Moringa oleifera Gold Nanoparticles Modulate Oncogenes, Tumor Suppressor Genes, and Caspase–9 Splice Variants in A549 Cells

Charlette Tiloke,1 Alisa Phulukdaree,1,2 Krishnan Anand,3 Robert M. Gengan,3 and Anil A. Chuturgoon1*

1Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Congella, Durban 4013, South Africa
2Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
3Department of Chemistry, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa

ABSTRACT

Gold nanoparticles (AuNPs) facilitate cancer cell recognition and can be manufactured by green synthesis using nutrient rich medicinal plants such as *Moringa oleifera* (MO). Targeting dysregulated oncogenes and tumor suppressor genes is crucial for cancer therapeutics. We investigated the antiproliferative effects of AuNP synthesized from MO aqueous leaf extracts (MLAuNP) in A549 lung and SNO oesophageal cancer cells. A one-pot green synthesis technique was used to synthesise MLAuNP. A549, SNO cancer cells and normal peripheral blood mononuclear cells (PBMCs) were exposed to MLAuNP and CAuNP to evaluate cytotoxicity (MTT assay); apoptosis was measured by phosphatidylserine (PS) externalization, mitochondrial depolarization (ΔΨm) (flow cytometry), caspase-3/7, −9 activity, and ATP levels (luminometry). The mRNA expression of *c-myc*, *p53*, *Skp2*, *Fbw7α*, and *caspase-9* splice variants was determined using qPCR, while relative protein expression of *c-myc*, *p53*, SRp30a, Bax, Bcl-2, Smac/DIABLO, Hsp70, and PARP-1 were determined by Western blotting. MLAuNP and CAuNP were not cytotoxic to PBMCs, whilst its pro-apoptotic properties were confirmed in A549 and SNO cells. MLAuNP significantly increased caspase activity in SNO cells while MLAuNP significantly increased PS externalization, ΔΨm, caspase-9, caspase-3/7 activities, and decreased ATP levels in A549 cells. Also, p53 mRNA and protein levels, SRp30a (P = 0.428), Bax, Smac/DIABLO and PARP-1 24 kDa fragment levels were significantly increased. Conversely, MLAuNP significantly decreased Bcl-2, Hsp70, Skp2, Fbw7α, c-myc mRNA, and protein levels and activated alternate splicing with *caspase-9a* splice variant being significantly increased. MLAuNP possesses antiproliferative properties and induced apoptosis in A549 cells by activating alternate splicing of *caspase-9*. J. Cell. Biochem. 117: 2302–2314, 2016. © 2016 Wiley Periodicals, Inc.

KEY WORDS: GOLD NANOPARTICLES; MORINGA OLEIFERA; LUNG CANCER; c-myc; SPLICE VARIANTS; APOPTOSIS

Cancer is the second leading cause of mortality worldwide following cardiovascular disease with approximately 8.2 million cancer deaths (21.7% of noncommunicable diseases) and 14.1 million new diagnoses [Globocan, 2012; Mendis et al., 2014]. Cancer mortality is projected to increase to 12.6 million by year 2030. Lung cancer alone accounts for 1.59 million deaths and is the leading cause of cancer mortality [Globocan, 2012]. Despite major advancements in cancer therapies, it remains incurable and quality of life after diagnosis is reduced [Cheng et al., 2005]. Bello et al. [2011] suggested South Africans are at higher risk of developing lung cancer due to their lifestyle changes and the high burden of infectious diseases [Bello et al., 2011].

Cancer cells are able to proliferate through activation of oncogenes (e.g., *c-myc*) and inactivation of tumor suppressor genes (e.g., *p53*) [Bonomi et al., 2013]. Oncogenes and dysregulation of tumor suppressor genes encourage tumor progression. Apoptosis...
maintains homeostasis and any disruption to this process leads to cancer pathogenesis. c-Myc, a transcription factor, regulates gene expression for cell growth and apoptosis [Chen et al., 2013], while Skp2 (S-phase kinase-associated protein 2) and Fbw7 (F-box and WD repeat domain-containing 7) mediate the posttranslational regulation of c-myc. Skp2 also acts as an oncogene and is overexpressed in human cancers [Chen et al., 2013].

Cancer cells metabolic activity are increased enabling them to rapidly divide [Eblen, 2012]. Chemotherapeutic agents are non-specific as they target these rapidly dividing cells at the expense of normal healthy cells [Eblen, 2012]. Differential expression of genes and proteins are seen in chemotherapy resistance. The cellular proteome is a key regulator in chemotherapy. Fundamental processes such as gene expression, mRNA transcription and translation into protein as well as modification and degradation of proteins influence the cellular proteome. In particular, alternate splicing of pre-mRNA also affects the cellular proteome as it determines which variant of the gene is translated, resulting in proteins with differing functional efficacy. For example, the splice variant of caspase-9 has shown that expression of caspase-9b inhibits apoptosis and is implicated in chemotherapy resistance [Shultz et al., 2011]. On the other hand, caspase-9a expression induces apoptosis and thus regulation of inclusion/exclusion of exon 3, 4, 5, and 6 cassette is a determinant of cell fate. This process is often manipulated by cancer cells to ensure their survival [Eblen, 2012].

