSA and nanoparticles interaction.

![Van't Hoff plot](image)

Figure 4.9: Van’t Hoff plot of (Purple) HSA-TRPIDC-CH$_3$ SeNPs and (Brown) HSA-SeNPs.

4.1.4.4 FTIR studies

FTIR spectroscopy was used to track changes in the secondary structure of HSA and its dynamics when interacting with SeNPs, as the FTIR spectrum can reflect changes in the three-dimensional structure of proteins and the conformation of secondary structures in the protein-nanoparticle complex. The FTIR spectrum of HSA comprises several amide I and amide II bands. Amide I with a peak in the 1600 – 1700 cm$^{-1}$ region associated with the C=O section is responsive to changes in the HSA secondary structure (Bardajee et al. 2016; Rezanejade Bardajee et al. 2017).
amide I peak of HSA before and after interaction with TRPIDC-CH₃ SeNPs are shown in Figure 4.10. The peak position of amide I shifted from 1638.16 cm⁻¹ to 1641.89 cm⁻¹ after the addition of TRPIDC-CH₃ SeNPs. These results confirm the changes in the secondary structure of HSA, hence the complex formation (HSA -TRPIDC-CH₃ SeNPs).

![Figure 4.10: FTIR spectra of HSA before and after interactions with TRPIDC-CH₃ SeNPs.](image)

4.1.5 Electrochemistry

Herein we are looking at the electrochemical behavior of ATP under indirect quantification whereby a more electroactive species (K₃[Fe(CN)₆]/K₄[Fe(CN)₆]) peak in used to determine the electrochemical behavior of the desired analyte. Glassy carbon electrode (GCE) was modified by immobilizing TRPIDC-CH₃ SeNPs with Dual enzyme composite (GO:Hex) in comparison to the uncapped SeNPs.

4.1.5.1 Electrochemical characterization

The CV of the response of ATP on a bare and modified GC electrode in 10 mL PBS (0.1 M, pH 7) containing 1 mM of K₃[Fe(CN)₆]/K₄[Fe(CN)₆] at different stages were recorded at a scan rate of 100 mV/s (Figure 4.11a.). The CV of bare GCE (curve i) showed a well-defined reversible peak of [Fe(CN)₆]³⁻/⁴⁻ with Iₐ = 3.98 µA and I₈ = -4.43 µA peak currents. There was an increase in the anodic peak current by 69 % (12.99 µA) at the MWCTNs/GC electrode (curve ii) and a shift in peak potential from 0.40 V to 0.23 V. When using SeNPs/MWCNTs/GC electrode as shown in curve iii, there
was a further increase in peak current by 46 % (24.18 μA) and peak potential from 0.23 V to 0.26 V. At the TRPIDC-CH₃SeNPs/MWCNTs/GC electrode there was a further increase in peak current by 23 % (31.20 μA) with a shift back in peak potential from 0.26 V to 0.23 V shown in curve iv.

The modification of TRPIDC-CH₃ SeNPs on the GCE increased the surface area and thus electron transfer between the electrode and solution was improved with incremental changes in peak current. When GO:Hex enzyme composite was introduced on the GCE, \(I_a \) increased further to 41.30 μA (24 %) as shown in curve v. This was a clear indication that electrode modification by enzyme effectively enhance the conductive activity of electrode (Sarpong et al. 2020). The introduction of TRPIDC-CH₃ SeNPs and GO: Hex enzyme composites on GCE recorded the highest peak current of 54.93 μA an increment of 28 % (curve vi) owing to the synergistic effect of TRPIDC-CH₃ SeNPs, GO: Hex and GCE with excellent electrical conductivity and high surface area. The average shift in peak potential for curves was ± 0.025 V.

Figure 4.11: (A) Cyclic voltammograms of 0.02 mM ATP at (i) bare GCE, (ii) MWCNTs/GCE, (iii) SeNPS/MWCNTs/GCE,(iv) TRPIDC-CH₃ SeNPs/MWCNTs/GCE, (v) GO:Hex/SeNPs/MWCNTs/GCE and (vi) GO:Hex/TRPIDC-CH₃ SeNPs/MWCNTs/GCE. (B) histogram displaying the current responses at corresponding electrodes.

4.1.5.2 Effect of pH

To evaluate the electrochemical behavior of GO:Hex/SeNPs/MWCNTs/GC and GO:Hex/TRPIDC-CH₃SeNPs/MWCNTs/GC electrodes in different pH, we conducted the CV measurement with ATP (0.02 mM) in 0.1 MPBS containing 1 mM \(K_4[Fe(CN)_6]/K_3[Fe(CN)_6] \) at pH ranging from 5 to 9 under the scan rate of 100 mV/s. In its oxidized form, ATP has a furan moiety, where the redox couple of furan
molecules are shifted with the rise in pH to less positive values as seen in Figure 4.12a and c (Manjubaashini et al. 2019). As the pH values of supporting electrolyte were increased, the oxidized species of ATP became more stable as indicated by the increasing ratio of I_{p_c}/I_{p_a} accumulated in Appendix J (Table 16.1) (Dar et al. 2016). There was a decrease in the anodic peak currents and a shift in peak potential to the more positive values in this pH range (Figure 4.12b and d), which is due to deprotonation (Manjubaashini et al. 2019).

Figure 4.12: Effects of pH in 0.1 M PBS using (A) GO:Hex/TRPIDC-CH$_3$SeNPs/MWCNTs/GCE (B) corresponding plot of current vs pH, (C) GO:Hex/SeNPs/MWCNTs/GCE using 0.02 mM ATP and (D) corresponding plot of current vs pH.

4.1.5.3 Effect of Scan Rate

The effect of scan rate on anodic and cathodic peak current of GO:Hex/TRPIDC-CH$_3$SeNPs/MWCNTs/GC and GO:Hex/SeNPs/MWCNTs/GC electrodes upon addition of 0.02 mM ATP in 0.1 M PBS containing 1 mM $K_4[Fe(CN)_{6}]/K_3[Fe(CN)_{6}]$ at pH 7 was analyzed at a scanning rate of 10–100 mV/s. The current (I) vs. voltage (V) function indicates the change in peak potential to more positive and negative in the
reverse scan as the scan rate is increased (Figure 4.13a and c). The electrochemical activity of PBS at pH 7 is also observed to be quasi-reversible. In addition, both oxidation and reduction peak currents were increased with increasing scan rate. Excellent linearity was observed when plotting current against the scan rate (Figure 4.13b and d). The relationship between the redox peak currents and the scan rates were correlated at anodic peak = 0.9993 and cathodic peak = 0.9995 for GO:Hex/TRPIDC-CH₃SeNPs/MWCNTs/GCE and for the anodic, and cathodic peaks was 0.9969 and 0.9886, respectively for GO:Hex/SeNPs/MWCNTs/GCE.

Figure 4.13: Effects of scan rate from 10 to 100 mV/s (A) GO:Hex/TRPIDC-CH₃SeNPs/MWCNTs/GCE (B) corresponding plot of current vs scan rate, (C) GO:Hex/SeNPs/MWCNTs/GCE using 0.02 mM ATP and (D) corresponding plot of current vs scan rate.

4.1.5.4 Effect of Deposition Time

The effects of deposition time were investigated on anodic peak current of GO:Hex/TRPIDC-CH₃SeNPs/MWCNTs/GC and GO:Hex/SeNPs/MWCNTs/GC electrodes upon addition of 0.02 mM ATP in 0.1 M PBS containing 1 mM K₄[Fe(CN)₆]/K₃[Fe(CN)₆] at pH 7, under the time interval of 30 to 150 s. For the
GO:Hex/SeNPs/MWCNTs/GC electrode (Figure 4.14b) the current was stable up to 60s and for the GO:Hex/TRPIDC-CH₃SeNPs/MWCNTs/GCE electrode in Figure 4.14a, the current decreased with the increase in deposition time.

The square wave voltammograms (SWV) of the response of ATP on the GO:Hex/TRPIDC-CH₃ SeNPs/MWCNTs/GC and GO:Hex/SeNPs/MWCNTs/GC electrodes in 10 mL PBS (0.1 M, pH 7) containing 1 mM of K₃[Fe(CN)₆]/K₄[Fe(CN)₆] were recorded at a scan rate of 100 mV/s (Figure 4.15a and c). Figures 4.15a and c shows an increase in the [Fe(CN)₆]³⁻/⁴⁻ peak as the ATP concentration increases from 0.02 to 0.12 mM, it can be seen that the electrode senses the ATP response. Enzymes operate under physiological conditions and can thus be perfectly applied in in vitro measurements. When ATP is present in the solution, Hex converts ATP to reduce the local glucose concentration. The decreased glucose concentration is detected by GO
and results in a current signal that is proportional to the ATP concentration (Weber 2014). Hence, the increase in the peak current of $[\text{Fe(CN)}_6]^{3-/4-}$.

The SWV response of ATP at different concentrations, displayed a linear relationship (Figure 4.15b and d) between the concentrations of ATP and the peak currents of $[\text{Fe(CN)}_6]^{3-/4-}$, with correlation coefficients of $R^2 = 0.9729$ and a limit of detection (LOD) of 0.05 mM and a limit of quantification (LOQ) of 0.17 mM for the GO:Hex/TRPIDC-CH$_3$ SeNPs/MWCNTs/GC electrode. A correlation coefficients of $R^2 = 0.9814$ and a limit of detection (LOD) of 0.04 mM and a limit of quantification (LOQ) of 0.14 mM for the GO:Hex/SeNPs/MWCNTs/GC electrode. Li et al and Liu et al successfully detected ATP indirectly using a redox probe with LOD of 0.03 pM and 3 nM respectively (Li et al. 2019; Liu et al. 2020).

![Figure 4.15](image_url)

Figure 4.15: (A) SWV voltammogram GO:Hex/TRPIDC-CH$_3$ SeNPs/MWCNTs/GCE at different concentrations (0.02 – 0.15 mM), (B) Corresponding calibration curve showing linear dependence of the peak currents versus concentration of ATP, (C) SWV voltammogram GO:Hex/SeNPs/MWCNTs/GCE and (D) Corresponding calibration curve.
4.1.5.6 Reproducibility and Stability

The lifetime of the formed electrochemical biosensor is of particular significance, as the coating will wear off during the stirring and cleaning time. Hence the stability was observed over a range of 11 runs for one day using the same electrode coating. The current response of GO:Hex/SeNPs/MWCNTs/GCE and GO:Hex/TRPIDC-CH₃SeNPs/MWCNTs/GCE and, on the [Fe(CN)₆]³⁻/⁴⁻ peak was observed over the addition of 20 uM ATP (n = 11) to access the stability of the biosensors. As the number of runs and the concentration of ATP increased (Figure 4.16a and b), the sensitivity decreased due to deterioration of the performance of the biosensor. It also confirmed that the system is primarily driven by an irreversible adsorption process. (Mpanza et al. 2014). Resulting in the saturation of the electrode’s surface.

The insert of Figure 4.16a shows that the GO:Hex/TRPIDC-CH₃SeNPs/MWCNTs/GCE biosensor maintained a non-linear direct co-relationship response from run 1 to 5 and a drop in current after 5th run, therefore the electrochemical enzymatic biosensor developed was stable up to 5 runs on the same day with the same coating. The GO:Hex/SeNPs/MWCNTs/GCE biosensor maintained a positive co-relation response from runs 1 to 7 and after the 7th run current dropped shown in the of insert of Figure 4.16b. The GO:Hex/SeNPs/MWCNTs/GCE was more stable in terms of runs than GO:Hex/TRPIDC-CH₃SeNPs/MWCNTs/GCE, the addition of the pyrazole ligand to the SeNPs weaken its electrochemical stability.

