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Abstract  

This paper outlines the optimization of cost of electrical energy consumption for a small mi-
crogrid typical of a residential area where each household has renewable generation capability 
and the daily load is portioned into essential none-interruptible and schedulable or interrupti-
ble loads. Dual tariffs exist, for buying and the other for in-feed into the utility grid. The op-
timization makes appliances scheduling decisions to suit prevailing power availability as well 
amount of power to sell or procure from the utility depending on availability and prevailing 
real time pricing. We assume availability of time-variant energy parameters, then formulate a 
global optimization problem whose solutions leads to quantification of the optimal amount of 
energy purchased and sold for each of the individual households. When the unrealistic as-
sumption of availability of information is removed from the implementation of the global op-
timization, an online algorithm that only requires the current values of the time varying sup-
ply and demand processes shows by simulation that the distributed algorithm can realise 
credible scheduling of prosumer household electricity usage.  This is imperative as the very 
requirement of involving the consumer for appliances scheduling defeats the optimization 
cause as humans are not suitable for such repetitive and mundane tasks.  
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Introduction  
 
\The per capita global electrical energy consumption has continuously risen since the 1960s in 
all economic sectors, commercial, residential sector [1], Figure 1. The residential sector 
amounted to an average of 30% of the overall electric energy consumption, while the con-
sumption in all buildings represented about 40% [2][3] . The residential electrical loading is 
key in the context of the emerging Smart Grid (SG) paradigm consumption value chain and 
energy management methodologies riding on emergent technologies and innovation [4][5]. 
The focus of the SG control approaches is on technical, economical and identifying the possi-
bilities of incentivizing the Consumer. In most countries growing electricity demand is now 
limited by generation infrastructure due to aging, capacity and pollution inhibiting factors.  
The concept of smart grid inclusive of clean Renewable Energy Sources (RES) has emerged 
[6].  
Full potential of the SG is enabled by ICT communication which enables Demand Side Man-
agement (DSM) to be implemented combined with Home Energy Management Systems 
(HEMS), [7][8].   Residential energy management aims to decrease the electricity costs and 
also reduce the Peak-to-Average Ratio (PAR). In using tariffs DSM encourages prosumers to 
reduce or shift consumption to off-peak hours. This is achieved by scheduling the energy ob-
tained from the grid and internal RES elements according to some optimization criterion such 



 

 

 

 

that essential or none-interruptible (NI) loads are met instantly and run to the full operational 
cycle without interruption. NI loads cannot be easily rescheduled to operate at other time 
slots. However, they can be feed from RES for which peak hourly consumption or power is 
optimized.  Schedulable loads or interruptible can be moved to times of low energy demand 
hence attractive tariffs. The advantages of the SG are increased footprint of RES such as 
wind, solar and flexibility enabled by DSM.  Electricity generated by prosumers from RES 
helps the prosumer to save on electricity costs and in systems where grid in-feed is possible 
through net metering, a ‘profit’ or credit can be made by feeding the excess renewable energy 
back into the grid [9].  

 
Figure 1: World/Africa TWhr Consumption Trend 

 
 
The great shortcoming of renewable energy sources is supply uncertainty due to the random 
natural weather elements [10] as they impact generation. It is therefore imperative to adopt 
hybrid systems [11], or provide a mixture of traditional sources of power and storage to miti-
gate renewables climate induced random phenomenon [12][8].  
 Another strategy for mitigating volatility of the renewables is Demand Response (DR) which 
works through flexible [9] [10] consumer’s incentives to curtail load or shift consumption to 
off-peak periods.  The renewable power supplies are deployed to deliver the energy when it is 
available, [10] within specific time windows. Energy management strategies aim to maximize 
usage of energy drawn from the renewable sources and minimize energy drawn from the util-
ity grid.  When excess renewable energy is available consumers can feed into the grid at an in 
feed rate as determined by the appropriate utilities.   
 A number of DSM tariff regimes exist based on time of day and seasonal variations. Some 
tariffs define energy cost every hour or every 24 hours in advance. The 24 hour billing period 
is segmented into time intervals such as peak time. This is when consumption is very high. 
Off-peak time is when consumption is low and mid-peak corresponds to mid-intervals be-
tween the two extremes. Should contingency events occur, consumers are billed at maximum 
rates than any other times as the stability of an entire system can be compromised. The preva-