Emerging cancer therapies such as nanoparticles (NP’s) are now being developed to specifically target cancer cells [Zhang et al., 2003]. Nanoparticles have characteristic properties of being very small (1–100 nm) [Kumar et al., 2011] and are able to interact with biomolecules both on the cell surface and intracellularly [Cai et al., 2008]. Nanoparticles are useful in anticancer drug delivery systems, however, their exact mechanism of action still remains to be elucidated [Kang et al., 2010]. Among the many nanoparticles being developed, studies show that gold nanoparticles (AuNP’s) are stable and can easily enter a cell, and are useful in the treatment of rheumatoid arthritis, possess anticancer and antimicrobial properties, and have good biocompatibility [Tedesco et al., 2010; Kumar et al., 2011; Siddiqi et al., 2012]. Gold nanoparticles also have therapeutic potential as an anti-HIV agent [Kumar et al., 2011]. The advantage of AuNP’s is that they are biologically inert and non-toxic [Lim et al., 2011; Parveen and Roa, 2014] and their use is favored over toxic silver and cadmium nanoparticles that are commercially in demand. Nanoparticle properties and applications are due to their size and shape [Xie et al., 2007b, 2009]. Nanoparticles are synthesized chemically or via the use of medicinal plants [Prasad and Elumalai, 2011]. In addition, NP’s can be synthesized using biological extracts such as green algae and bovine serum albumin [Xie et al., 2007a,c]. The use of plant extracts to synthesize nanoparticles is recently discovered [Prasad and Elumalai, 2011] and this green chemistry is cost effective and advantageous in large scale production, especially in third world countries [Salamanca-Buentello et al., 2005].

Moringa oleifera (MO) belongs to the family Moringaceae, commonly known as Drumstick tree [Fahey, 2005; Goyal et al., 2007], is indigenous to India and is also found widely in South Africa (SA). Almost all parts of the tree possess medicinal properties however the leaves contain high nutritional source of vitamins, calcium, iron, potassium, proteins and possess antioxidant, anticancer and hepatoprotective properties [Prasad and Elumalai, 2011; Sreelatha et al., 2011]. Due to SA’s socio-economic, cultural background, and minimal support of basic healthcare in rural areas, MO has been widely used for the treatment and management of malnutrition, diabetes mellitus, cardiovascular and liver diseases among several others [Erasto et al., 2005; Goyal et al., 2007]. The leaf extract contain bioactive compounds which aid in its anticancer activity. These compounds include niaziminic, gallic acid, rhamnose, glucosinolates, and isothiocyanates [Fahey, 2005; Goyal et al., 2007; Mishra et al., 2011]. Recently, AuNP’s of MO flower petals were prepared and showed activity in A549 lung cancer cells [Anand et al., 2014]. Our study now is on the leaf extract which was used in an environmentally friendly synthesis of AuNP’s (MLAuNP). We investigated the antiproliferative and apoptosis inducing effects of a novel MLAuNP in cancerous A549 lung cells. It was hypothesized that MLAuNP has an antiproliferative effect by inducing apoptosis in A549 cells as a result of MLAuNP selectively targeting oncogenes and tumor suppressor genes.

MATERIALS AND METHODS

MATERIALS

Moringa oleifera leaves were collected from the KwaZulu-Natal region (Durban, SA) and verified by the KwaZulu-Natal (SA) herbarium [Batch no. CT/1/2012, Genus no. 3128]. Gold (III) chloride trihydrate (HAuCl₃·3H₂O) was purchased from Sigma-Aldrich, SA. A549 cells were purchased from Highveld Biologicals (Johannesburg, SA). Cell culture reagents were purchased from Whitehead Scientific (Johannesburg, SA). ECL-LumiGlo™ chemiluminescent substrate kit was purchased from Gaithersburg and Western blot reagents were purchased from Bio-Rad. All other reagents were purchased from Merck (SA).

SYNTHESIS OF MLAuNP

A one-pot green synthesis technique was used to synthesise MLAuNP [Anand et al., 2014; Li et al., 2015]. The synthesis and characterization were conducted at Durban University of Technology (Durban, SA). The MO leaf extract was prepared as per Tiloke et al. [2013]. The resultant extract (5 ml) was added to 1 mM aqueous gold chloride solution (100 ml) and allowed to react at room temperature (RT) for the reduction of Au³⁺ ions to Au. MLAuNP were then characterized and particle size was determined using UV spectrometry and transmission electron microscopy, respectively. In addition, further characterization of the hydrodynamic size and size distribution of the MLAuNP was determined using dynamic light scattering (DLS) and Image J. The Zeta potential of MLAuNP was also assessed.

SYNTHESIS OF TRISODIUM CITRATE GOLD NANO PARTICLES (C₃AuNP)—CHEMICAL SYNTHESIS METHOD

The synthesis and characterization were conducted at Durban University of Technology (Durban, SA). A volume of 100 ml Au (III)
(1.4 mM) was used with the addition of 2 ml of 0.34 M trisodium citrate. This was allowed to stir continuously for the production of C_{AuNP}.