The reproducibility of the biosensor was examined by doing the three different runs with three different electrodes with the same coating and ATP concentration range (0-12 mM) under optimum condition. Figure 4.16c and d shows the effect of current for each concentration. The biosensors showed good reproducibility with an average relative standard deviations (n=3) of 1.17 for the GO:Hex/SeNPs/MWCNTs/GCE and 2.30 for GO:Hex/TRPIDC-CH₃SeNPs/MWCNTs/GCE. The excellent reproducibility and sensitivity could be associated with the most stable metal nanoparticles formed by selenium. These results tell us that the data is closely gathered around the mean and GO:Hex/SeNPs/MWCNTs/GCE is more precise, because of the smaller the RSD (Owen 2010).

55
Figure 4.16: Square wave voltammograms of (A) GO:Hex/TRPIDC-CH₃ SeNPs/MWCNTs/GCE and insert of line graph showing the effect of current and (B) GO:Hex/SeNPs/MWCNTs/GCE with insert of line graph showing the effect of current. The reproducibility line graphs (C) GO:Hex/TRPIDC-CH₃ SeNPs/MWCNTs/GCE and (D) GO:Hex/SeNPs/MWCNTs/GCE.

4.1.5.7 Real Sample analysis

The developed enzymatic biosensors were used for the detection of ATP in commercially available, Swanson peak ATP and Vita-thion tablet samples. The tablets were crushed and dissolved with deionized water and adjusted to the relevant pH. The samples were spiked with three different concentrations (0.05, 0.07, and 0.10 mM) of the standard solution of ATP and then quantified with SQW method (Table 4.4). The GO:Hex/TRPIDC-CH₃ SeNPs/MWCNTs/GCE had high recovery percentage compared to GO:Hex/SeNPs/MWCNTs/GCE.
Table 4.4: Results for the detection of ATP in spiked samples analysed using the electrodes.

<table>
<thead>
<tr>
<th>Samples</th>
<th>GO:Hex/TRPIDC-CH$_3$SeNPs/MWCNTs/GCE [ATP] (mM)</th>
<th>Recovery (%)</th>
<th>RSD (%)</th>
<th>Relative Errorb</th>
<th>GO:Hex/SeNPs/MWCNTs/GCE [ATP] (mM)</th>
<th>Recovery (%)</th>
<th>RSD (%)</th>
<th>Relative Errorb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swanson</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiked 1</td>
<td>0,07</td>
<td>97</td>
<td>1,92</td>
<td>-2,67</td>
<td>0,07</td>
<td>89</td>
<td>4,42</td>
<td>-11,12</td>
</tr>
<tr>
<td>Spiked 2</td>
<td>0,05</td>
<td>94</td>
<td>1,35</td>
<td>-4,04</td>
<td>0,05</td>
<td>87</td>
<td>4,62</td>
<td>-12,93</td>
</tr>
<tr>
<td>Spiked 3</td>
<td>0,1</td>
<td>95</td>
<td>1,33</td>
<td>-4,85</td>
<td>0,1</td>
<td>88</td>
<td>5,87</td>
<td>-11,54</td>
</tr>
<tr>
<td>Vita-thion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiked 1</td>
<td>0,07</td>
<td>91</td>
<td>0,49</td>
<td>-8,78</td>
<td>0,07</td>
<td>85</td>
<td>3,03</td>
<td>-14,54</td>
</tr>
<tr>
<td>Spiked 2</td>
<td>0,05</td>
<td>84</td>
<td>2,8</td>
<td>-16,16</td>
<td>0,05</td>
<td>82</td>
<td>2,89</td>
<td>-18,08</td>
</tr>
<tr>
<td>Spiked 3</td>
<td>0,1</td>
<td>87</td>
<td>0,43</td>
<td>-12,68</td>
<td>0,1</td>
<td>87</td>
<td>6,57</td>
<td>-13,41</td>
</tr>
</tbody>
</table>

a Average of three measurements, b relative error = (absolute error/true value)*100

57
4.2 CASE STUDY 2: Silver Nanoparticles

The findings of TRPIDC-CH$_3$ AgNPs (capped) are discussed in this subsection in relation to uncapped AgNPs. We review its interaction studies with HSA proteins, which have the potential to be used in the drug delivery sector, assess its anticancer activity and also the electrochemical actions of ATPs using a glassy carbon electrode (GCE) modified with TRPIDC-CH$_3$ AgNPs and uncapped AgNPs in combination with glucose oxidase (GOD) and hexokinase (Hex) composite enzymes.

4.2.1 Characterization of extract

4.2.1.1 Phytochemical screening

The _pelargonium graveolens_ plant is reported to contain significant amounts of flavonoids, alkaloids, phenolic acids, tennis, and terpenoids (Machalova et al. 2015; Mohammadlou et al. 2017; Ennaifer et al. 2018). The phytochemical screening test was conducted to classify the active biomolecules in the leaf extracts responsible for the synthesis of AgNPs. The leaf extract tested positive for flavonoids, phenolic acids, terpenoids and tannins (Table 4.5), which may influence the mechanism of reduction and stabilization of the synthesized AgNPs. These findings indicate that the major reducing and stabilizing compounds (flavonoids, phenolic acids, terpenoids and tannins) of the leaf extract had OH and C=C groups in their chemical structures.

<table>
<thead>
<tr>
<th>Compound class</th>
<th>Phytochemical test</th>
<th>Literature</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenolic acids</td>
<td>++</td>
<td>+</td>
<td>(Mohammadlou et al. 2017)</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>++</td>
<td>+</td>
<td>(Mohammadlou et al. 2017; Ennaifer et al. 2018)</td>
</tr>
<tr>
<td>Tannins</td>
<td>++</td>
<td>+</td>
<td>(Mohammadlou et al. 2017; Ennaifer et al. 2018)</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>++</td>
<td>+</td>
<td>(Mohammadlou et al. 2017; Ennaifer et al. 2018)</td>
</tr>
</tbody>
</table>

++ positive current study; + literature

Table 4.5: Characteristics of phytochemicals found in the _allium sativum_ extract.

58
4.2.1.2 FTIR studies

FTIR was conducted to classify the biomolecules responsible for the reduction and stabilization of AgNPs in the *pelargonium graveolens* leaf extract. The FTIR spectrum (Figure 4.17) showed a widest absorption at 3322.92 cm\(^{-1}\), which is attributed to the stretching vibrations of O-H. Furthermore, the suppressed bands at 1634.44 cm\(^{-1}\), stretching vibration of alkane groups (C=C), the peak at 1455.52 cm\(^{-1}\) is assigned to the O-H bending and the absorption peak at 1332.52 cm\(^{-1}\) corresponded to the C-N stretching of aromatic amine. The presence of these functional groups in the FTIR spectrum of *pelargonium graveolens* leaf extract has been also reported by Pandian et al and Mohammadlou et al (Pandian et al. 2013; Mohammadlou et al. 2017).

![FTIR spectrum of pelargonium graveolens leaf extract](image)

Figure 4.17: FTIR spectrum of *pelargonium graveolens* leaf extract.

4.2.2 Characterization of AgNPs

Figure 4.18 shows the visual studies of the synthesized TRPIDC-CH\(_3\) AgNPs using *pelargonium graveolens* leaf extract. The colour changed from pale yellow to dark brown due to the reduction of silver ions to silver metal after 24 hours of incubation at 37 °C. This reduction is due to the surface plasmon resonance (SPR), that strongly depends on the particle size, dielectric medium and chemical surroundings (Kumar et al. 2017). The formation of the colour dark brown is a formal indication of the formation of TRPIDC-CH\(_3\) AgNPs synthesized using *pelargonium graveolens* leaf extract. Mohammadlou et al and Pandian et al also produce dark brown coloured AgNPs using *pelargonium graveolens* leaf extract (Pandian et al. 2013; Mohammadlou et al. 2017).
Medda et al also reported dark brown using aloe vera leaf extract (Medda et al. 2015). Also, colours such as yellow-brown (Baraka et al. 2017) and yellowish-orange (Kumar et al. 2017) have been reported for the formation of AgNPs using different plant extracts.

![Image of bottles with green synthesized TRPIDC-CH₃ AgNPs]

Figure 4.18: Green synthesized TRPIDC-CH₃ AgNPs.

4.2.2.1 UV-Visible Spectroscopy

TRPIDC-CH₃ AgNPs were detected by a UV-Vis spectrophotometer in the range of 200 to 800 nm. The maximum absorption spectra of TRPIDC-CH₃ AgNPs showed a sharp absorbance maximum peak at 445 nm as shown in Figure 4.19. The TRPIDC-CH₃ AgNPs exhibits dark brown colour in aqueous solution due to the excitation of surface plasmon vibrations. The colour exhibited by metallic nanoparticles is due to the coherent excitation of all the “free” electrons within the conduction band, leading to an in-phase oscillation which is known as SPR (Ali et al. 2016; Saha et al. 2019). Here TRPIDC-CH₃ AgNPs synthesized using *pelargonium graveolens* leaf extracts were stable for at least one month when stored at 4 °C. In the present study the uncapped AgNPs had the same result. Mohammadlou et al and Pandian et al reported a maximum absorption peak at 440 nm of AgNPs using *pelargonium graveolens* leaf extracts (Pandian et al. 2013; Mohammadlou et al. 2017). Tippayawat et al report 420 nm using aloe vera leaf extract (Tippayawat et al. 2016).
Figure 4.19: UV-Vis spectrum of TRPIDC-CH₃ AgNPs (lime) and uncapped AgNPs (red) synthesized.

4.2.2.2 Morphology and Particle Size Analysis

The HR-TEM results suggested that the average diameter of TRPIDC-CH₃ AgNPs of spherical nanoparticles, which are monodispersed in nature, was found to be 45 nm (Figure 4.20a), which is double the size of uncapped AgNPs 18 nm (Figure 4.20b). Figure 4.20c and d, are the size distribution histograms formulated using image j software, the size distribution ranges from 5 – 95 nm for both capped and uncapped AgNPs. Capped nanoparticles are expected to be higher in size when compared to the uncapped (Satgurunathan et al. 2017; Saha et al. 2019). However, the TRPIDC-CH₃ AgNPs were double in size, as we can see from (Figure 4.20a) that agglomeration played a big part in the size of TRPIDC-CH₃ AgNPs. The addition of TRPIDC-CH₃ ligand may be the main cause of agglomeration since (Figure 4.20b) can be seen that the particles are less agglomerated and are well dispersed.
4.2.2.3 FTIR studies

The FTIR (Figure 4.21) measurements were performed to identify the responsible functional groups: in the synthesis of TRPIDC-CH₃ AgNPs (yellow line), in comparison with uncapped AgNPs (grey line) the peak at 1209.52 cm⁻¹ was assigned to the C-N stretching of aromatic amine but was absent if the AgNPs are capped with TRPIDC-CH₃ ligand. The absorption peaks centered at 3294.74 and 1630.71 cm⁻¹ are present in TRPIDC-CH AgNPs but shifted. The widest peak at 3294.74 shifted to 3291.24 cm⁻¹, which is attributed to the stretching vibrations of the O-H group responsible for reducing the Ag⁺ ions to atoms. Furthermore, the suppressed bands at 1630.71 shifted to 1636.30 cm⁻¹ stretching vibrations of C=C (alkane groups), are responsible for stabilizing the TRPIDC-CH₃ AgNPs. The functional groups mentioned above are mainly derived from heterocyclic compounds and these are the water-soluble components of pelargonium graveolens leaf extract mentioned in section 4.2.1. TRPIDC-CH₃ AgNPs FTIR spectrum resembles the FTIR of the uncapped AgNPs.
Pandian et al also reported similar results when synthesizing uncapped AgNPs using *pelargonium graveolens* leaf extract (Pandian et al. 2013). Baraka et al reported similar results when synthesizing uncapped AgNPs using alfalfa leaf extract (Baraka et al. 2017).