 

 

 

 

lent tariffs are Time of Use (TOU) Pricing, Real Time Pricing (RTP), Critical Peak Pricing 
(CPP) and Flat Rate Pricing (FRP). 
Time of Use (TOU) Pricing:  In this pricing tariff the day is split into low, high or mid tariff 
time periods and prices are predetermined depending on the season or month whereby the on-
peak time periods have the highest electricity rates [2][3]. Other countries have multi-
segments of these time slots.  Real Time Pricing (RTP):  RTP signal is also similar to TOU 
when prices change hourly. At times when energy demand is high, price will be correspond-
ingly high and the converse applies.   Critical Peak Pricing (CPP):  CPP significantly in-
creases the price when system is constrained and lowers the prices on non-constrained or 
normal days of the year [4].  Flat Rate Pricing (FRP): Utility charges a fixed rate for energy 
instead of charging by the hour.  
This paper looks at minimizing electrical energy cost for a prosumer on real time pricing tariff 
and on-board or local renewable generation. Each consumer in its load mix has essential ap-
pliances (NIA) i.e. the non-shiftable and shiftable ones (IA) [13]. Thus essential or must run 
and shiftable loads are the two predominant load types.  Cost reduction consists of scheduling 
suitable loads to run during times of favourable tariffs as determined form the RTP signals 
from the utility, minimizing purchases from the utility or conversely maximizing utilization of 
local RES and finally maximizing the amount of energy transacted to the grid on favourable 
tariffs. In this pursuit we formulate the optimization problem from which we deduce the op-
timal electricity consumed, sold and purchased for each prosumer whiles assuming the 
knowledge of current and future modelling parameters. Cognisant of the limitations of the as-
sumption on availability of model parameters a distributed online algorithm based only on 
current values of the time-varying supply and demand processes is formulated. The simula-
tion results show that the proposed strategy can be effective for optimizing energy consump-
tion.   
The outline of the paper is as follows. In Section II, models for RES are summarised. The 
formulation for the optimization problem with known parameters is outlined in Section III. 
The Lyapunov optimization based online algorithm is presented in Section IV. Section V 
deals with a short case study simulation results of the optimization method outlined and the 
paper is concluded in Section VI.  
 
PV and Wind Turbine Modeling 
 
For a realistic PV model, various OEP data is required. Weather parameters within a given 
locality are freely available from various national online weather data for download [12]. The 
same applies to the wind parameters. First we present the models for the distributed energy 
sources i.e. PV and Wind Turbine (WT) generators. Definitions;  
 
A: PV and Wind Turbine Models 
 
PV Generator Model: The PV generations depends on several factors for instance weather 
conditions as daily irradiance, seasonality, number of PV module cells, temperature etc. Since 
irradiance is stochastic, the generation of the PV can be described by a stochastic pdf model.  
The Beta bimodal distribution function (1) is used [14];  
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The parameters α and β, determine the shape of the Beta distribution function )(sf .  Solar ir-
radiance is represented by s  in kW/m2.    nd 2  denote the mean and variance of the solar 
irradiance.  Output power of the PV module is dependent on the solar irradiance and site am-
bient temperature as well as the characteristics of the PV module. 
 
Table 1. Model Parameters 

 
 For a given specific site the Beta pdf generates the solar irradiance at a specific time and the 
output power during the different states is estimated from (2):  

 IVFNP ffpv         

Whereby the parameter in (2) are defined by (3). 
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Wind Turbine Model:  WT output depends on the wind speed profile. We use the Weibull pdf 
(4) to represent the wind speed profile [14].  
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The Weibull distribution interpolates between the exponential and Rayleigh distributions and 
for certain values of v and  , the Rayleigh distribution is closer to the wind distribution func-
tion.  Based on estimated speeds the generated power from the wind can be estimated as fol-
lows;    

PV & WT Source Parameters Parameters 

Description 

N ,  ffF  Number of PV cells and fill factor 

mppV  Cell output voltage at maximum power point. 
 

mppI  Module current at maximum power point. 
 