PERIPHERAL BLOOD MONONUCLEAR CELL EXTRACTION

Whole blood was obtained from a healthy male donor and the peripheral blood mononuclear cells (PBMCs) were isolated from heparinized whole blood by differential centrifugation (Ethical approval from the University of KwaZulu-Natal Biomedical Research Ethics Committee [Reference number: BE057/15] and informed consent was obtained). Briefly, 5 ml of whole blood was layered onto equivolume Histopaque 1077 (Sigma, Germany) in 15 ml conical tubes and centrifuged (400 g, 30 min, RT). The buffy coat layer containing PBMCs were aspirated into sterile 15 ml conical tubes and washed twice in 0.1 M phosphate buffered saline (PBS) (400g, 10 min). Cell numbers were then enumerated using trypan blue.

CELL CULTURE AND EXPOSURE PROTOCOL

A549 and SNO cells were cultured in 25 cm² culture flasks in complete culture media (CCM) comprising of Eagle’s minimum essential medium (EMEM) supplemented with 10% foetal calf serum, 1% l-glutamine and 1% penicillin-streptomycin-fungizone [Wilson and Walker, 2005]. Cell growth was monitored and cultures were maintained at 37°C with 5% CO₂. A549 and SNO cells were grown to 90% confluency and treated with C_{AuNP} and ML_{AuNP}. Isolated PBMCs were cultured at 37°C with 5% CO₂ in Roswell park memorial institute (RPMI) medium 1640 supplemented with 10% foetal calf serum, 1% l-glutamine and 1% penicillin-streptomycin-fungizone [Wilson and Walker, 2005]. Cell density at 20,000 was used per sample in all luminometric and colorimetric assays. A549 cell density at 1,000,000 cells was used for flow cytometric analysis and 2,500,000 cells for western blot and qPCR analysis.

CELL VIABILITY ASSAY

The viability of A549, SNO cells and PBMCs after exposure to C_{AuNP} and ML_{AuNP} was determined using the 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay [Mossman, 1983]. Cells were seeded into a 96-well microtitre plate (20,000 cells/well). The cells were incubated with varying C_{AuNP} concentrations (1.9–475 µg/ml) and ML_{AuNP} concentrations (1.575–393.83 µg/ml) in six replicates (300 µl/well) and incubated (37°C, 5% CO₂) for 24 h. Control cells were incubated with CCM only. A CCM/MTT salt solution (5 mg/ml) was added (120 µl/well) and the plate was incubated (37°C, 4 h). Thereafter, supernatants were removed; dimethyl sulphoxide (DMSO) 100 µl/well was added and incubated (1 h). The optical density of the formazan product was measured (570/690 nm) using a spectrophotometer (Bio-Tek µQuant). The results were expressed as percentage cell viability relative to the control. This experiment was repeated on two separate occasions before the IC₅₀ of C_{AuNP} and ML_{AuNP} for the cells (A549, SNO and PBMCs) were determined. Due to minimal toxicity observed in PBMCs, all other experiments were conducted on A549 and SNO cells to determine the mechanism of cell death.

ATP QUANTIFICATION

The CellTitre-Glo® assay (Promega) was used to quantify ATP in samples which is an indication of metabolically active cells. A549 and SNO cells (20,000 cells/well) were seeded into an opaque polystyrene 96-well microtitre plate in six replicates. Following treatment, the CellTitre-Glo® Reagent 2 x was prepared according to manufacturer’s guidelines and 100 µl of the reagent was added per well. The plate was then incubated in the dark (30 min, RT). Following incubation, the plate was read on the Modulus™ microplate luminometer. The luminescent signal was measured which is proportional to the amount of ATP present and the data was expressed as RLU and fold change.

CASPASE-3/7 AND 9 ACTIVITIES

Caspase-Glo® 3/7 and Caspase-Glo® 9 Assays (Promega) were used to assess apoptosis. For each assay the same procedure was followed: A549 and SNO cells (20,000 cells/well) were seeded into an opaque polystyrene 96-well microtitre plate in six replicates. Following treatment, the Caspase-Glo® 3/7 and Caspase-Glo® 9 reagents were prepared according to manufacturer’s guidelines. A volume of 100 µl of the reagent was added per well and incubated in the dark (30 min, RT). Following incubation, the luminescence was measured on a Modulus™ microplate luminometer. The data was expressed as RLU and fold change.

ASSESSMENT OF PHOSPHATIDYLSERINE EXTERNALIZATION

The Annexin-V-Fluos assay (Roche) was used to detect phosphatidylserine (PS) externalization. PS is externalized in both apoptotic and necrotic cells and is therefore differentiated by addition of propidium iodide (PI). PI only stains DNA of necrotic cells. A volume of 100 µl of each sample (1,000,000 cells/tube) were transferred to polystyrene flow cytometry tubes, stained with 100 µl annexin-V-Fluos labeling solution, and incubated in the dark (15 min, RT). A volume of 400 µl of Annexin-V Binding buffer (1 x) was added to the samples and the labeled cells were detected by fluorescence-activated cell sorting (FACS) Calibur flow cytometer (BD Biosciences, SA). The cells were gated to exclude cellular debris using FlowJo v7.1 software (Tree Star Inc., Ashland). Approximately 50,000 events were obtained and the data was analyzed using CellQuest PRO v4.02 software (BD Biosciences). The data was expressed as a percentage of apoptotic cells.