![FTIR spectrum of TRPIDC-CH$_3$ AgNPs (yellow) and uncapped AgNPs (grey).](image)

Figure 4.21: FTIR spectrum of TRPIDC-CH$_3$ AgNPs (yellow) and uncapped AgNPs (grey).

4.2.3 Cytotoxicity activity

The cytotoxicity effects of TRPIDC-CH$_3$ AgNPs and uncapped AgNPs against MCF-7, A549, and HEK923 cells were determined by the MTT assay. Investigating the cytotoxicity of these nanoparticles to a cancer cell line was necessary to examine how they have affected the viability and proliferation of the cells. The percentage cytotoxicity of the nanoparticle was investigated at concentrations of 100 µg/ml and 50 µg/ml. All experiments were conducted in triplicate and the average absorbance readings were calculated according to the negative solvent control (at 1 % DMSO) and results are shown in appendix K.

There was an overall low cytotoxic effect of the synthesized nanoparticles against the cells, the highest percentage activity of 38.0±0.04 % was observed with uncapped AgNPs (Appendix K: Table 17.2) against A549, and cell growth inhibition of 29.5±0.064 % was seen with TRPIDC-CH$_3$ against MCF-7. A dose-dependent increase in cytotoxic activity was observed for each of the nanoparticles, as the concentration increased from 50 µg/ml to 100 µg/ml. Low cytotoxic activity was
observed with all the screened nanoparticles against HEK293. No morphological examination was performed for the AgNPs since its cytotoxicity effects percentage was low compared to the other two nanomaterials.

Comparable results have been reported by Yusefi et al. who synthesized the iron oxide nanoparticles using *Punica Granatum* fruit peel extract and assessed their anticancer activity against MCF-7, HepG2, and normal cell lines NHEM. The results showed that the synthesized samples were less toxic to normal cells (Yusefi et al. 2020). Chellapandian *et al.* synthesized gold nanoparticles using red seaweed *Gracilaria verrucosa* and evaluated the anticancer activity using MTT assay. Various concentrations of AuNPs (0, 8, 16, 32, 64, and 128 µg/ml) against HEK293T and A549 cells. The results demonstrated that they were no significant difference (P<0.05) in cell viability up to 64 µg/ml compared to the negative control. As concentrations increases (128 µg/ml), slight toxicity was observed. Comparable cell viability was observed for HEK293 cells after treatment with Au NPs (0- 100 µg/ml) (Chellapandian *et al.* 2019).

4.2.4 Protein interaction

We discuss the spectroscopic interaction study of the TRPIDC-CH$_3$ AgNPs with HSA protein in comparison with the uncapped AgNPs. Hence, we discuss UV-Vis, Fluorescence, FTIR studies and we look at the modes of binding involved in the complex formation.

4.2.4.1 UV-vis absorption studies

The interactions between HSA and AgNPs have been studied in order to improve the conformation evolution of HSA as well as the binding on the surface of AgNPs. Figure 4.22a shows the spectral shifts in HSA with the rising concentration of TRPIDC-CH$_3$ AgNPs. The absorbance spectra of HSA at 280 nm gradually increase with no shift of maxima. According to the previously reported work (Beg *et al.* 2017), the valuation of these spectra also showed an increase in absorbance spectra of HSA without any shift in band position, which suggested the occurrence of HSA adsorption on the surface of TRPIDC-CH$_3$ AgNPs similar results are reported for uncapped AgNPs (Figure 4.22b). Figure 4.22c shows the linear fits at 280 nm and can be seen that was an increase in the absorbance in comparison with uncapped AgNPs.
According to previous literature reports, variations in the absorption spectra HSA frequently result from ground-state complex formation and static quenching mechanism (Bardajee et al. 2016). The binding constant (K_b) was determined using equation (5). K_b was determined from the slope of the plot of 1/(A - A_0) versus 1/[Q]. K_b for HSA-TRPIDC-CH_3 AgNPs complex was 1.11x10^7 M^-1 and 7.43x10^6 M^-1 for HSA-AgNPs complex. TRPIDC-CH_3 ligand does not alter the absorption interaction studies when used as a capping agent for AgNPs. The equilibrium established between HSA and TRPIDC-CH_3 AgNPs during the complex formation is distinct by the following chemical equation.

\[
K_b = \frac{\text{[HSA-TRPIDC-CH}_3\text{AgNPs]}}{\text{[HSA] x [TRPIDC-CH}_3\text{AgNPs]}}
\]

\[
K_b = \frac{\text{[HSA-TRPIDC-CH}_3\text{AgNPs]}}{\text{[HSA] x [TRPIDC-CH}_3\text{AgNPs]}}
\]

Figure 4.22: Absorbance spectra of HSA upon the addition of (A) TRPIDC-CH_3 AgNPs and (B) AgNPs (C) Linear fit for both the systems (D) Plot of 1/(A - A_0) versus 1/[Q] for both systems.
4.2.4.2 Fluorescence quenching study

The fluorescence spectrum of HSA is generally due to the single tryptophan residue that is positioned in a subdomain IIA ligand-binding site (Beg et al. 2017). The difference in the fluorescence intensity of HSA shows the adsorption of the tryptophan residue to the surfaces of the nanoparticles. Figure 4.23a reflects the fluorescence response of HSA with the addition of increasing concentrations of TRPIDC-CH₃ AgNPs (0 - 0.06 uM) by excitation at 280 nm at 310 K. Fluorescence intensity was quenched due to the inclusion of TRPIDC-CH₃ AgNPs without significant shifts in the emission wavelength for all three temperatures. The non-existence change in emission wavelength with a decline in intensity has demonstrated that the adsorption of proteins on the surfaces of nanoparticles. Resulted in a fluorescence quenching effect due to the development of HSA-TRPIDC-CH₃ AgNP complex after contact.

This quenching of protein fluorescence properties was studied by applying the Stern-Volmer (SV) equation (6). Figure 4.23c shows the Stern-Volmer plots of F₀/F vs [Q] at three different temperatures (298, 304, and 310K), and values of Kₜ₀ and Kₜ were estimated by slope with τ₀~10⁻⁸ s, the results are assembled in Table 4.6. The positive correlation of Stern–Volmer quenching constant and temperature showed that the likely quenching mechanism is dynamic quenching rather than static quenching. For the uncapped AgNPs and previously published work shows that the potential quenching mechanism is static quenching (Beg et al. 2017). The change in the quenching mechanism is due to the addition of the capping agent (TRPIDC-CH₃ ligand).

The binding constant (Kₜ₀) and the number of binding sites (n) for HSA complex interactions, were determined using the double-logarithm equation (7). Kₜ and n (Table 4.6) were calculated from intercept and slope of log (F₀-F)/F versus log[Q] plot shown in Figure 4.23d. The binding constant and temperature showed a direct correlation indicating that the HSA-TRPIDC-CH₃ AgNPs complex is stable with the rise in temperature and the reverse effect was observed for the uncapped AgNPs. The values of n approximately equal to 1 indicated that TRPIDC-CH₃ AgNPs (and uncapped) binds to one class of site on HSA.
Table 4.6: The K_{sv}, K_{q}, K_{b}, and n of the HSA-TRPIDC-CH$_3$AgNPs (and uncapped).

<table>
<thead>
<tr>
<th>SeNPs</th>
<th>T (K)</th>
<th>K_{sv} (10^7 M$^{-1}$)</th>
<th>K_{q} (10^{15} M$^{-1}$ S$^{-1}$)</th>
<th>r^2</th>
<th>K_{b} (M$^{-1}$)</th>
<th>n</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRPIDC-CH$_3$</td>
<td>298</td>
<td>6.16</td>
<td>6.16</td>
<td>0.988</td>
<td>2.04 x 108</td>
<td>1.05</td>
<td>0.992</td>
</tr>
<tr>
<td></td>
<td>304</td>
<td>7.82</td>
<td>7.82</td>
<td>0.99</td>
<td>2.49 x 108</td>
<td>1.09</td>
<td>0.996</td>
</tr>
<tr>
<td></td>
<td>310</td>
<td>10</td>
<td>10</td>
<td>0.992</td>
<td>1.5 x 108</td>
<td>1.17</td>
<td>0.998</td>
</tr>
<tr>
<td>Uncapped</td>
<td>298</td>
<td>7.12</td>
<td>7.12</td>
<td>0.996</td>
<td>3.09 x 108</td>
<td>1.09</td>
<td>0.988</td>
</tr>
<tr>
<td></td>
<td>304</td>
<td>6.64</td>
<td>6.64</td>
<td>0.999</td>
<td>3.99 x 107</td>
<td>0.97</td>
<td>0.991</td>
</tr>
<tr>
<td></td>
<td>310</td>
<td>5.15</td>
<td>5.15</td>
<td>0.999</td>
<td>8.61 x 105</td>
<td>0.75</td>
<td>0.998</td>
</tr>
</tbody>
</table>

Figure 4.23: (A) Fluorescence spectrum of HSA in the presence of different concentrations of TRPIDC-CH$_3$ AgNPs. (B) a linear fit of the absorbance complex and increasing concentration of TRPIDC-CH$_3$ AgNPs at 345 nm at different temperatures. (C) Stern–Volmer curves for the binding of HSA with TRPIDC-CH$_3$ AgNPs at different temperatures. (D) log([F0 / F]/F) versus log[Q] plots for HSA versus TRPIDC-CH$_3$ AgNPs at different temperatures.
4.2.4.3 Mode of binding

The interaction forces between TRPIDC-CH$_3$ AgNPs and HSA are determined by thermodynamic parameters (ΔH, ΔS, and ΔG). These parameters were calculated from the Van’t Hoff plot (Figure 4.24) by equation (8) and (9), they are illustrated in Table 4.7. The positive sign of ΔH and negative sign of ΔG indicates that the binding process is endothermic and spontaneous. The positive signs of ΔH and ΔS indicate the involvement of hydrophobic interactions HSA-TRPIDC-CH$_3$ AgNPs complex formation. For the uncapped AgNPs the binding process is exothermic and spontaneous and the interaction forces involve were either van der Waals or hydrogen bonding, similar results have been reported (Beg et al. 2017). The addition of the TRPIDC-CH$_3$ ligand changes the interaction forces involve in complex binding.

