
Vibration of a Cantilever Beam with 
Extended Tip Mass and Axial Load Subject to 

Piezoelectric Control 
MK Moutlanaa, S Adalib 

Received 29 January 2014, in revised form 21 May 2015 and accepted 8 October 2015 

The effect of piezoelectric control on the frequencies of a 
cantilever beam with an extended tip mass and axial load 
is studied.  Rotatory inertia of the tip mass as well as the 
stiffness of piezo layers are taken into account and an 
analytical solution of the problem is obtained by 
eigenfunction expansions. Displacement feedback control 
is implemented by bonding ceramic piezoelectric layers on 
the top and bottom surfaces of the beam.  It is noted that 
the strains caused by the activated piezoelectric layers 
manifest themselves as moments at the boundary 
conditions at the free end. Numerical results indicate that 
the fundamental frequency of the cantilever beam is 
effectively modified by piezoelectric control. For a beam 
with extended tip mass and axial load there is a significant 
reduction in the fundamental frequency.  The reduction in 
the fundamental frequency is limited under certain end 
conditions.  When the tip mass and axial load are large, 
the changes in frequency becomes insignificant. The 
results are useful for the design of vibrating cantilever 
beams with tip mass and under constant axial load. 

Additional keywords:  Piezoelectric actuator, 
vibrations, natural frequencies, extended tip mass, axial load 

1 Introduction 
Vibrations of cantilever beams with tip mass have been 
studied in a number of papers1-5 with a view towards 
assessing the influence of the tip mass on frequencies. One 
area of application of this mechanical element is atomic 
force microscopy (AFM), the sensor of which is attached to 
the tip of a cantilever.  The reduction in the fundamental 
frequency increases the frequency gap between the 1st and 
2nd natural frequencies, which allows for a wider range of 
frequency during operation.  The vibrations of AFM 
cantilevers have been studied extensively in publications6-11. 
In the present study, the vibration characteristics of a 
cantilever beam with an extended tip mass and subject to an 
axial load is studied when a displacement feedback control 
is applied using piezoelectric actuator layers bonded to the 
top and bottom surfaces. The specific piezo ceramic 
material is lead zirconium titanate (PZT) and due to the high 
modulus of elasticity of PZT, the stiffness of the actuators 
are taken into consideration in the problem formulation.  
The applicable boundary conditions taking the rotary inertia 
of the tip mass into account are observed to be time-
dependent.  The governing differential equation of motion is 
solved by eigenfunction expansion and the fundamental 
frequency is computed by solving the characteristic equation 

numerically. It is observed that piezo control modifies the 
frequencies of the beam and the extent of the frequency 
change depends on the magnitude of the tip mass, the length 
of the moment arm as well as on the axial load being 
compressive or tensile. Previous studies on the control of 
beams carrying a tip mass include Fung et al.12 with the 
control force applied by an electromagnetic actuator and 
Pratiher13 where control by electronic damping was 
investigated.  More recently piezo control of cantilever 
beams with tip mass were studied by Moutlana14-15.  

Vibration control of mechanical elements by 
piezoelectric actuators, in particular, by piezo actuators 
made of PZT, is quite common due to the simple procedures 
involved in its application and the ability of PZT to provide 
sufficient actuating force16-20. A common configuration is a 
combination of a host beam with piezoelectric layers 
bonded to the beam surfaces21-22. In the publications16-22, 
several control algorithms have been formulated to exercise 
piezo control with the displacement feedback control used 
by Yang et al.23.  Various approaches to the piezo control of 
beams can be found in references24-26. A survey of vibration 
control using piezoelectric materials is given by Vasques 
and Dias Rodrigues27. 