MITOCHONDRIAL MEMBRANE POTENTIAL

The JC-1 Mitoscreen assay was used to assess mitochondrial membrane potential according to manufacturers’ guidelines. A volume of 100 µl of each sample (1,000,000 cells/tube) was transferred to polystyrene flow cytometry tubes with the addition of 150 µl JC-1 dye and incubated (37°C, 5% CO₂, 10 min). The cells were washed twice with JC-1 wash buffer (1 x). Between washes cells were centrifuged (400g, 5 min). Cells were re-suspended in 200 µl flow cytometry sheath fluid and labeled cells were detected on FACS Calibur flow cytometer. The cells were gated to exclude cellular debris using FlowJo v7.1 software. Approximately 50,000 events were obtained and the data was analyzed using CellQuest PRO v4.02 software. The results were expressed as a percentage of cells containing depolarized mitochondria.
WESTERN BLOTTING

Western Blots were performed to determine the protein levels of c-myc, p53, Skp2a, Bax, Bel-2, Smac/DIABLO, Hsp70, and PARP-1. Briefly, total protein was isolated using Cytobuster™ reagent supplemented with protease inhibitor (Roche, SA, cat. no. 05892791001) and phosphatase inhibitor (Roche, SA, cat. no. 04906837001). The bicinchoninic acid assay (Sigma, Germany) was used to quantify the protein and was standardized to 1.066 mg/ml [Bainor et al., 2011]. The samples were prepared in Laemmli buffer [Yang and Ma, 2009], boiled (100°C, 5 min) and electrophoresed (150V, 5 min), and a reaction was then subjected to 25°C (5 min), 42°C (30 min), 85°C (10 min each). To correct for loading error and to normalize the reaction was an initial denaturation (95°C, 8 min). It was followed by 40 cycles of denaturation (95°C, 15 s), annealing (c-myc, p53, Skp2, Fbw7α: 56°C, 40 s) and extension (72°C, 30 s) (CFX96 Real Time thermal cycler [Bio-Rad, SA]). The data was analyzed using CFX Manager™ software V3.0 (Bio-Rad, SA). The mRNA levels was determined using the Livak method and expressed as fold changes [Livak and Schmittgen, 2001].

QUANTIFICATION OF mRNA

To determine c-myc, p53, Skp2, and Fbw7α mRNA levels in A549 cells, RNA was first isolated from the control and MLAdrp treatment by adding 500 μl Tri reagent (Life technologies Am9738) as per manufacturer’s guidelines. Thereafter, RNA was quantified (NanoDrop 2000) and standardized to 600 ng/μl. RNA was reverse transcribed by reverse transcriptase into copy DNA (cDNA) using the iScript™ cDNA synthesis kit (Bio-Rad, SA, cat. no. 17088891) as per manufacturer’s instructions. Briefly, a 20 μl reaction was prepared by adding 1 μl 5× iScript reaction mix, 1 μl iScript reverse transcriptase, 12 μl nuclease free water, 3 μl RNA template. The reaction was then subjected to 25°C (5 min), 42°C (30 min), 85°C (5 min), and a final hold at 4°C (CFX96 Real Time thermal cycler [Bio-Rad, SA]) to obtain cDNA.

Quantitative PCR (qPCR) was used to determine mRNA levels using iTQ Superscript reagent (Bio-Rad, SA). A 25 μl reaction consisting of 12.5 μl iTQ SYBR™ green supermix (Bio-Rad, SA, cat. no. 170–8880), 8.5 μl nuclease free water, 2 μl cDNA, and 1 μl sense and anti-sense primer (10 mM, Inqaba Biotec, SA, Table I) were used. The mRNA levels was compared and normalized to a housekeeping gene, GAPDH. The reaction was subjected to an initial denaturation (95°C, 8 min). It was followed by 40 cycles of denaturation (95°C, 15 s), annealing (c-myc, p53, Skp2, Fbw7α: 56°C, 40 s) and extension (72°C, 30 s) (CFX96 Real Time thermal cycler [Bio-Rad, SA]). The mRNA levels was determined using the Livak method and expressed as fold change.

RESULTS

Phytochemical Analysis of Moringa Oleifera Aqueous Leaf Extract

Moringa oleifera aqueous leaf extract showed eleven peaks in the GC-MS chromatogram (Fig. 1). The compounds were separated according to their retention time on fused silica capillary column.

Table I. Primer Sequences Used in qPCR Assay

<table>
<thead>
<tr>
<th>Primer sequences</th>
<th>Sense primer</th>
<th>Anti-sense primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>c-myc</td>
<td>5'-ACGGACCTTGGAGGAACAAG-3'</td>
<td>5'-GTGGCAGCTTTGGAGGACCA-3'</td>
</tr>
<tr>
<td>p53</td>
<td>5'-CCACACCTCCAGACACACAT-3'</td>
<td>5'-CAAAGCAAGGAGACACCC-3'</td>
</tr>
<tr>
<td>Skp2</td>
<td>5'-TGGGAACTTTCCTTCCCTTG-3'</td>
<td>5'-GAACACTGACAGATGCGC-3'</td>
</tr>
<tr>
<td>Fbw7α</td>
<td>5'-AGTAGTATATTGGACCTGCCCCTG-3'</td>
<td>5'-GACTGCAAGAACTTGTCACATT-3'</td>
</tr>
<tr>
<td>GAPDH</td>
<td>5'-TCCACACCTTGGTGCTGA-3'</td>
<td>5'-ACCAAGTCCTCGCATTCC-3'</td>
</tr>
</tbody>
</table>
The total ion chromatogram (TIC) indicates the presence of various organic compounds with significant abundant peaks at retention time 7.55, 8.75, 10.87, 12.22, 14.36, 20.24, 21.21, 22.34, 23.72, and 25.44 min having molecular ions \((m/z)\) of 144.0, 126.0, 142.0, 58.0, 60.0, 310.0, 338.0, 352.0, 279.0, 366.0, and 380.0, respectively. These compounds mainly comprised of hydrocarbons and phenolic compounds. Pyran-4-one (7.55), 2-Furancarboxaldehyde (8.75), Docosane (19.36), Tetracosane (21.21), Pentacosane (22.34), Heptacosane (23.72) identified as major chemical constituents followed by Octacosane (25.44) [Al-Owaisi et al., 2014].