Table 4.7: Thermodynamics parameters of HSA and nanoparticles interaction.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>TRPIDC-CH$_3$ AgNPs</th>
<th>Uncapped AgNPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔH (kJ mol$^{-1}$ K$^{-1}$)</td>
<td>135.21</td>
<td>-382.79</td>
</tr>
<tr>
<td>ΔS (kJ mol$^{-1}$ K$^{-1}$)</td>
<td>0.611</td>
<td>-1.12</td>
</tr>
<tr>
<td>ΔG (kJ mol$^{-1}$ K$^{-1}$)</td>
<td>-317.43</td>
<td>-48.24</td>
</tr>
<tr>
<td>Forces</td>
<td>hydrophobic interactions</td>
<td>hydrogen or van der Waals</td>
</tr>
</tbody>
</table>

Figure 4.24: Van’t Hoff plot of (Black) HSA-TRPIDC-CH$_3$ SeNPs and (Red) HSA-SeNPs.
4.2.4.4 FTIR studies

FTIR has emerged as an effective device for characterizing the relationship between protein-nanoparticles. The FTIR protein spectrum has many amide bands that reflect various vibrations of the peptide moiety and most of the studies have focused on the amide I band because it is responsive to changes in the protein secondary structure. (Rezanejade Bardajee et al. 2017). The amide I component bands are allocated according to the well-established assignment situation. The amide I peak occurs in the 1600-1700 cm\(^{-1}\) range (mainly the C=O stretch) is commonly used for the investigation of secondary protein structures. Figure 4.25 displays the effects of the study of the secondary protein structure of HSA before and after interaction with TRPIDC-CH\(_3\) AgNPs. The peak at 1641.31 cm\(^{-1}\) shifted to 1636.30 cm\(^{-1}\) after addition TRPIDC-CH\(_3\) AgNPs. This confirms the complex formation between HSA and TRPIDC-CH\(_3\) AgNPs through hydrophobic interactions.

![Figure 4.25: FTIR spectra of HSA before and after interactions with TRPIDC-CH\(_3\) AgNPs.](image)

4.2.5 Electrochemistry

4.2.5.1 Electrochemical characterization

We studied the electrochemical signals achieved from the different modified stages of the GCE. The Cyclic voltammograms of the GCE in different modified stages in 10 mL PBS (0.1 M, pH 7) containing 1 mM of K\(_3\)[Fe(CN)\(_6\)]/K\(_4\)[Fe(CN)\(_6\)], recorded at a scan rate of 100 mV/s are illustrated in Figure 4.26a. The anodic peak current obtained from Bare GCE (curve i) was the lowest with \(I_a\) of 3.98 \(\mu\)A. There was a shift in peak
potential from 0.40 V to 0.23 V and GO:Hex/AgNPs/MWCNTs/GCE was the highest with I_a of 51.08 μA. There was an increase in anodic peak current with no shift in peak position (curve ii-vi) in comparison to bare GCE (curve i). After the nanoparticles were capped with TRPIDC-CH$_3$ ligand the peak current decreased slightly 29% and 30% for curve iv and vi when compared to uncapped AgNPs (curve iii and v), respectively. The ligand interfered with the surface area and electrical conductivity of the nanoparticles. Indicating that electrode modification with TRPIDC-CH$_3$ AgNPs ineffectively decreased the conductive activity of the electrode.

![Cyclic voltammograms and histogram](image)

Figure 4.26: (A) Cyclic voltammograms of 0.02 mM ATP at (i) bare GCE, (ii) MWCNTs/GCE, (iii) SeNPS/MWCNTs/GCE, (iv) TRPIDC-CH$_3$ AgNPs/MWCNTs/GCE, (v) GO:Hex/AgNPs/MWCNTs/GCE. and (vi) GO:Hex/TRPIDC-CH$_3$ AgNPs/MWCNTs/GCE. (B) histogram displaying the current responses at corresponding electrodes.

4.2.5.2 Effect of pH

As the pH values of 0.1 M PBS containing 1 mM $K_4[Fe(CN)_6]/K_3[Fe(CN)_6]$ were increased from pH 5 to 9, the oxidized species of ATP becomes more stable as indicated by the increasing ratio of I_{pa}/I_{pc} shown in Figure 4.27 and Table 16.2 (Appendix J). When the E_{pa} was plotted against pH values (Figure 4.27b and c), the E_{pa} remain constant at 0.23 V for the GO:Hex/TRPIDC-CH$_3$ AgNPs/MWCNTs/GC electrode and for the GO:Hex/AgNPs/MWCNTs/GC electrode it increased from 0.23 to 0.24 V after pH 6 and it was constant throughout. Figure 4.27a and c showed the cyclic voltammograms of the GO:Hex/TRPIDC-CH$_3$AgNPs/MWCNTs/GC and GO:Hex/AgNPs/MWCNTs/GC electrodes, respectively. As the pH increased the anodic current decreased which was attributed to the deprotonation.
Figure 4.27: Effects of pH in 0.1 M PBS using (A) GO:Hex/TRPI/DC-CH₃AgNPs/MWCNTs/GCE (B) corresponding plot of current vs pH, (C) GO:Hex/AgNPs/MWCNTs/GCE using 0.02 mM ATP and (D) corresponding plot of current vs pH. Effect of Scan Rate.

4.2.5.3 Effect of Scan Rate

Figure 4.28a and c show the cyclic voltammograms of 0.02 mM ATP in the PBS of pH 7 containing 1 mM K₄[Fe(CN)₆]/K₃[Fe(CN)₆] at different scan rates with a distinct anodic and cathodic waves produced at the electrodes surfaces. The anodic and cathodic peak currents were increased with increasing scan rate. The plot of anodic peak current vs scan rate (Figure 4.28b and d) gives a linear plot. Pointing to a diffusion-controlled response and its electrochemical behavior is quasi-reversible in the PBS of pH 7. The relationship between the redox peak currents and the scan rates were correlated at 0.9906 and 0.9903 for anodic and cathodic peaks, respectively for GO:Hex/TRPI/DC-CH₃AgNPs/MWCNTs/GCE. For GO:Hex/AgNPs/MWCNTs/GCE was for anodic peak 0.9970 and 0.9975 for cathodic peak.
Figure 4.28: Effects of scan rate from 10 to 100 mV/s (A) GO:Hex/TRPIDC-CH₃AgNPs/MWCNTs/GCE (B) corresponding plot of current vs scan rate, (C) GO:Hex/AgNPs/MWCNTs/GCE using 0.02 mM ATP and (D) corresponding plot of current vs scan rate.

4.2.5.4 Effect of Deposition Time

Figure 4.29 showed the effects of deposition times for the GO:Hex/TRPIDC-CH₃AgNPs/MWCNTs/GC and GO:Hex/AgNPs/MWCNTs/GC electrodes, which was investigated on an anodic peak current of 5 mM ATP in 0.1 M PBS containing 1 mM K₄[Fe(CN)₆]/K₃[Fe(CN)₆] at pH 7. Under the time interval of 30 to 150 s. There was no change in the on anodic current as we increase deposition time.
4.2.5.5 Indirect SWV technique for quantitative detection of ATP

Electrochemical detection of ATP via dual-enzyme biosensors requires indirect detection, raising the complexity of the detection system (Kueng et al. 2004). Based on the co-immobilization of the enzymes GOD and Hex on the electrode surface. The concentration of ATP in solution can be determined due to the competitive enzymatic reaction of the glucose substrate. Indirect electrochemical determination of ATP using the \([Fe(CN)_{6}]^{3-/4-}\) peak as a reference peak, to observe the behavior of ATP with TRPIDC-CH\(_3\) AgNPs (Capped) and the uncapped AgNPs. Figures 4.30a and 4.30c show the square wave voltammograms of \([Fe(CN)_{6}]^{3-/4-}\), in 10 mL PBS (0.1 M, pH 7) containing 1 mM of \(K_3[Fe(CN)_6]/K_4[Fe(CN)_6]\) recorded at a scan rate of 100 mV/s, respectively using GO:Hex/TRPIDC-CH\(_3\) AgNPs/MWCNTs/GCE and GO:Hex/TRPIDC-CH\(_3\) AgNPs/MWCNTs/GCE. Where its peak current was monitored upon the addition of ATP (0.02 - 0.12 mM).

An increase in the peak current of \([Fe(CN)_{6}]^{3-/4-}\) as the concentration of ATP is increased from 0.02 – 0.12 mM was noted. If ATP is present in the solution, Hex converts ATP and glucose to reduce the local glucose concentration. The decreased glucose concentration is detected by GO and results in a current signal that is proportional to the ATP concentration, based on this observation the electrodes do detect the response of ATP. Figures 4.30b and 4.30d display the linear plot between the concentrations of ATP and the peak currents of \([Fe(CN)_{6}]^{3-/4-}\), with correlation coefficients of 0.9905 and a LOD of 0.03 mM and a LOQ of 0.08 mM for the GO:Hex/TRPIDC-CH\(_3\)AgNPs/MWCNTs/GC electrode. GO:Hex/AgNPs/MWCNTs/GC
electrode had a correlation coefficients of $R^2 = 0.9944$ and a LOD of 0.02 mM and a LOQ of 0.06 Mm, respectively.

Figure 4.30: (A) SWV voltammogram GO:Hex/TRPIDC-CH$_3$ AgNPs/MWCNTs/GCE at different concentrations (0.02-0.12 mM), (B) Corresponding calibration curve showing linear dependence of the peak currents versus concentration of ATP, (C) SWV voltammogram GO:Hex/AgNPs/MWCNTs/GCE and (D) Corresponding calibration curve.

4.2.5.6 Reproducibility and Stability

The stability of the developed biosensors was tested using SWV (Figures 4.31a and 4.31c) and was observed by assessing the response of $[\text{Fe(CN)}_6]^{3-/4-}$ peak when ATP (0.02-0.26 mM) was introduced for 10 replicate measurements ($n=10$) over one day using the same coating. The $[\text{Fe(CN)}_6]^{3-/4-}$ peak current was directly proportional to the ATP concentration and to some degree, began to decrease, signaling the saturation of the sensors. Figures 4.31a and 4.31b display the graphic representation for the GO:Hex/TRPIDC-CH$_3$ AgNPs/MWCNTs/GCE and GO:Hex/AgNPs/MWCNTs/GCE respectively. For both sensors, it is certain that they reach saturation at the same cycle.
(6th) shown in insert a and insert b, TRP DIC-CH₃ ligand did not have an effect on the electrochemical stability of the AgNPs.

The reproducibility of the biosensors was confirmed by further testing of the [Fe(CN)₆]³⁻/⁴ peak current by the addition of ATP (0.02-0.24 mM) using three prepared electrodes with the same coating. Figure 4.31c and d display the current influence on each concentration as seen in Figure 4.31d the line graphs are closer together relative to Figure 4.31c. RSD values of 1.87 for GO:Hex/AgNPs/MWCNTs/GCE sensor and 3.37 for GO:Hex/TRPIDC-CH₃ AgNPs/MWCNTs/GCE sensor and obtained for three replicate measurements for each sensor. The GO:Hex/AgNPs/MWCNTs/GCE sensor is more reliable because of the smaller the RSD.

Figure 4.31: (A) Square wave voltammogram GO: Hex/ TRPIDC-CH₃ AgNPs/MWCNTs/GCE at different concentrations of ATP (0 – 0.24 mM) and (B) Corresponding line graph of concentration vs current, showing the effect of current, (C) Square wave voltammogram GO:Hex/AgNPs/MWCNTs/GCE at different concentrations of ATP (0 – 0.24 mM) and (D) Corresponding line graph of concentration vs current, showing the effect of current.
4.2.5.7 Real Sample analysis

The efficiency of the developed biosensors was tested for ATP analysis in two commercially available samples, Swanson peak ATP and Vita-thion tablets. The samples were spiked with three different amounts (0.05, 0.07 and 0.10 mM) of ATP. The quantitative findings in Table 4.8 correspond to the mean voltammogram for the ATP triplicate analysis in tablets. GO:Hex/TRPIDC-CH3AgNPs/MWCNTs/GCE had a lower recovery rate relative to GO:Hex/AgNPs/MWCNTs/GCE.