2 Beam with Piezoelectric Layers 
The beam under consideration has piezoelectric actuator 
layers bonded to the top and bottom surfaces as shown in 
figure 1.  The cross-sectional area of the beam is given by 
A=bH, the moment of inertia by 𝐼𝐼𝑐𝑐 = 1

12𝑏𝑏𝐻𝐻
3 

 
where 

H=hb+2hp is the total thickness, hb the beam thickness and 
ℎ𝑝𝑝 the thicknesses of the top and bottom piezoelectric 
layers. The subscripts b and p refer to the beam and piezo 
properties, respectively. 

Figure 1: Geometry of the beam with surface bonded 
piezoelectric actuators 

     In figure 2, let w(x,t) denote the transverse displacement 
of the beam. The equation of motion of a freely vibrating 
beam is derived by Smith28 and can be expressed as,  

𝐸𝐸𝑐𝑐𝐼𝐼𝑐𝑐
𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4

+ 𝑁𝑁 𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑀𝑀𝑝𝑝(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

+ 𝜌𝜌𝜌𝜌 𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2

= 0 (1) 
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where 𝜌𝜌 = �ℎ𝑏𝑏𝜌𝜌𝑏𝑏 + 2ℎ𝑝𝑝𝜌𝜌𝑝𝑝�/𝐻𝐻 is the average density, 

Mp(x,t) is the moment generated by the piezoelectric 
actuators, and N is the applied axial load taken positive in 
compression and negative in tension as shown in figure 2. 

 
Figure 2: Infinitesimal section of beam in bending with 

moments and forces 

The expression for the combined Young’s modulus Ec is 
given by 

𝐸𝐸𝑐𝑐 = 𝐸𝐸𝑝𝑝�𝐻𝐻3−ℎ𝑏𝑏
3�+𝐸𝐸𝑏𝑏ℎ𝑏𝑏

3

𝐻𝐻3
 (2) 

 For a piezoelectric layer, strain is given by 

𝜀𝜀𝑥𝑥𝑥𝑥
𝑝𝑝 = 𝑑𝑑31𝐸𝐸3 = 𝑑𝑑31

𝑉𝑉𝑝𝑝
ℎ𝑝𝑝

 (3) 

 
where d31 is the piezoelectricity constant, E3 is the 

electric field in the transverse direction and Vp is the applied 
voltage. The stress-strain relation in each layer of the beam 
can be expressed as: 
(beam layer): 𝜎𝜎𝑥𝑥𝑥𝑥 = 𝐸𝐸𝑏𝑏𝜀𝜀𝑥𝑥𝑥𝑥 (4a) 
(piezo layers): 𝜎𝜎𝑥𝑥𝑥𝑥 = 𝐸𝐸𝑝𝑝(𝜀𝜀𝑥𝑥𝑥𝑥 − 𝜀𝜀𝑥𝑥𝑥𝑥

𝑝𝑝 ) (4b) 
where Eb  and Ep are Young’s moduli of the beam and 

the piezo layers, respectively. The total moment contributed 
by the beam and the piezo layers is given by 
𝑀𝑀𝑧𝑧(𝑥𝑥, 𝑡𝑡) = 𝜅𝜅 ∫ 𝐸𝐸𝑐𝑐𝑦𝑦2

 
𝐴𝐴𝐵𝐵

𝑑𝑑𝑦𝑦 − 𝑀𝑀𝑝𝑝(𝑥𝑥, 𝑡𝑡) (5) 

where 𝜅𝜅 = 1 𝑟𝑟𝑐𝑐⁄  with rc denoting the radius of curvature. 
The combined piezo moment as a function of the tip 
displacement feedback can be written as: 
𝑀𝑀𝑝𝑝(𝐿𝐿, 𝑡𝑡) = 𝐶𝐶0𝑤𝑤(𝐿𝐿, 𝑡𝑡) (6) 

where 

𝐶𝐶0 = 𝐺𝐺 �2𝐸𝐸𝑝𝑝ℎ𝑝𝑝ℎ0+𝐸𝐸𝑏𝑏ℎ𝑏𝑏ℎ0
2𝐸𝐸𝑝𝑝ℎ𝑝𝑝+𝐸𝐸𝑏𝑏ℎ𝑏𝑏

� (7) 

where G=bd31Ep(gd1-gd2), gd1 and gd2 are the gain factors 
for upper and lower piezoelectric layers and h0=hp+hb. 