SYNTHESIS OF ML\textsubscript{AuNP}

The molar calculation of the crude leaf extract cannot be determined. We synthesized the ML\textsubscript{AuNP}'s on the basis of weight percent ratios of leaf extract and gold chloride. In the present study—5 g of leaf in 100 ml water and 0.0393 g of gold chloride in 100 ml of water, making the final W% ratio is 5:0.039% [Shankar et al., 2004].

A color change to red-brown (Fig. 2.1) within a few seconds of mixing the leaf extract with the H\textsubscript{AuCl\textsubscript{4}} solution supported the formation of ML\textsubscript{AuNP}'s. This was attributed to the excitation of surface plasmon vibrations in gold nanoparticles. The observation validated the reduction of Au3+ ions to Au by the plant components. The Surface Plasmon Resonance (SPR) is visible as a broad band at \(\lambda_{\text{max}}\) 542 nm (Fig. 2.1), consistent with literature [Stuchinskaya et al., 2011]. The UV-visible absorption spectra of both aqueous leaf extract (Fig. 2.2A) as well as gold chloride solution (Fig. 2.2B) is shown.

The obtained ML\textsubscript{AuNP}'s dispersion was stable for over 6 months at room temperature. The peak at 544 nm in UV-visible absorption spectra (Fig. 2.3) is attributed to the SPR of stable AuNPs. Also, the plasmon band has been sharp and symmetric, which indicates that the solution does not contain much of aggregated particles after 6 months.

The transmission electron microscopy (TEM) micrographs and size distribution of the ML\textsubscript{AuNP}'s indicated that most of the particles are spherical or near spherically shaped, however, some polyhedral particles are also present. It was also observed that the ML\textsubscript{AuNP}'s were highly poly-dispersed in the colloidal solution. ML\textsubscript{AuNP}'s had a large size distribution (10–20 nm) (Fig. 3).

The size distribution of ML\textsubscript{AuNP} was determined by DLS. The average hydrodynamic size was 26.44 nm (Figs. 4 and 5) which were similar to Melia azedarach's leaf extract [Sukirtha et al., 2012]. The ML\textsubscript{AuNP} size obtained from TEM and DLS was different. This can be attributed to the different principles applied for determining the size distribution.

Many reports have proposed that surface active molecules can stabilize the nanoparticles and that the reaction of the metal ions is possibly facilitated by reducing sugars and or plant based organic molecules. However, a stable dispersion of particles was evident from the zeta potential of –25.3 mV (Fig. 6); a zeta potential higher than
30 mV or lesser than −30 mV is indicative of a stable system [Kotakadi et al., 2014].

CELL VIABILITY ASSAY
MLAuNP and trisodium citrate AuNPs (C AuNP) (synthesized by conventional chemical methods) cytotoxicity in A549 lung cancer cells, SNO oesophageal cancer cells and normal healthy PBMCs was then determined using the MTT assay. C AuNP and MLAuNP treatment for 24 h caused a dose-dependent decline in A549 and SNO cell viability. C AuNP IC₅₀ value was determined as 121.4 μg/ml (A549) and 410.4 μg/ml (SNO) (Fig. 7A). An IC₅₀ value of 98.46 μg/ml (A549) and 92.01 μg/ml (SNO) was calculated for MLAuNP (Fig. 7B). Furthermore, C AuNP and MLAuNP showed no cytotoxicity in normal healthy PBMCs (Fig. 7A and B, respectively) and an IC₅₀ value was unable to be determined.

ASSESSMENT OF APOPTOSIS INDUCTION
The percentage of apoptosis induced in both A549 and SNO cells by MLAuNP is presented in Tables II and III.

An early marker of apoptosis is PS externalization which was significantly increased in A549 cells (3.88-fold, Table III). MLAuNP altered mitochondrial function by significantly increasing ΔΨₘ (1.43-fold) and simultaneously decreasing ATP levels (1.20-fold) (Tables II and III) in A549 cells. The ATP levels in SNO cells were decreased by C AuNP and MLAuNP (1.01-fold and 5.05-fold, respectively) (Table II). Also, executioner caspase-3/7 (1.34-fold) and initiator caspase-9 (1.14-fold) activities were increased by MLAuNP treatment in A549 cells as compared to the control (Table II). In addition, C AuNP and MLAuNP increased executioner caspase-3/7 (2-fold and 2.5-fold, respectively) (Table II). Also initiator caspase-9 increased after exposure to C AuNP and MLAuNP in the cancerous SNO cells (1.01-fold and 1.12-fold, respectively) (Table II).