Table 4.8: Results for the detection of ATP in spiked real samples analysed using the electrodes.

<table>
<thead>
<tr>
<th>Samples</th>
<th>GO:Hex/TRPIDC-CH3AgNPs/MWCNTs/GCE</th>
<th>GO:Hex/AgNPs/MWCNTs/GCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[ATP] (mM) Recovery (%) RSD (%) Relative Error<sup>b</sup></td>
<td>[ATP] (mM) Recovery (%) RSD (%) Relative Error<sup>b</sup></td>
</tr>
<tr>
<td>Swanson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiked 1</td>
<td>0.07 82 4.01 -18.39</td>
<td>0.07 84 4.09 -15.57</td>
</tr>
<tr>
<td>Spiked 2</td>
<td>0.05 80 3.3 -20.49</td>
<td>0.05 86 0.77 -13.08</td>
</tr>
<tr>
<td>Spiked 3</td>
<td>0.1 80 4.65 -19.96</td>
<td>0.1 88 5.16 -11.95</td>
</tr>
<tr>
<td>Vita-thion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiked 1</td>
<td>0.07 80 3.05 -19.56</td>
<td>0.07 82 2.89 -18.19</td>
</tr>
<tr>
<td>Spiked 2</td>
<td>0.05 79 2.56 -20.89</td>
<td>0.05 83 2.89 -17.08</td>
</tr>
<tr>
<td>Spiked 3</td>
<td>0.1 81 0.58 -18.59</td>
<td>0.1 85 4.57 14.72</td>
</tr>
</tbody>
</table>

^a Average of three measurements, ^b relative error = (absolute error/true value)*100
4.3 CASE STUDY 3: Cadmium Sulfide quantum dots

In this subsection, we discuss the comparison between the TRPIDC-CH$_3$ CdSQDs and the uncapped CdSQDs. We show its cytotoxicity assay using MCF-7, A549, and HEK293 cells, as well as its spectroscopic interaction with HSA protein. Lastly electrochemical behavior of ATP using a glassy carbon electrode (GCE) modified with TRPDC-CH$_3$ CdSQDs and uncoated CdSQDs separately, in conjunction with glucose oxidase (GOD) and hexokinase (Hex) enzymes.

4.3.1 Characterization of extract

4.3.1.1 Phytochemical screening
Nanoparticles are mainly affected by the natural phytochemicals existing in an extract (Ocsoy et al. 2018). A phytochemical screening test for the *Moringa oleifera* leaf extract, that was used to synthesise QDs, was performed to see which phytochemicals were present. *Moringa oleifera* leaves particularly reported to contain tannins, terpenoids, flavonoids, saponins, and alkaloids (Ilanko et al. 2019; Pratiwi et al. 2019) which may influence the reduction process and the stability of the synthesized QDs. The leaf extract tested positive for flavonoids, alkaloids, and terpenoids in agreement with the FTIR results (Figure 4.32), as well as with literature (Table 4.9).

Table 4.9: Characteristics of phytochemicals found in *Moringa oleifera* extract

<table>
<thead>
<tr>
<th>Compound class</th>
<th>Phytochemical test</th>
<th>Literature</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavonoids</td>
<td>++</td>
<td>+</td>
<td>(Preeti et al. 2018; Ilanko et al. 2019; Das et al. 2020; Suresh et al. 2020)</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>++</td>
<td>+</td>
<td>(Preeti et al. 2018; Ilanko et al. 2019; Das et al. 2020; Suresh et al. 2020)</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>++</td>
<td>+</td>
<td>(Preeti et al. 2018; Ilanko et al. 2019; Das et al. 2020)</td>
</tr>
</tbody>
</table>

++ positive current study; + literature

4.3.1.2 FTIR studies

The FTIR spectrum of *moringa oleifera* (Figure4.32) exhibits multiple absorption peaks indicating the various functional groups present in the *moringa oleifera* leaf extract, in the region of 400 to 4000 cm$^{-1}$. The peak around 3531.65 cm$^{-1}$ is assigned to O-H stretching whilst 3069.64 cm$^{-1}$ is attributed to the C-H stretching of alkenes.
The peak at 1884.31 cm\(^{-1}\) is assigned to the C-H bending of aromatic compounds. The peak at 1602.76 cm\(^{-1}\) C=C is attributed to the stretching of alkenes. The peak observed at 1185.29 cm\(^{-1}\) is due to C-N stretching. Based on the FTIR results the biomolecules of *moringa oleifera* leaf extract involved in the bioreduction of CdSQDs mainly contain the O-H, C=C, and C-H functional groups, which are in agreements with phytochemical screening. Das *et al.* reported similar functional groups (C-H, C=C, C-N, and O-H) (Das *et al.* 2020). Jegadeesan *et al.* reported O-H and C=C functional groups (Jegadeesan *et al.* 2019).

![FTIR spectrum of moringa oleifera leaf extract.](image)

Figure 4.32: FTIR spectrum of *moringa oleifera* leaf extract.

4.3.2 Characterization of CdSQDs

The green approach was used to synthesize TRPIDC-CH\(_3\)CdSQDs from CdSO\(_4\) using methanolic moringa oleifera leaf extract as an efficient reducing agent and TRPIDC-CH\(_3\) ligand as a stabilizing agent. The dark green solution was incubated in the dark for 7 days and the solution changed to yellow suggesting the development of TRPIDC-CH\(_3\) CdSQDs (Figure 4.33). In the synthesis of uncapped CdSQDs a similar method was used and the solution also switched from dark green to yellow colour. Shivaji *et al.* reported a pale yellow solution using tea leaf extract (Shivaji *et al.* 2018). Kandasamy *et al.* also produced yellow CdSQDs using fruit sap of *opuntia ficus-indica* (Kandasamy *et al.* 2019). Orange CdSQDs has also been reported using fungus (Borovaya *et al.* 2015).
4.3.2.1 UV-Visible spectroscopy

UV-visible adsorption analysis was performed as semiconductor quantum dots are known to have a characteristic energy absorption edge shifted to the QD absorption band at a short wavelength. This 'blue' shift is induced by quantum size effects and symbolizes the nature of QD semiconductor and is created to demonstrate the presence of low-dimensional semiconductor properties (Kandasamy et al. 2019). Figure 4.34 displays the absorption spectra of the QDs. The absorption band is at 420 nm, which corresponds to a bandgap energy of 2.95 eV (calculated using the quantum mechanics energy equation) and the measured TRPIDC-CH₃ CdSQDs are within the well-known quantum-confined size range for CdSQDs reported by Shivaji et al and Kandasamy et al (Shivaji et al. 2018; Kandasamy et al. 2019).
4.3.2.2 Morphology and particle size analysis

HR-TEM image of TRPIDC-CH$_3$CdSQDs shown in Figure 4.35a confirms the structure and size of the QDs. The TEM image shows the spherical shaped QDs and their average diameter is 4.5 nm, with a distribution of size of particles with a diameter between 3 and 9 nm (Figure 4.35b). Therefore, the outcome supports the formation of a quantum dot (<10 nm) (Kandasamy et al. 2019). Figure 4.35b shows the HR-TEM image of the uncapped CdSQDs, with an average diameter of 4 nm and a size distribution range of 3.5 to 5.5 nm (Figure 4.35d). The TRPIDC-CH$_3$ CdSQDs had a larger diameter by 5% and wider size distribution in comparison with uncapped CdSQDs. The addition of TRPIDC-CH$_3$ ligand increased the size of CdSQDs. The findings obtained are consistent with previous studies on the use of plant extracts to synthesize CdSQDs. Borovaya et al obtained CdSQDs that were spherical in shape and predominantly from 4 to 5 nm in size (Borovaya et al. 2015). Shivaji and co-works synthesized CdSQRs using tea leaves and obtained a range between 2−5 nm in particle size (Shivaji et al. 2018).

![HR-TEM images of TRPIDC-CH$_3$CdSQDs and CdSQDs](image)

Figure 4.35: HR-TEM images of (A) TRPIDC-CH$_3$ CdSQDs (B) CdSQDs and Size distribution histogram prepared by image j software of (C) TRPIDC-CH$_3$ CdSQDs (D) CdSQDs.
4.3.2.3 FTIR studies

The FTIR spectrum (Figure 4.36) of TRPIDC-CH$_3$ CdSQDs (purple line) showed identical peaks with a minor shift and a disappearance in the absorption peak at 1787.26 cm$^{-1}$ when the QDs were capped with the TRPIDC-CH$_3$ ligand in comparison to the uncapped CdSQDs FTIR spectrum with the TRPIDC-CH$_3$ ligand (pink line). The weak peaks at 3065.74 and 3002.37 cm$^{-1}$ shifted to 2931 and 2860.73 cm$^{-1}$ respectively, shows C-H group stretching. The peak at 1606.48 cm$^{-1}$ shifted to 1636.30 cm$^{-1}$ corresponds to the C=C stretching of the alkene group and a sharp peak at 1162.92 cm$^{-1}$ shifted to 1010.11 cm$^{-1}$ shows the C-O group stretching. Kandasamy et al and Shivaji et al reported similar results using fruit sap and tea leaves. (Shivaji et al. 2018; Kandasamy et al. 2019)

![FTIR spectrum](image)

Figure 4.36: FTIR spectrum of TRPIDC-CH$_3$ CdSQDs (purple) and uncapped CdSQDs (pink).

4.3.3 Cytotoxicity activity

The cytotoxicity effects of TRPIDC-CH$_3$ CdSQDs and uncapped CdSQDs against MCF-7, A549, and HEK923 cells were determined by the MTT assay. Investigating the cytotoxicity of QDs to a cancer cell line was necessary to examine how they affected the viability and proliferation of the cells. 100 µg/ml and 50 µg/ml (concentrations) were used to investigate the percentage cytotoxicity of the QDs, as indicated in Appendix K (Tables 17.1, 17.2, and 17.3). All experiments were conducted in triplicate and the average absorbance readings were calculated
according to the negative solvent control (at 1 % DMSO). The results are displayed in Tables in appendix K.

There was an overall low cytotoxic effect of the synthesized nanoparticles against MCF-7, A549, and HEK293 cells, the highest percentage activity of 63.8±0.005 % was observed with uncapped CdSQDs at a 100 µg/ml. Appendix K (Table 17.1) against MCF-7. Furthermore, cell growth inhibition of 43.7±0.15 % was seen with uncapped CdSQDs against A549. Although overall cytotoxicity was low, a dose-dependent increase in cytotoxic activity was observed for each of the nanoparticles, as the concentration increased from 50 µg/ml to 100 µg/ml. Low cytotoxic activity was observed with all the screened QDs against HEK293.

The microscopic analysis showed the morphological characteristics of untreated or treated cells. The control cells appeared in normal form and were bound to the surface. Nevertheless, the MCF-7 cells that were exposed to CdSQDs (Figure 4.37a) and lost their normal shape and cell adhesion ability, shrinking and decreasing in cell density. Similar changes have also been recognized in CdS-modified chitosan quantum dots in MCF-7 breast cancer cell line (Abdelhamid et al. 2019), indicating that the cytotoxic effect of synthesized AgNPs could be due to the antineoplastic properties and their ability to cause cell death by multiple molecular mechanisms (Farah et al. 2016).