3 Method of Solution 
Solution of the governing equation (1) is obtained by 
eigenfunction expansion of the displacement function as 
𝑤𝑤(𝑥𝑥, 𝑡𝑡) = ∑ 𝑋𝑋𝑛𝑛(𝑥𝑥)𝑇𝑇𝑛𝑛(𝑡𝑡)∞

𝑛𝑛=1  (8) 
Inserting equation (8) into equation (1) and after 

rearrangement, we obtain: 
𝑋𝑋𝑛𝑛′′′′(𝑥𝑥) + 𝛽𝛽2𝑋𝑋𝑛𝑛′′(𝑥𝑥) − 𝑎𝑎𝑛𝑛4𝑋𝑋𝑛𝑛(𝑥𝑥) = 0 (9) 
�̈�𝑇𝑛𝑛(𝑡𝑡) + 𝜔𝜔𝑛𝑛2𝑇𝑇𝑛𝑛(𝑡𝑡) = 0 (10) 

where m=ρA and 𝜌𝜌𝜌𝜌 = �ℎ𝑏𝑏𝜌𝜌𝑏𝑏 + 2ℎ𝑝𝑝𝜌𝜌𝑝𝑝�𝑏𝑏, 𝜔𝜔𝑛𝑛 is the 
natural frequency for the nth mode of vibration.  The axial 
load parameter β2 is defined as 

𝛽𝛽2 = 𝑁𝑁
𝐸𝐸𝑐𝑐𝐼𝐼𝑐𝑐

 (11) 

where N=kPcr, k<1 is the axial load ratio, and Pcr is the 
critical buckling load. A negative k indicates a tensile load 
and a positive k indicates a compressive load with the 
buckling load given by 𝑃𝑃𝑐𝑐𝑐𝑐 = (𝜋𝜋2𝐸𝐸𝑐𝑐𝐼𝐼𝑐𝑐)/4𝐿𝐿2 for a fixed-free 
column.  The frequency parameter an is defined as 

𝑎𝑎𝑛𝑛4 = 𝑚𝑚𝜔𝜔𝑛𝑛2

𝐸𝐸𝑐𝑐𝐼𝐼𝑐𝑐
 and 𝑎𝑎𝑛𝑛 = 𝑅𝑅𝑛𝑛

𝐿𝐿
 (12) 

where Rn is the nth dimensionless root of the 
characteristic equation.  The general solutions of equations 
(9) and (10) are given by 
𝑋𝑋𝑛𝑛(𝑥𝑥) = 𝜌𝜌𝑛𝑛 sin𝑝𝑝2𝑛𝑛𝑥𝑥 + 𝐵𝐵𝑛𝑛 cos 𝑝𝑝2𝑛𝑛𝑥𝑥 + 𝐶𝐶𝑛𝑛 sinh 𝑝𝑝1𝑛𝑛𝑥𝑥 +
𝐷𝐷𝑛𝑛 cosh 𝑝𝑝1𝑛𝑛𝑥𝑥 (13) 
𝑇𝑇𝑛𝑛(𝑥𝑥) = 𝐸𝐸𝑛𝑛 sin𝜔𝜔𝑛𝑛𝑡𝑡 + 𝐹𝐹𝑛𝑛 cos𝜔𝜔𝑛𝑛𝑡𝑡 (14) 

where, p1n and p2n are given by 

𝑝𝑝1,2𝑛𝑛 = �∓𝛽𝛽2+�𝛽𝛽4+4𝑎𝑎𝑛𝑛4

2
 (15) 

The constants An, Bn, Cn and Dn are determined from the 
boundary conditions, and En and Fn from the initial 
conditions. The boundary conditions at the clamped end are: 

𝑤𝑤(0, 𝑡𝑡) = 0; 𝜕𝜕𝑤𝑤(0,𝑡𝑡)
𝜕𝜕𝑥𝑥

= 0 (16) 

At the free end, the moment and shear boundary 
conditions are expressed in equation (17) and (18), 
respectively. 