WESTERN BLOTTING
The relative protein levels of c-myc, p53, SRp30a, Bax, Bcl-2, Smac/DIABLO, Hsp70, and PARP-1 were assessed using Western blot (Fig. 8).

Oncogenes such as c-myc are responsible for cell proliferation and tumor progression [Bonomi et al., 2013]. In A549 lung cancer cells, exposure to MLAuNP caused a significant 1.56-fold decrease in c-myc levels (0.04 ± 0.00 RBD vs. control: 0.07 ± 0.00 RBD, P < 0.05)
This led to the assessment of p53, a tumor suppressor gene which was significantly increased by 1.17-fold (0.13 ± 0.00 RBD vs. control: 0.11 ± 0.01, P < 0.05) (Fig. 8). Interestingly, SRp30a, an alternate splicing factor, was increased by 1.13-fold in A549 treated cells (0.05 ± 0.01 RBD vs. control: 0.04 ± 0.00 RBD, P = 0.428) (Fig. 8). In addition, anti-apoptotic Bcl-2 protein was decreased (1.30-fold) by MLAuNP compared to the control (0.11 ± 0.01 RBD vs. 0.14 ± 0.01 RBD, P < 0.05) (Fig. 8). Furthermore, Hsp70 was also significantly reduced (1.30-fold, 0.57 ± 0.00 RBD vs. control: 0.73 ± 0.02 RBD, P < 0.0001) (Fig. 8).

QUANTIFICATION OF mRNA
The mRNA levels of c-myc, p53, skp2, and Fbw7α in A549 cells was determined using qPCR relative to the control (Fig. 9). The c-myc mRNA levels were decreased 1.44 ± 0.05-fold (P < 0.001) in MLAuNP treatment (Fig. 9). A 1.77 ± 0.12-fold (P < 0.05) increase in p53 mRNA levels was observed in MLAuNP treated cells. Skp2 levels decreased by 7.33-fold ± 0.01 (P < 0.0001) and Fbw7α decreased by 2.82-fold ± 0.04 (P < 0.0001) in MLAuNP treatment (Fig. 9).

ALTERNATE SPICING OF CASPASE-9
Alternate splicing pattern of caspase-9 was determined using qPCR and presented in Figure 10. MLAuNP activated alternate splicing of caspase-9 in A549 cancer cells resulting in both a significant 1.68-fold (P < 0.001) increase in pro-apoptotic caspase-9a and a 1.67-fold (P < 0.05) decrease in caspase-9b levels (Fig. 10). Analysis of the alternate splice variants of caspase-9 showed that MLAuNP changed the caspase-9a/caspase-9b ratio from 0.63 ± 0.03 to 1.76 ± 0.08 in the cancer cells.
DISCUSSION

Lung cancer is characterized by uncontrolled cell growth, loss of normal functionality and evasion of apoptosis [Ho et al., 2010]. Current anticancer therapies possess adverse effects and are becoming drug resistant and hence new and more effective agents are actively being investigated. An effective treatment regime for lung cancer will not only increase survival rates but also improve quality of life [Montazeri et al., 2001]. Nanoparticles have huge potential in the treatment of various cancers [Lim et al., 2011; Selim and Hendi, 2012]. MLAuNP was synthesized using MO crude aqueous leaf extract in an environmentally friendly synthesis (Figs. 2–6). The leaf components possess reducing potential which aided in the green synthesis of the AuNP’s [Anand et al., 2014]. There are many phytochemicals present in the leaf extract which includes phenolic acids and flavonoids such as gallic acid, itaconic acid, and catechol [Luqman et al., 2012; Belliraj et al., 2015; El Sohaimy et al., 2015]. In addition, the chemical composition of *Moringa oleifera* aqueous leaf extract by GC-MS analysis showed that it mainly contained hydrocarbons and phenolic compounds (Fig. 1). Pyran-4-one, 2-Furancarboxaldehyde, Docosane, Tetraicosane, Pentacosane, Heptacosane, and Octacosane were identified as major chemical constituents. They play a role in the reduction of the metal ions to form the gold nanoparticles. Gallic acid, a bioactive compound present in the leaf extract can act as a reducing and stabilizing agent [Li et al., 2015]. MLAuNP and CAuNP induced cytotoxicity and decreased cell viability in A549 lung and SNO oesophageal cancer cells in a dose-dependent manner (Fig. 7), whilst no cytotoxicity was observed in normal healthy PBMCs (Fig. 7). MLAuNP as compared to CAuNP induced greater cytotoxicity and increased antiproliferative effects in both cancerous A549 and SNO cells, reducing A549 and SNO cell viability to 19% and 31%, respectively. However CAuNP only reduced A549 and SNO cell viability to 53% and 44%, respectively. This shows the selective targeting of AuNP’s to cancerous cells, with increased selectivity by the MLAuNP. In addition, MLAuNP was not cytotoxic to normal healthy PBMC’s and the increased PBMC’s cell viability may be due to the bioactive compounds present in the aqueous crude leaf extract such as glutamine [Roth et al., 2002; Ndubukwukle et al., 2013]. Due to minimal toxicity observed in PBMCs, we investigated the mechanism of cell death induced by MLAuNP in A549 and SNO cells.
The c-myc oncoprotein, a basic helix-loop-helix leucine-zipper transcription factor, regulates genes controlling cell growth and proliferation [An et al., 2008]. Lung cancer cells have increased c-myc expression. The ubiquitin-proteasome pathway is responsible for the proteolysis of c-myc involving the F-box protein and ubiquitin ligase components, while c-myc mRNA and protein stability contributes to its role in carcinogenesis [Kim et al., 2014]. Posttranslational regulation of c-myc is via Skp2 and Fbw7 [Chen et al., 2013], that are different regulation subunits of the SCF-type E3 ligase (Skp1/Cullin/F-box protein complexes) responsible for proteasomal degradation. The c-myc/Skp2/Fbw7 pathway is linked to tumor progression and is therefore a potential target for anticancer agents [Chen et al., 2013]. c-Myc increases Skp2 expression which also acts as a co-factor increasing c-myc’s transcriptional activity [Kim et al., 2014]. Glycogen synthase kinase 3 (Gsk3) mediates Fbw7a degradation of c-myc. Gsk3 phosphorylates threonine 58 residue on c-myc which serves as a recognition site for Fbw7a. MLAuNP significantly decreased both c-myc mRNA and protein expression in A549 cells (Figs. 8 and 9). Also Skp2 levels were significantly decreased (Fig. 9). This influences c-myc’s transcriptional function hence the inhibition of its proliferative effect. In addition, Skp2 causes the degradation of p27 (cyclin dependent kinase inhibitor) thus allowing cell proliferation and therefore loss of Skp2 function will result in p27 induced cell cycle arrest and inhibition of cell proliferation [Dai et al., 2006; Kim et al., 2014]. Drug resistant cancers often have decreased Fbw7 expression which acts as a tumor suppressor [Dai et al., 2006; Chen et al., 2013]. MLAuNP significantly decreased Fbw7a mRNA levels (Fig. 9). The anticancer effect of Wogonin in A549 cells was due to decreased c-myc, Skp2, and Fbw7a levels [Chen et al., 2013]. The induction of apoptosis occurred independently of Fbw7a. Similarly, MLAuNP decreased c-myc, Skp2, and Fbw7a levels suggesting a possible role in drug-resistant cancers.