Figure 4.37: morphology of MCF-7 cell (100x magnification), treated with (A) Uncapped CdSQDs, (B) DMSO (1%), (C) untreated.
4.3.4 Protein interaction

We discuss the spectroscopic relationship of the TRPIDC-CH$_3$ CdSQDs with HSA protein by exploring UV-vis, fluorescence, FTIR studies and looking at the binding modes involved in complex forming.

4.3.4.1 UV-Vis absorption studies

UV-Vis absorption is a simple and relevant measurement to study the structural changes and to prove the complex formation. As shown in Figure 4.38a and b, there is a strong absorption band at around 278 nm which was primarily due to π→π * transition (Pansare et al. 2018). The absorbance of this peak is mainly due to the absorption of tryptophan (Ishtikhar et al. 2015; Mahanthappa et al. 2018), and it increases gradually, without any shift in the peak position, upon increasing the concentration of QDs. These observations indicate that there is a structural change (microenvironment) in HSA and the formation of a ground-state complex between HSA and QDs (Prasanth et al. 2017; Pansare et al. 2018).

Figure 4.38c shows the linear fits of increasing concentration of TRPIDC-CH$_3$CdQDs and uncapped CdSQDs at 278 nm which confirms the positive correlation between the concentration of QDs. Equations (14) and (15) were used to measure the degree of complex forming between HSA and TRPIDC-CH$_3$ CdSQDs (CdSQDs). According to the Benesi-Hildebrand relationship equation, the binding constant of complex formation was calculated from the shift in intensity of the absorption peak at 278 nm equation (5). From the plot slope of $1/(A - A0)$ versus $1/[Q]$ (Figure 4.38d), K_b was measured and the value was for the HSA-TRPIDC-CH$_3$ CdSQDs complex was 1.76x102 M$^{-1}$ and 1.20x103 for HSA-CdSQDs Complex..

\[
\begin{align*}
\text{HSA + TRPIDC-CH}_3\text{CdSQDs} & \quad \rightarrow K_b \quad \text{HSA......TRPIDC-CH}_3\text{CdSQ} \\
K_b &= \frac{[\text{HSA......TRPIDC-CH}_3\text{CdSQDs}]}{[\text{HSA}] \times [\text{TRPIDC-CH}_3\text{CdSQDs}]}
\end{align*}
\]
Figure 4.38: Absorbance spectra of HSA upon the addition of (A) TRPIDC-CH₃ CdSQDs and (B) CdQDs (C) Linear fit for both the systems (D) Plot of $1/(A - A_0)$ versus $1/[Q]$ for both systems.

4.3.4.2 Fluorescence quenching study

The HSA fluorescence emission spectra at the TRPIDC-CH₃ CdSQDs sequence of concentrations by setting the excitation wavelength at 280 nm are presented in Figure 4.39a. The fluorescence intensities of HSA decreased markedly with an increase in the concentration of TRPIDC-CH₃ CdSQDs and there were no peak changes or no new peaks (Figure 4.39b). These findings indicated that the TRPIDC-CH₃ CdSQDs and HSA complex could be responsible for the quenching process. A variety of molecular interactions, such as excited-state reactions, molecular rearrangements, energy transfer, ground-state complex formation, and collision quenching, can reduce the fluorescence intensity of a compound called fluorescence quenching (Rezanejade Bardajee et al. 2017).

Dynamic quenching refers to the process in which fluorophore and quencher come into contact during the life of the excited state, whereas static quenching refers to fluorophore-quencher complex formation. The fluorescence quenching process can
be quantitatively evaluated at various temperatures (298, 304, and 310 K) using the Stern–Volmer equation (6). Figure 4.39c displays the Stern-Volmer plots of F_0/F vs $[Q]$ at three different temperatures (298, 304, and 310K) and the K_{SV} and K_q values were determined by slope with $\tau_0 \sim 10^{-8}$ s and shown in Table 4.10.

The fluorescence quenching mechanisms are usually classified as either dynamic quenching or static quenching and can be differentiated by their different dependence on temperature. The quenching constants decrease with the increase in temperature for static quenching, and the reverse effect is observed for dynamic quenching (Prasanth et al. 2017). The quenching constants values increase with the rise of temperature, which indicates that the quenching type of HSA-TRPIDC-CH$_3$ CdSQDs system. for HSA-CdSQDs system The quenching constants decrease with the temperature rise suggesting the static quenching as seen in Table 4.10.

Devi et al reported static quenching for the HSA-CdSQDs system (Devi et al. 2019). Rezanejade et al also reported static quenching for the HSA-CdSQDs and BSA systems (Rezanejade Bardajee et al. 2017). These observations suggest that capping the CdSQDs with TRPIDC-CH$_3$ ligand changes the quenching mechanism. The binding constant (K_b) and the number of binding sites between TRPIDC-CH$_3$ CdSQDs and HSA can be calculated according to the double logarithm equation. After measuring the fluorescence quenching intensities on HSA, the double logarithm algorithm was assessed by equation (7). Figure 4.39d showed the double-logarithm curve and Table 4.10 gives the corresponding calculated results. The number of binding sites (n) is approximately 1 for all temperatures. The n equal to 1 indicating that there is one class of binding site for TRPIDC-CH$_3$ CdSQDs and uncapped CdSQDs to HSA

| Table 4.10: The K_{SV}, K_q, K_b, and n of the HSA-TRPIDC-CH$_3$ CdSQDs (& uncapped CdSQDs). |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| SeNPs | T (K) | K_{SV} (10^2M^{-1}) | K_q $(10^{11} \text{M} \cdot 1 \text{S}^{-1})$ | r^2 | K_b (M^{-1}) | n | r^2 |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| TRPIDC-CH$_3$ | | | | | |
| 298 | 1.36 | 1.36 | 0.995 | 7.03x102 | 0.68 | 0.992 |
| 304 | 1.76 | 7.82 | 0.992 | 2.83x103 | 1.00 | 0.996 |
| 310 | 3.05 | 3.05 | 0.998 | 5.02x103 | 1.12 | 0.995 |
| Uncapped | | | | | |
| 298 | 4.22 | 4.22 | 0.995 | 4.91x103 | 1.00 | 0.994 |
| 304 | 3.33 | 3.33 | 0.996 | 1.09x103 | 0.89 | 0.999 |
| 310 | 3.01 | 3.05 | 0.993 | 3.45x102 | 0.75 | 0.996 |
Figure 4.39: (A) Fluorescence spectrum of HSA in the presence of different concentrations of TRPIDC-CH$_3$ CdSQDs. (B) a linear fit of the absorbances complex and increasing concentration of TRPIDC-CH$_3$ CdSQDs at 345 nm at different temperatures. (C) Stern-Volmer curves for the binding of HSA with TRPIDC-CH$_3$ CdSQDs at different temperatures. (D) log[(F$_0$ / F)/F] versus log[Q] plots for HSA versus TRPIDC-CH$_3$ CdSQDs at different temperatures.

4.3.4.3 Mode of binding

The van’t Hoff equation (8) was used to determine the driving force between TRPIDC-CH$_3$ CdSQDs and HSArom the van’t Hoff plot: we calculated enthalpy and entropy changes between lnK$_b$ and 1/T (Figure 4.40). The free energy change (ΔG) of the reaction was calculated using ΔH and ΔS in the equation (9). The binding parameters are listed in Table 4.11. The positive sign of ΔH and negative sign of ΔG indicates that the binding process is endothermic and spontaneous. The positive signs of ΔH and ΔS indicate the involvement of hydrophobic interactions HSA-TRPIDC-CH$_3$ CdSQDs complex formation. For the uncapped CdSQDs, the binding process is exothermic and spontaneous. The interaction forces involve were either van der Waals or hydrogen bonding. Chinnathambi et al reported similar results using uncapped CdSQDs (Chinnathambi et al. 2017).
Table 4.11: Thermodynamics parameters of HSA and quantum dots interaction.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>TRPIDC-CH$_3$ CdSQDs</th>
<th>Uncapped CdSQDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔH (kJ mol$^{-1}$ K$^{-1}$)</td>
<td>256,10</td>
<td>-170.89</td>
</tr>
<tr>
<td>ΔS (kJ mol$^{-1}$ K$^{-1}$)</td>
<td>0.901</td>
<td>-0.501</td>
</tr>
<tr>
<td>ΔG (kJ mol$^{-1}$ K$^{-1}$)</td>
<td>-12.40</td>
<td>-20.79</td>
</tr>
</tbody>
</table>

Forces
- hydrophobic interactions
- van der Waals hydrogen or van der Waals

Figure 4.40: Van’t Hoff plot of (Black) HSA-TRPIDC-CH$_3$ CdSQDs and (Red) HSA-CdSQDs.

4.3.4.4 FTIR studies

FTIR has appeared as an efficient technique for the characterization of protein-nanoparticles interaction. The FTIR spectrum of a protein exhibits several amide bands that represent different vibrations of the peptide moiety and most investigations have focused on the amide I band because it is sensitive to the change in the protein secondary structure (Rezanejade Bardajee et al. 2017). The component bands of amide I are distributed according to the well-established assignment condition. The amide I peak occurs in the 1600-1700 cm$^{-1}$ region (mainly the C=O stretch) and is widely used for investigating the secondary structures of proteins. Figure 4.41 shows the results of the analyses on the secondary protein structure of HSA before and after interaction with TRPIDC-CH$_3$ CdSQDs. The peak at 1643.76 cm$^{-1}$ shifted to 1636.30 cm$^{-1}$ after addition TRPIDC-CH$_3$ CdSQDs. This confirms the complex formation between HSA and TRPIDC-CH$_3$ CdSQDs.
4.3.5 Electrochemistry

4.3.5.1 Electrochemical characterization

Figure 4.42a displays cyclic voltammograms of GCE at varying modified stages in a 10 mL PBS (0.1 M, pH 7) containing 1 mM of K₃[Fe(CN)₆]/K₄[Fe(CN)₆], recorded at a scan rate of 100 mV/s. All the stages showed a well-defined reversible peak of [Fe(CN)₆]³⁻/⁴⁻ with a bare GCE having the lowest (curve i) and curve vi (GO:Hex/TRPIDC-CH₃ CdSQDs/MWCNTs/GCE) the highest anodic peak current. At each stage, there was a change in peak potential from 0.40 V to 0.23 V. GO:Hex enzyme composite in curve vi and curve i improved [Fe(CN)₆]³⁻/⁴⁻ peak current (anodic) relative to the other stages where the enzyme composite was absent. When looking at curve iii and curve iv a rise in current was found with the QDs capped with TRPIDC-CH₃ (curve iv). Similar alterations were found with curve v and vi, suggesting that the TRPIDC-CH₃ ligand influenced the surface area and the conductive behavior of the sensor.
4.3.5.2 Effect of pH

The electrochemical behavior of electrodes were evaluated in different pHs’ ranging from 5 to 9. CV measurement were conducted with ATP (0.02 mM) in 0.1 M PBS containing 1 mM K₄[Fe(CN)₆]/K₃[Fe(CN)₆] under the scan rate of 100 mV/s. As the pH of supporting electrolytes increased, the oxidized species of ATP became more stable as indicated by the increasing ratio of I_{pc}/I_{pa} accumulated in Appendix J (Table 16.3). For the GO:Hex/TRPIDC-CH₃ CdSQDs/MWCNTs/GCE as the pH increase, the anodic current decreased and the peak potential shifted towards the less positive values (Figure 4.43a and b). Figure 4.43c shows the pH voltammogram of GO:Hex/CdSQDs/MWCNTs/GC electrode there is a decrease in the anodic currents and shift in peak position to the more positive values in this pH range and after pH 7 the current becomes constant (Figure 4.43d).
4.3.5.3 Effect of Scan Rate