OCV , scI  PV open circuit voltage and PV short circuit current 
 

iv kk ,  Voltage and current coefficients  

cellT  Cell temperature. 
 

aT , NT  Ambient temperature & Nominal operating temperature on degrees Celsius. 

rP  WT rated power output 
 

inv , outv  WT cut-in speed and WT rated speed, m/s. 
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The WT power output dependents on the site wind speed as well as the manufacture power 
performance curve parameters. Once the Rayleigh pdf is generated for a specific time, the 
power output at the different states is calculated for that time interval as [5]. If solar irradiance 
belongs to the interval  21,sss , the probability that irradiance s lies in this interval at a specific 
time interval is mathematically the cpf i.e., cumulative probability function which by integra-
tion is;   

  
2

1

s

s
pvPV dssf        

and similarly for the WT;              
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The pdf of each DG (6) and (7) can be divided into time periods in which solar irradiance and 
wind speed range within certain limits. For each such time period, there are a number of states 
for solar irradiance and wind speed. The joint probability of both irradiance and wind speed to 
be within the given intervals is given by the convolution assuming events are independent i.e,   

WTPV        

is  and 2,1, ivi  are respective irradiance and wind speed limits in particular state.  At any 
given time the total power reP from both RES is governed by the probability (8) and  subject to 
an upper limit, max,reP .   

 
B: Smart Grid Model 
The SG topology is depicted in Figure.2 and the basic ICT interfaces configuration. Essential 
appliances are none-interruptible and shiftable appliances’ on-off times can be shifted to dif-
ferent time windows on the 24 hour optimization cycle. In the grid model,   i.e., 

 Nkk ,...,1,,...,2,1   represents the set of consumers with cardinality N .  The 24 hour day is 
divided into a uniform set of time slots H such that  Hhh ,...,1,,...,2,1  . To each prosumer is 
connected a Smart Meter (SM) incorporating an Energy Scheduling Controller (ESC).  For 
the kth household the set of appliances is kA  has cardinality kN . Each appliance ‘a’ for kth con-

sumer, at the hth hour time interval consumes h
akx ,  energy. Over the 24-hours period the energy 

consumption vector akx , for the kth consumer’s appliance ‘a’ is,   H
akakak xxx ,

2
,

1
, ,...,, . 

From the utility side a centralized scheduler optimizes the entire system based on collective 
data it gathers from individual SM.  The total energy consumption for kth household at hth time 
interval is,  
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The total load for kth consumer over the full time horizon is,    
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Accordingly, the scheduled loading for kth consumer is the set, 

 H121 ,,...,, k
H
kkkk lllll        

Taken over all the N consumers in the microgrids network, the utility sees an hourly load of;    
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Figure 2. Smart Grid Model Outline 

 

 
C: Model for Shiftable Load 
 
An elastic appliance means it is flexible i.e. its power consumption pattern can be scheduled 
to different times. Elastic loads possess a flexible finishing time set by the user within certain 
consumption periods and specified power ratings. Refrigerator, HVAC, irons, washing ma-
chines, pool pumps, storage heating system etc., fall into this category. Let sh

kA and shN  repre-
sent the set and the cardinality of this set for kth household. The start and stop time of shiftable 



 

 

 

 

appliance are confined to the time window,  endakstartakshH ,,,, ,....,   and the total power sh
KE of 

all shiftable appliances for the kth consumer is;    
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such that,  shak
h

ak AaHhx  ,,0 ,, . 

For each appliances they is an upper and lower bound to the power consumption according to,   

shakak
h

akak AaHhx  ,, ,
max
,,

min
,      

                
D: Inellastic  or None-Shiftable Load 
 
Typical of none shiftable loads are luminaries, TVs and  PCs.  Energy consumption for these 
is fixed.  Once they are required they must start and they is no elasticity in starting times. The 
set of inelastic loads is represented by in

kA  and inN represents and the cardinality of this set for 
the kth household.  The start and stop time of none shiftable appliance is confined to the same 
time window  Hhh ,...,1,,...,2,1  .  The total power of all none-shiftable appliances for the kth 
consumer is;    
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Where  h is 1 when the appliance is on otherwise it is zero if the appliance is off. The aggre-
gate essential and shiftable load for all N  users or households when time is t  can be ex-
pressed as;  
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E: Power Flow Modeling 
 