The p53 tumor suppressor gene functions by regulating cell growth, proliferation and apoptosis. In cancer cells, p53 function is often dysregulated thereby allowing abnormal cells to continue to proliferate. MLAuNP treatment caused a significant increase in p53 mRNA and protein expression (Figs. 8 and 9). A consequence of increased p53 expression resulted in increased expression of Bax, a pro-apoptotic protein and a simultaneous decrease in the anti-apoptotic Bcl-2 protein (Fig. 8). Furthermore the induction of

TABLE II. ATP and Caspase Activity in A549 and SNO Cells Following Treatment With ML_{AuNP} for 24 h

<table>
<thead>
<tr>
<th></th>
<th>A549 cells (mean ± SEM)</th>
<th>SNO cells (mean ± SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>ML_{AuNP}</td>
</tr>
<tr>
<td>ATP (×10^5 RLU)</td>
<td>20.47 ± 0.13</td>
<td>17.12 ± 0.33**</td>
</tr>
<tr>
<td>Caspase-3/7 (×10^5 RLU)</td>
<td>0.54 ± 0.02</td>
<td>0.73 ± 0.03**</td>
</tr>
<tr>
<td>Caspase-9 (×10^2 RLU)</td>
<td>4.34 ± 0.00</td>
<td>4.94 ± 0.09^a</td>
</tr>
</tbody>
</table>

SEM, standard error of the mean; RLU, relative light unit.

^aSignificantly different compared to control.

^P < 0.05.

**P < 0.001.

***P < 0.0001.
apoptosis through the activation of Bax causes it to bind to voltage-dependent anion channel (VDAC) and influences its activity [Hengartner, 2000]. The VDAC protein forms a subunit of the mitochondrial permeability transition pore (MPTP). The depolarization of the mitochondrial membrane by ML AuNP opens the MPTP resulting in cytochrome c (cyt c) release from the mitochondria into the cytoplasm, together with ATP. A consequence is that Apaf-1 cleaves procaspase-9 resulting in activation of caspase-9 (Table II).

The regulation of gene and protein expression is a determinant of cell fate. The serine/arginine-rich proteins (SR proteins) are required for alternate splicing [Manley and Krainer, 2010]. The alternate pre-mRNA processing of caspase-9 gene produces two splice variants, the pro-apoptotic caspase-9a, and the anti-apoptotic caspase-9b [Massiello and Chalfant, 2006; Shultz et al., 2010; Shultz et al., 2011]. The inclusion of exon 3, 4, 5, and 6 cassette results in caspase-9a splice variant and the induction of apoptosis. Caspase-9b (exon exclusion) competes with caspase-9a for binding to the apoptosome. SRp30a is an important splicing factor in the alternative splicing of caspase-9 [Massiello and Chalfant, 2006] and ML AuNP increased SRp30a protein expression (Fig. 8) thus activating alternate splicing of pre-mRNA in A549 cells. There was a significant increase in caspase-9a with a concomitant decrease in caspase-9b mRNA levels in A549 cells (Fig. 10). ML AuNP increased the caspase-9a/caspase-9b ratio from 0.63 to 1.76. Our findings are consistent with those of Massiello and Chalfant [2006], where ceramide treated A549 cells resulted in alternate splicing of caspase-9 with increased caspase-9a and decreased caspase-9b splice variants [Massiello and Chalfant, 2006]. The ratio of caspase-9a/caspase-9b increased after ceramide treatment. Also SRp30a was identified as the RNA trans-acting factor (regulating splicing factor) involved in the pre-mRNA processing and its downregulation favoured caspase-9b at the expense of caspase-9a [Massiello and Chalfant, 2006]. The increased expression of caspase-9a splice variant by ML AuNP resulted in an increase in caspase-9 activity. Increased caspase-9 caused activation of the executioner caspases-3/7 leading to apoptosis (Table II). These observations strongly suggest that ML AuNP preferentially targets the mitochondria and induces apoptosis via the intrinsic pathway. Furthermore, ML AuNP in SNO cells displayed a greater increase in caspase activity as compared to CAuNP (Table II). The results show that ML AuNP can be used as an antiproliferative agent.