The effect of scan rate on anodic and cathodic peak current of GO:Hex/TRPIDC-CH$_3$ CdSQDs/MWCNTs/GC and GO:Hex/CdSQDs/MWCNTs/GC electrodes upon addition of 0.02 mM ATP in 0.1 M PBS containing 1 mM K$_4$[Fe(CN)$_6$]/K$_3$[Fe(CN)$_6$] at pH 7 was studied under the scan rate of 10–100 mV/s. In comparing the effect of scan rates on the cyclic voltammograms (Figure 4.44a and c), it is clear that both anodic and cathodic peaks were dominant throughout the scanning rate. The anodic and cathodic peak currents were increased with increasing scan rate. Good linearity was observed while plotting current against the scan rate (Figure 4.44b and d). The relationship between the redox peak currents and the scan rates were correlated at the anodic peak 0.9993 and cathodic peak 0.9982 for GO:Hex/TRPIDC-CH$_3$ CdSQDs/MWCNTs/GC electrode. For GO:Hex/CdSQDs/MWCNTs/GC electrode was for anodic peak 0.9867 and 0.9764 for cathodic peak.
Figure 4.44: Effects of scan rate from 10 -100 mV/s (A) GO:Hex/TRPIDC-CH₃CdSQDs/MWCNTs/GCE (B) corresponding plot of current vs scan rate, (C) GO:Hex/CdSQDs/MWCNTs/GCE using 0.02 mM ATP and (D) corresponding plot of current vs scan rate.

4.3.5.4 Effect of Deposition Time

The effects of deposition times for the GO:Hex/TRPIDC-CH₃CdSQDs/MWCNTs/GCE and GO:Hex/CdSQDs/MWCNTs/GC were investigated on an anodic peak current of 0.02 mM ATP in 0.1 M PBS containing 1 mM K₄[Fe(CN)₆]/K₃[Fe(CN)₆] at pH 7, in the time interval of 30 - 150 s. The GO:Hex/TRPIDC-CH₃CdSQDs/MWCNTs/GC electrode (Figure 4.45a) the current increased with the deposition time up to 60 s, beyond 60 s the anodic peak current decreases due to the saturation of the electrode surface with ATP. For the GO:Hex/CdSQDs/MWCNTs/GC electrode there was no uniformity of the current from 30 to 90 s, and after 90s saturation of electrode surface with ATP was observed as the current decreased. The addition of TRPIDC-CH₃ ligand caused an early saturation of the electrode surface.
Figure 4.45: Effects of deposition time on the oxidation current from 30 to 150 s in 5 mM ATP (A) GO:Hex/TRPIDC-CH$_3$CdSQDs/MWCNTs/GCE (B) GO:Hex/CdSQDs/MWCNTs/GCE.

4.3.5.5 Indirect SWV Technique Quantitative Detection of ATP

Indirect electrochemical determination of ATP using redox probe ([Fe(CN)$_6$]$^{3/-4}$) as a reference peak, to observe the behavior of ATP with TRPIDC-CH$_3$ CdSQDs (Capped) and the uncapped CdSQDs was performed using a SWV in 10 mL PBS (0.1 M, pH 7) containing 1 mM of K$_3$[Fe(CN)$_6$]/K$_4$[Fe(CN)$_6$] recorded at a scan rate of 100 mV/s respectively where its peak current was monitored upon the addition of ATP (0.2-0.15 mM). The SWV of the response of ATP on the GO:Hex/TRPIDC-CH$_3$ CdSQDs/MWCNTs/GC and GO:Hex/CdSQDs/MWCNTs/GC electrodes is displayed in Figure 4.46a and 4.46c respectively.

Upon the addition of ATP (0.02 – 0.15 mM), there was a decrease in the redox probe peak current, the electrochemical signal is produced by the oxidation of H$_2$O$_2$ at the electrode surface in the presence of ATP, the enzymatic reaction catalyzed by Hex is consuming glucose and the signal decreases (Kueng et al. 2004). Figures 4.46b and 4.46d display the linear plot between the concentrations of ATP and the peak currents of [Fe(CN)$_6$]$^{3/-4}$, with correlation coefficients of 0.9789 and a LOD of 0.06 mM and a LOQ of 0.017 mM for the GO:Hex/TRPIDC-CH$_3$ CdSQDs/MWCNTs/GC electrode and GO:Hex/CdSQDs/MWCNTs/GC electrode had a correlation coefficient of 0.9808 and a LOD of 0.05 mM and a LOQ of 0.05 mM respectively.
Figure 4.46: (A) SWV voltammogram GO:Hex/ TRPIDC-CH₃ CdSQDs/MWCNTs/GCE at different concentrations (0.02–0.15 mM), (B) Corresponding calibration curve showing linear dependence of the peak currents versus concentration of ATP, (C) SWV voltammogram GO:Hex/CdSQDs/MWCNTs/GCE and (D) Corresponding calibration curve.

4.3.5.6 Reproducibility and Stability

The stability of the formed biosensors was tested using SWV (Figures 4.47a and 4.47b) and measured ATP response for 10 replication measurements (n=10) over one day using the same coating. The [Fe(CN)₆]₃⁻/₄⁻ peak current was indirectly proportional to the ATP concentration. The redox probe current peak decreased to some degree and reached a saturation point where the sensors were unable to detect the addition of ATP, the peak current remained stable (Figure 4.47). The sensor with the uncapped QDs (insert b) achieved saturation faster than the sensor with the capped QDs (insert a). The TRPIDC-CH₃ ligand had an impact. The reproducibility of the biosensors was confirmed by further testing of the [Fe(CN)₆]₃⁻/₄⁻ peak current by the addition of ATP (0.02–0.24 mM) using three prepared electrodes with the same coating. Figure 4.47c and d display the current influence on each concentration. The %RSD for 6 successive
detections is about 2.63%, for the sensor with TRPIDC-CH₃ CdSQDs and 2.90% with the uncapped CdSQDs, indicating acceptable fabrication reproducibility.

Figure 4.47: (A) Square wave voltammogram GO: Hex/ TRPIDC-CH₃CdSQDs/MWCNTs/GCE at different concentrations of ATP (0 – 0.24 mM) and (B) Corresponding line graph of concentration vs current, showing the effect of current, (C) Square wave voltammogram GO:Hex/CdSQDs/MWCNTs/GCE at different concentrations of ATP (0 – 0.24 mM) and (D) Corresponding line graph of concentration vs current, showing the effect of current.

4.3.5.7 Real Samples analysis

The optimized sensitive SWV procedure was successfully applied for the determination ATP in two commercially available tablet samples, Swanson peak ATP, and Vita-thion tablets. The samples were spiked with three different concentrations (0.05, 0.07, and 0.10 mM) of the standard solution of ATP. The results are shown in Table 4.12 for a response of ATP on the GO:Hex/TRPIDC-CH₃CdSQDs/MWCNTs/GC and GO:Hex/CdSQDs/MWCNTs/GC electrodes. Base on the obtained results CdSQDs had a time detecting ATP in these this may be due to interferences in the
sample. The GO:Hex/CdSQDs/MWCNTs/GC electrode had a lower percentage recovery compared to the GO:Hex/TRPIDC-CH$_3$CdSQDs/MWCNTs/GCE.

Table 4.12: Results for the detection of ATP in spiked real samples analysed.

<table>
<thead>
<tr>
<th>Samplesa</th>
<th>GO:Hex/TRPIDC-CH$_3$CdSQDs/MWCNTs/GCE</th>
<th>GO:Hex/CdSQDs/MWCNTs/GCE</th>
<th>Recovery (mM)</th>
<th>Relative Recovery ($%$)</th>
<th>RSD (%)</th>
<th>Relative Errorb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swanson</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiked 1</td>
<td>0.07</td>
<td>80</td>
<td>2.33</td>
<td>-20.41</td>
<td>0.07</td>
<td>72</td>
</tr>
<tr>
<td>Spiked 2</td>
<td>0.05</td>
<td>76</td>
<td>2.49</td>
<td>-23.78</td>
<td>0.05</td>
<td>78</td>
</tr>
<tr>
<td>Spiked 3</td>
<td>0.1</td>
<td>81</td>
<td>1.56</td>
<td>-19.33</td>
<td>0.1</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vita-thion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiked 1</td>
<td>0.07</td>
<td>78</td>
<td>3.34</td>
<td>-21.9</td>
<td>0.07</td>
<td>70</td>
</tr>
<tr>
<td>Spiked 2</td>
<td>0.05</td>
<td>71</td>
<td>0.41</td>
<td>-28.67</td>
<td>0.05</td>
<td>69</td>
</tr>
<tr>
<td>Spiked 3</td>
<td>0.1</td>
<td>86</td>
<td>1.85</td>
<td>-13.96</td>
<td>0.1</td>
<td>75</td>
</tr>
</tbody>
</table>
CHAPTER 5: CONCLUSION

In this study, a comparison study of pyrazole capped and uncapped nanomaterials were investigated. The nanomaterials (SeNPs, AgNPs, and CdSQDs) were successfully synthesized via a green method using plant extracts of *allium sativum* cloves, *pelargonium*, and *moringa* leaves. Based on the characterization techniques used, the UV-Visible spectra in the range of 200 – 800 nm showed no shift in wavelength position but an increase in the absorbance in the capped nanomaterials. The HR-TEM analysis confirmed the formation of the nanomaterials, there were no changes in the morphology but there was an increase in the average diameter due to the introduction of the ligand. The FTIR measurements showed no new functional groups but only a shift in the wavenumbers.

There was an overall low cytotoxic effect of the synthesized nanomaterials against MCF-7, A549, and HEK293 cells, the highest percentage activity of 56.9±0.016 and 63.8±0.005 was observed with TRPIDC-CH3 SeNPs and the uncapped CdSDQs, respectively at 100 µg/ml against MCF-7. Although overall cytotoxicity was low, a dose-dependent increase in cytotoxic activity was observed for each of the nanomaterials, as the concentration increased from 50 µg/ml to 100 µg/ml. Low cytotoxic activity was observed with all the screened nanomaterials against HEK293. A morphological examination of MCF-7 Cells was performed on the nanomaterials with the highest percentage of activity (TRPIDC-CH3 SeNPs and uncapped CdSDQs). The controlled cells appeared in normal form and were bound to the surface and MCF-7 cells that were exposed to these nanomaterials lost their normal shape and cell adhesion ability, shrinking and decreasing in cell density.

Furthermore, the interaction between TRPIDC-CH3 capped and uncapped nanomaterials with HSA by employing spectroscopic techniques under physiological conditions were investigated. The increasing values of K_q with an increase in temperature indicated the presence of a dynamic quenching mechanism. The addition of the ligand changed the quenching mechanism when compared to the uncapped nanomaterials (static quenching mechanism). The values of n revealed the presence of a single class of binding sites on HSA with both capped and uncapped. Thermodynamic parameters indicated that the hydrophobic interactions plays a major
role in the interactions of capped nanomaterials with HSA and for the uncapped indicated that van der Waals forces or hydrogens bond. The hydrophobic interactions are relatively stronger than van der Waals forces or hydrogens bond (Atkins et al. 2011), therefore it likely that the capped nanomaterials formed stronger complex interactions with HSA. These results make a better understanding of the nanomaterials -proteins interactions, which is important for the further applications of TRPIDC-CH$_3$ capped nanomaterials in the biological area.