For a beam with extended tip mass (MT) the centre of 
gravity of the mass is located at x=L+d, where d is the 
distance from the tip of the beam to the centre of gravity as 
indicated in figure 3.  Taking into account the rotary inertia 
of the tip mass the boundary conditions28,29 can be expressed 
as, 

𝐸𝐸𝑐𝑐𝐼𝐼𝑐𝑐
𝜕𝜕2𝑤𝑤(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑥𝑥2

+ 𝑀𝑀𝑇𝑇𝑑𝑑
𝜕𝜕2𝑤𝑤(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑡𝑡2

+ (𝐽𝐽𝑇𝑇 + 𝑀𝑀𝑇𝑇𝑑𝑑2) 𝜕𝜕
3𝑤𝑤(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

−
𝐶𝐶𝐴𝐴𝑤𝑤(𝐿𝐿, 𝑡𝑡) = 0 (17) 

𝐸𝐸𝑐𝑐𝐼𝐼𝑐𝑐
𝜕𝜕3𝑤𝑤(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑥𝑥3

+ 𝑀𝑀𝑇𝑇
𝜕𝜕2𝑤𝑤(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑡𝑡2

+ 𝑀𝑀𝑇𝑇𝑑𝑑
𝜕𝜕3𝑤𝑤(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

− 𝑁𝑁 𝜕𝜕𝑤𝑤(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑥𝑥

= 0
 (18) 

Where JT=MT(L+d)2 is the rotational moment of inertia 
of the tip mass and 

𝐶𝐶𝐴𝐴 = 𝐶𝐶0
2𝐸𝐸𝑐𝑐𝐼𝐼𝑐𝑐

 (19) 

 
Figure 3: Cantilever beam with an extended tip mass 

It is noted that 
𝑤𝑤(𝐿𝐿, 𝑡𝑡) = ∑ 𝑋𝑋𝑛𝑛∞

𝑛𝑛=1 (𝐿𝐿)𝑇𝑇𝑛𝑛(𝑡𝑡) (20) 
Substituting equation (20) into equation (17), the 

following expression is derived: 
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𝑋𝑋𝑛𝑛′′(𝐿𝐿) − 𝑑𝑑𝑑𝑑𝑎𝑎𝑛𝑛4𝑋𝑋𝑛𝑛(𝐿𝐿) − 𝐿𝐿2𝑑𝑑𝑎𝑎𝑛𝑛4𝑋𝑋𝑛𝑛(𝐿𝐿) − 𝑑𝑑2𝑑𝑑𝑎𝑎𝑛𝑛4𝑋𝑋𝑛𝑛′ (𝐿𝐿) −
𝐶𝐶𝐴𝐴𝑋𝑋𝑛𝑛(𝐿𝐿) = 0 (21) 

where 𝑑𝑑 = 𝑀𝑀𝑇𝑇/𝑚𝑚 is the tip mass ratio. Substituting 
equation (20) into equation (18), the shear boundary 
condition simplifies to the expression: 
𝑋𝑋𝑛𝑛′′′(𝐿𝐿) + 𝛽𝛽2𝑋𝑋𝑛𝑛′ (𝐿𝐿) + 𝑑𝑑𝑑𝑑𝑎𝑎𝑛𝑛4𝑋𝑋𝑛𝑛′ (𝐿𝐿) + 𝑑𝑑𝑎𝑎𝑛𝑛4𝑋𝑋𝑛𝑛(𝐿𝐿) = 0 (22) 