In Figure.3,  the LHS depicts two possible electrical power sources feeding a residential con-
sumer. Energy is either sourced from the utility grid  tPg or from the renewable generators 

 tPre .     tPtP ep ,  and  tPs  are renewable power components sold to the grid, required to meet 

essential and a portion to feed the shiftable load.  Similarly   tPge   and  tPgs  are power com-

ponents sourced from the utility grid to meet essential and shiftable load shortfalls respec-
tively. The energy balance relationships for the renewable and utility generation can then be 
specified as in (17) and (18) respectively. 

       tPtPtPtP sepre        

        max0, PtPtPtPtP ggsgeg        



 

 

 

 

 Let  teg  represent the tariff of the grid electricity at time t  and define  tep  as the feed-

in tariff at time t  as set by the utility. It follows that at any time t the cost of electricity to the 
prosumer is    tetP gg   less the benefit accrued from a portion of renewable energy feed into 

the grid (19). 

         tetPtetPtC ppgg        

For each consumer as earlier stated they are essential and flexible or shiftable appliances or 
loads.  

GRID

DISTRUBUTED
GEN

Essential
Load

Shiftable
Load

 
Figure 3.  Microgrid Power Transaction Model 

 
 
Further, each household has a renewable energy source that provides energy at a time slot h . 

     tAPP ssgstt  01        

This process is time varying and unpredictable. Demand for this energy arrives randomly ac-
cording to a process )(ta being the amount of energy that is requested at time h. Flexible loads 
are delay-tolerant in their electrical energy consumption patterns. The delay-sensitive or es-
sential loads have higher service priority than the delay-tolerant loads. An optimization prob-
lem is formulated to minimize the total electricity cost and the operation delay maxt of flexible 
demands by obtaining the optimal energy management decisions [13]. Shiftable loads can be 
delayed into a queue within a certain time window then serviced on first come first serve ba-
sis. We define  t  or t  as the total queued energy requirement at time ht  .  The total queued 
energy demand t at a time t  update is (20).  
At each time slot h we use all of our renewable supply reP  to power the queued loads on First-
In-First-Out (FIFO) basis. Should there be a shortfall from the renewables to meet the demand 
timeously the extra energy i.e.,    tAtAP sere   is procured from the utility grid at a cost to be 
minimized.  The expected mean of the queued demand over a time period T  is, 
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This is  subject to,   maxPt  . 



 

 

 

 

                                
Typically, dissatisfaction of consumers’ stems from appliances’ switch-on delay, which is it-
self a result of service priority of hierarchical loads in residential microgrids with DSM.  
Therefore, energy cost minimization in such schemes should also be balanced with respect to 
minimizing the on-delay of appliances by adjusting the energy consumption queue according 
to different classes of demands.  The upper bound maxP does not imply an acceptable limit on 

maxt the load service delay.  To achieve this a modification by way of delay aware energy 
demand 1t  virtual queue after [6][7] is introduced in accordance with the recursive update 
expression,  

   01   sgstt PP       

such that,                                 
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  0ε       

The fictitious queue 1t  grows by   if 1t , i.e. queued power request are increasing. By 
placing upper limits on t and 1t , then maintaining a limit on maxt is possible.  Proof thereof 
is outlined in  [15]. 
 
Optimization problem definition 
 
The objective is to minimize the expected average cost of electrical energy subject to meeting 
essential loads and user comfort that secures a worst shiftable load demands delay whose 
maximum is maxt . With this we can formulate the optimization problem as,  
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Subject to, 

        max,0: rereeege PtPtAtPtP        

  max,0 gg PtP        

Where  tC  is net grid energy cost to consumer as given in (19).  This optimization problem 
can be formulated as a multistage finite horizon i.e. t , discrete dynamic programing prob-
lem which can thus be solved employing backward induction dynamic programming (17) sub-
ject to the constraints set out in (14)-(16). At any given time, the system state vector is de-
fined by the quintet,           tetetAtPtP pseeret ,,,,x . 