Indirect electrochemical detection of ATP via dual-enzymatic biosensors, using an electroactive species like [Fe(CN)$_6$]$^{3/-4}$ (redox probe) as a reference peak, to observe the behavior of ATP upon its addition. The modified GC electrodes were prepared by simple coating with colloidal solutions of TRPIDC-CH$_3$ capped or uncapped nanomaterials, MWCNTs and the enzymes GO and Hex at electrode surfaces. Both the sensors with TRPIDC-CH$_3$ capped or uncapped nanoparticles (SeNPs and AgNPs) exhibits a major improvement in sensitivity, reproducibility (standard deviation <4%), and ease of fabrication of ATP biosensing systems. However, for CdSQDs the addition of the TRPIDC-CH$_3$ ligand affected the surface area and conductive activity of the sensor leading to a decrease in sensitivity and weakening the electrochemical stability of the QDs.
REFERENCES

Maccelli, A., Cesa, S., Cairone, F., Secci, D., Menghini, L., Chiavarino, B., Fornarini, S., Crestoni, M. E. and Locatelli, M. 2020. Metabolic profiling of different wild and

APPENDIX A: fluorescence quenching results of uncapped SeNPs

(A) Fluorescence quenching of HSA in the presence of different concentrations of SeNPs. (B) Linear fit of the absorbances complex vs increasing concentration of SeNPs at 345 nm at different temperatures. (C) Stern–Volmer curves for the binding of HSA with SeNPs at different temperatures. (D) log[(F₀ / F)/F] versus log[Q] plots for HSA versus SeNPs at different temperatures.
APPENDIX B: fluorescence spectra of HSA-TRPIDC-CH$_3$ SeNPs at different temperatures
APPENDIX C: fluorescence spectra of HSA-SeNPs at different temperatures
APPENDIX D: fluorescence quenching results of uncapped AgNPs

(A) Fluorescence quenching of HSA in the presence of different concentrations of AgNPs. (B) linear fit of the absorbances complex vs increasing concentration of AgNPs at 345 nm at different temperatures. (C) Stern–Volmer curves for the binding of HSA with AgNPs at different temperatures. (D) log\([F_0 / F]/F\) versus log[Q] plots for HSA versus AgNPs at different temperatures.
APPENDIX E: fluorescence spectra of HSA-TRPIDC-CH₃ AgNPs at different temperatures
APPENDIX F: fluorescence spectra of HSA-SeNPs at different temperatures
APPENDIX G: fluorescence quenching results of uncapped CdSQDs

(A) Fluorescence spectrum of HSA in the presence of different concentrations of CdSQDs. (B) linear fit of the absorbances complex and increasing concentration of CdSQDs at 345 nm at different temperatures. (C) Stern–Volmer curves for the binding of HSA with CdSQDs at different temperatures. (D) log[(F₀ / F)/F] versus log[Q] plots for HSA versus CdSQDs at different temperatures.
APPENDIX H: fluorescence spectra of HSA-TRPIDC-CH$_3$ CdSQDs at different temperatures
APPENDIX I: fluorescence spectra of HSA-CdSQDs at different temperatures
APPENDIX J: Cyclic voltammetry data of 0.02 mM ATP in the phosphate buffers of different pH values. (Scan rate = 100 mV/s)

Table 16.1: $I_p/c/I_a$ data of capped and uncapped SeNPs

<table>
<thead>
<tr>
<th>pH</th>
<th>I_p (uA)</th>
<th>I_c (uA)</th>
<th>$I_p/c/I_a$</th>
<th>I_p (uA)</th>
<th>I_c (uA)</th>
<th>$I_p/c/I_a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>69.07</td>
<td>-71.85</td>
<td>-1.04025</td>
<td>90.11</td>
<td>-111.22</td>
<td>-1.23427</td>
</tr>
<tr>
<td>6</td>
<td>44.53</td>
<td>-54.08</td>
<td>-1.21446</td>
<td>77.04</td>
<td>-89.53</td>
<td>-1.16212</td>
</tr>
<tr>
<td>7</td>
<td>21.14</td>
<td>-21.56</td>
<td>-1.01987</td>
<td>69.07</td>
<td>-71.69</td>
<td>-1.03793</td>
</tr>
<tr>
<td>8</td>
<td>17.37</td>
<td>-16.77</td>
<td>-0.96546</td>
<td>59.52</td>
<td>-56.78</td>
<td>-0.95397</td>
</tr>
<tr>
<td>9</td>
<td>16.02</td>
<td>-13.76</td>
<td>-0.85893</td>
<td>55.02</td>
<td>49.94</td>
<td>0.90767</td>
</tr>
</tbody>
</table>

Table 16.2: $I_p/c/I_a$ data of capped and uncapped AgNPs

<table>
<thead>
<tr>
<th>pH</th>
<th>I_p (uA)</th>
<th>I_c (uA)</th>
<th>$I_p/c/I_a$</th>
<th>I_p (uA)</th>
<th>I_c (uA)</th>
<th>$I_p/c/I_a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>15.22</td>
<td>-15.30</td>
<td>-1.00526</td>
<td>18.88</td>
<td>-19.05</td>
<td>-1.00900</td>
</tr>
<tr>
<td>6</td>
<td>13.70</td>
<td>-13.46</td>
<td>-0.98248</td>
<td>17.68</td>
<td>-17.56</td>
<td>-0.99321</td>
</tr>
<tr>
<td>7</td>
<td>12.82</td>
<td>-10.90</td>
<td>-0.85023</td>
<td>17.02</td>
<td>-13.95</td>
<td>-0.81962</td>
</tr>
<tr>
<td>8</td>
<td>9.01</td>
<td>-6.73</td>
<td>-0.74694</td>
<td>10.82</td>
<td>-8.42</td>
<td>-0.77819</td>
</tr>
<tr>
<td>9</td>
<td>8.05</td>
<td>-5.66</td>
<td>0.70311</td>
<td>6.06</td>
<td>-3.90</td>
<td>-0.64356</td>
</tr>
</tbody>
</table>

Table 16.3: $I_p/c/I_a$ data of capped and uncapped CdSQDs

<table>
<thead>
<tr>
<th>pH</th>
<th>I_p (uA)</th>
<th>I_c (uA)</th>
<th>$I_p/c/I_a$</th>
<th>I_p (uA)</th>
<th>I_c (uA)</th>
<th>$I_p/c/I_a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>45.25</td>
<td>-37.10</td>
<td>-0.81989</td>
<td>10.60</td>
<td>-14.50</td>
<td>-1.36792</td>
</tr>
<tr>
<td>6</td>
<td>29.00</td>
<td>-23.08</td>
<td>-0.79586</td>
<td>11.86</td>
<td>-14.50</td>
<td>-1.22260</td>
</tr>
<tr>
<td>7</td>
<td>22.05</td>
<td>-13.87</td>
<td>-0.62902</td>
<td>10.49</td>
<td>-10.37</td>
<td>-0.98856</td>
</tr>
<tr>
<td>8</td>
<td>11.37</td>
<td>-9.79</td>
<td>-0.86104</td>
<td>9.02</td>
<td>-7.48</td>
<td>-0.82926</td>
</tr>
<tr>
<td>9</td>
<td>8.25</td>
<td>-6.93</td>
<td>-0.84000</td>
<td>7.64</td>
<td>-5.79</td>
<td>-0.75783</td>
</tr>
</tbody>
</table>
APPENDIX K: Cytotoxicity activity of the nanomaterials against the three cells

Table 17.1: Cytotoxicity activity of the nanomaterials against MCF-7

<table>
<thead>
<tr>
<th>Nanomaterials</th>
<th>Percentage Cytotoxicity MCF-7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 µg/ml</td>
</tr>
<tr>
<td>TRPIDC-CH₃ SeNPs</td>
<td>56.9±0.016<sup>ey</sup></td>
</tr>
<tr>
<td>Uncapped SeNPs</td>
<td>32.6±0.027<sup>cx</sup></td>
</tr>
<tr>
<td>TRPIDC-CH₃ AgNPs</td>
<td>25.8±0.086<sup>bx</sup></td>
</tr>
<tr>
<td>Uncapped AgNPs</td>
<td>18.7±0.022<sup>cx</sup></td>
</tr>
<tr>
<td>TRPIDC-CH₃ CdSQDs</td>
<td>34.6±0.091<sup>ey</sup></td>
</tr>
<tr>
<td>Uncapped CdSQDs</td>
<td>63.8±0.005<sup>y</sup></td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>97.4±0.03<sup>by</sup></td>
</tr>
</tbody>
</table>

Values are represented mean ±SD, Means of growth inhibition without a common letter differ significantly (P<0.05), a,b,c,d,e,f,g shows differences per row and x ,y shows differences between different concentrations.

Table 17.2: Cytotoxicity activity of the nanomaterials against A549

<table>
<thead>
<tr>
<th>Nanomaterials</th>
<th>Percentage Cytotoxicity A549</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 µg/ml</td>
</tr>
<tr>
<td>TRPIDC-CH₃ SeNPs</td>
<td>45.6±0.19<sup>ey</sup></td>
</tr>
<tr>
<td>Uncapped SeNPs</td>
<td>60.9±0.13<sup>y</sup></td>
</tr>
<tr>
<td>TRPIDC-CH₃ AgNPs</td>
<td>31.7±0.025<sup>ey</sup></td>
</tr>
<tr>
<td>Uncapped AgNPs</td>
<td>38.0±0.04<sup>ey</sup></td>
</tr>
<tr>
<td>TRPIDC-CH₃ CdSQDs</td>
<td>41.8±0.09<sup>ey</sup></td>
</tr>
<tr>
<td>Uncapped CdSQDs</td>
<td>43.7±0.15<sup>dy</sup></td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>98.1±0.09<sup>y</sup></td>
</tr>
</tbody>
</table>

Values are represented mean ±SD, Means of growth inhibition without a common letter differ significantly (P<0.05), a,b,c,d,e,f,g shows differences per row and x ,y shows differences between different concentrations.

Table 17.3: Cytotoxicity activity of the nanomaterials against HEK293

<table>
<thead>
<tr>
<th>Nanomaterials</th>
<th>Percentage Cytotoxicity HEK293</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 µg/ml</td>
</tr>
<tr>
<td>TRPIDC-CH₃ SeNPs</td>
<td>-154.1±0.012<sup>cx</sup></td>
</tr>
<tr>
<td>Uncapped SeNPs</td>
<td>-159.2±0.022<sup>bx</sup></td>
</tr>
<tr>
<td>TRPIDC-CH₃ AgNPs</td>
<td>1.8±0.005<sup>by</sup></td>
</tr>
<tr>
<td>Uncapped AgNPs</td>
<td>-172.2±0.01<sup>ax</sup></td>
</tr>
<tr>
<td>TRPIDC-CH₃ CdSQDs</td>
<td>2.04±0.007<sup>xy</sup></td>
</tr>
<tr>
<td>Uncapped CdSQDs</td>
<td>2.3±0.007<sup>y</sup></td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>9.7±0.008<sup>by</sup></td>
</tr>
</tbody>
</table>

Values are represented mean ±SD, Means of growth inhibition without a common letter differ significantly (P<0.05), a,b,c,d,e,f,g shows differences per row and x ,y shows differences between different concentrations.