In addition, during the execution of apoptosis, poly (ADP-ribose) polymerase 1 (PARP-1), a nuclear enzyme, is cleaved into an 89 kDa C-terminal catalytic fragment and a 24 kDa N-terminal DNA-binding domain fragment [D’Amours et al., 2001]. ML AuNP actively induced PARP-1 cleavage in A549 cells as evidenced by the significant increase in the 24 kDa fragment (Fig. 8) confirming the execution of apoptosis. Further, PS externalization [Schlegel and Williamson, 2001] was also significantly increased by ML AuNP (Table II).

Inhibitor of apoptosis protein (IAP), contain baculoviral IAP repeat (BIR) domains, is an intracellular protein that inhibits caspase activity [Hengartner, 2000; Wang, 2001]. Smac/DIABLO which is concurrently released with cyt c from the mitochondria, binds to the BIR domain of IAP thus antagonising its action and ensures the execution of apoptosis [Fischer and Schulze-Osthoff, 2005]. ML AuNP
significantly increased Smac/DIABLO protein levels (Fig. 8). Our data clearly shows that MLAuNP induces and promotes apoptosis in A549 lung cancer cells. Hsp70, a chaperone molecule, inhibits key effectors in apoptosis [Garrido et al., 2006] and are highly expressed in cancer cells. Hsp70 inhibits apoptosome formation as it binds to Apaf-1 and prevents the recruitment of pro-caspase-9, thus inhibiting apoptosis and enabling the cancer cells to continue proliferation. In our study, Hsp70 expression was significantly reduced by MLAuNP (Fig. 8), thus ensuring the effective execution of apoptosis and the inability of the cancer cells to continue proliferation.

Selim and Hendi, [2012] showed the induction of apoptosis by chemically synthesized AuNP’s in an MCF-7 (breast cancer) cell line [Selim and Hendi, 2012]. AuNP’s significantly increased p53, Bax, caspase-3 and caspase-9, and decreased Bcl-2 expression. Another study showed that AuNP’s decreased GSH levels, increased mitochondrial depolarization and ultimately led to cell death in HL7702 cells [Gao et al., 2011]. Chemically synthesized AuNP’s also caused A549 cell cycle arrest and accumulation in the G1 phase of the cell cycle [Chuang et al., 2013]. Green synthesis of AuNP’s using a plant extract from Podophyllum hexandrum showed antiproliferative properties in human cervical carcinoma cells (HeLa cells) [Jeyaraj et al., 2014]. The green synthesis of AuNP’s by MO leaves shows promise as an anticancer agent by inducing increased apoptosis in lung cancer cells. The development of nanoparticles has shown potential in therapies which ultimately improve survival rates [Leong and Ng, 2014]. Synthesized AuNP’s inhibited ovarian cancer cell growth in a size and concentration dependent manner [Arvizo et al., 2013]. It also inhibited MAPK-signalling with a reversal of the epithelial-mesenchymal transition in the cancer cells displaying antiproliferative and anti-metastatic properties. The physico-chemical properties of NP’s depends on the size, shape, charge, hydrophobicity as well as functional groups which facilitates their interaction with biological systems however the mechanism of action is still to be fully elucidated [Davis et al., 2008; Tay et al., 2014].

MLAuNP was successfully produced in a one-pot green synthesis by MO leaves. The synthesized MLAuNP was not cytotoxic to normal healthy PBMCs but was cytotoxic and induced apoptosis, via the intrinsic pathway, in cancerous A549 lung cells. MLAuNP targeted oncogenes, tumor suppressor genes and was able to activate alternate splicing of caspase-9 to effectively execute the apoptotic cascade in lung cancer cells. In addition, MLAuNP caused a dose-dependent decrease in SN0 cancer cell viability and activated caspase activity, showing that MLAuNP has an affinity affect cancer cells. Further, MLAuNP showed greater reduction in cell viability in A549 cells as compared to Trisodium citrate gold nanoparticles (CAuNP) (chemically synthesized gold nanoparticles); MLAuNP as compared to CAuNP also induced higher caspase activity in cancerous SNO cells—showing it specifically targets cancer cells.

ACKNOWLEDGMENTS

Miss C. Tiloke acknowledges the prestigious Doctoral scholarship from the National Research Foundation, SA. The study was also supported by the funds from College of Health Sciences (UKZN).
REFERENCES