 Variables that can be manipulated are         tPtPtPtP segsget ,,,x . The backward dynamic pro-

gramming induction minimization is formulated as [16]; 
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Where  t,x is the objective function at time t,  tC ,x  is the electricity cost at time t [9].  
 xU and  tx  define the feasibility space of control actions and states at time t. It is generally 

difficult to solve (17) dynamically with complete state,  tx  information. We adopt a modified 
Lyapunov approach to formulate an online algorithm that dispenses with the requirements of 
having knowledge of future states [10].    
 
Online Distributed Algorithm Outline According to Lyapunov Method 
Define a positive discrete linear system [17], where  the state vector is n

t x  and input con-

trol vector m
t u , system matrix nnA  , input weighting vector nb  and an  equilibrium 

state eqx . 

ttt bA uxx 1       

A positive discrete time system tt Axx 1 has a asymptotic equilibrium if and only if there ex-
ists a strictly positive vector tx  such that   0  tnn xIA . For such a system we may choose a 
Lyapunov function of the form given in (29-30). 

  t
T
ttV xxx         

or in our case from;                                      

   2221 tttV x       

Algorithms for queuing stability are developed by defining a Lyapunov function then employ-
ing a greed algorithm to minimize a bound on   t  (31) in every time slot [16]. 

    tttt VVEt ,1         

Using the drift plus penalty function define a parameter 0 to effect the performance delay 
by minimizing [16] the expectation, 

    tttCEtV ,       

This function is bounded by,   
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Optimization of the original problem reduces to minimizing this bound according to routine in 
Figure. 4 below whereby the optimization is time decoupled and power meant for essential 
and shiftable demands also becomes decoupled. Optimization of essential load reduces to de-
cisions on which source is to supply the essential load based on    tete sp  unit cost differential. 
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Case Study Simulation 
 
We simulate a prosumer with a number of selectable essential loads and suitable loads with 
profile similar to [13]. The hourly essential load can be easily computed. Shiftable appliances 
are modelled as a collection of independent and identically distributed (IID) random variables 
as each random variable has the same probability distribution as the others and all are mutu-
ally independent. We take utility electricity cost as   4.1teg  per unit from 0800 to 0000Hrs 

and   25.1tes  per unit from 0000Hrs at night to 0800Hrs. Feed-in tariff is set as   3.1tep  per 

unit during daytime and   15.1tep  per unit at night. 

 

Optimality Test
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Eqn.10
Eqn.12
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Figure 4 Optimization Flowchart 
 
We compare the proposed prosumer two way energy flow transaction scheme with the 
Lyapunov optimization and a strategy of purchasing all the available renewable resource and 
only buy from the grid when if the produced renewable energy  tPre cannot meet the essential 

 tAe and shiftable  tAs demand. Figure.5 depicts electricity costs for above transaction 
schemes. It can be seen that costs associated with two-way transaction scheme is less than 
purchase only strategy.  With RES and optimization schemes prosumers can sell some renew-



 

 

 

 

able energy to the grid and they are also able to reschedule loads to favourable periods with 
lower tariffs. 
 

 
Figure 5 .Cost comparison of direct purchase and Lyapunov optimized strategy 

 
 
 
Conclusion 
 
The paper has demonstrated a promising outlook to empower  prosumers with means to man-
age their loads in such a way that they take advantage of ‘free” REG, and also attractive off-
peak utility tariff regimes.  Categorization of household load into essential and shiftable loads 
allows practical scheduling with priority queue to be set up. To meet acceptable levels of con-
venience shiftable loads are queued in a time bound queue whereby they are met or satisfied 
within a predetermined time limit which limit talks to consumer satisfaction. The right mix of 
energy from the grid, sold to the grid is obtained from a Lyapunov based optimization routine 
which time decouples the essential and shiftable loads. Simulation results suggest  possible 
servings as result of the optimization routine when compared to a direct strategy of purchas-
ing power to meet demand shortfall without any recourse to smart scheduling.  The main chal-
lenge for successful operation and implementation of such strategies is the wide spread adop-
tion of smart metering technology coupled with automatic load management in such a way 
that consumer convenience is preserved as far as possible. 
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