The solution (13) can be expressed as 

𝑋𝑋𝑛𝑛(𝑥𝑥) = 𝐶𝐶𝑛𝑛 �sinh 𝑝𝑝1𝑛𝑛𝑥𝑥 −
𝑝𝑝1𝑛𝑛
𝑝𝑝2𝑛𝑛

sin𝑝𝑝2𝑛𝑛𝑥𝑥� + 𝐵𝐵𝑛𝑛(cos 𝑝𝑝2𝑛𝑛𝑥𝑥 −
cosh 𝑝𝑝1𝑛𝑛𝑥𝑥) (23) 

Substituting (23) into the boundary conditions (21) and 
(22) gives the system of equations 

�𝜌𝜌1𝑛𝑛 𝜌𝜌2𝑛𝑛
𝜌𝜌3𝑛𝑛 𝜌𝜌4𝑛𝑛

� �𝐵𝐵𝑛𝑛𝐶𝐶𝑛𝑛
� = �00� (24) 

where the expression for Ain, i=1,…,4 are given in the 
appendix. The characteristic equation can be obtained from 
the determinant of equations (24) as 
A1nA4n - A2nA3n = 0 (25) 

The characteristic equation (25) can be solved 
numerically for the roots. When the tip mass is zero (η=0) 
and piezo thicknesses are zero, equation (25) reduces to the 
frequency equation given in Bokaian30-31. 

4 Control Strategy 
The control strategy in this investigation is active 
displacement feedback control.  The tip displacement can be 
measured using a laser displacement sensor, as indicated in 
figure 4a.   

 
(a) 

 
(b) 

Figure 4: (a) Schematic of control system. (b) Block 
diagram of feedback control. 

The displacement sensor measures the tip displacement 
and the electromechanical equation of motion is solved 
using this information.  This type of control strategy can be 
classified under classic control32. 

In equation (17), we note that the tip displacement 
appears in the moment boundary condition. The measured 
displacement in combination with the induced potential will 
have an effect on the boundary conditions and by extension, 
on the natural frequencies. The natural frequencies can be 

decreased or increased by varying the voltage potential.  
Figure 4b shows the block diagram for the feedback loop, 
where the tip displacement and the gain are coupled to vary 
the output in terms of vibration frequencies. 

5 Numerical results 
The dimensions of the beam are chosen the same as the ones 
used by Bokaian30-31 to verify the results. Thus the length of 
the beam is L=0.126 m and the width is b=12.7 mm30-31. 
However the numerical results are given using 
dimensionless (Rn) values. The properties of the beam and 
the piezo actuators are shown in table 1. 

Table 1: Material and geometric properties of the 
piezoelectric beam. 

 Aluminium beam Piezo material 
Young’s Modulus Eb = 76 GPa Ep = 59 GPa 
Density ρb = 2840 kg/m3 ρp = 1800 kg/m3 
Thickness hb = 10 mm hp = 1 mm 
Piezo  
Constant (d31) 

-- 260×10-12 m/V 

Using the characteristic equation (eq. 25) and 
substituting a=R/L gives us the dimensionless roots R of the 
characteristic equation.  From equation (11) it is noted that 
these roots are directly associated with the natural 
frequencies ω.  Figures 5 to 8 show the contour plots of the 
natural frequencies expressed as the dimensionless roots R 
with respect to axial load ratio and tip mass ratio with 
varying input voltage.  Tables 2 to 5 show the roots R of the 
characteristic equation (eq. 25).  

In figure 5, the lowest natural frequency occurs for a 
mass load ratio η = 10 and axial load ratio k = 0.8 
(compressive), whilst the largest frequency occurs at η = 0 
and k = -2 (tensile). 

Table 2 First frequency of a beam with a tip mass and 
rotary inertia (d = 0) at V = 0 V. 

Axial load 
ratio k η = 0 η = 0.1 η = 1 η = 5 η = 10 

0.8 1.27 1.01 0.63 0.43 0.36 
0.4 1.66 1.33 0.83 0.56 0.47 
0.2 1.78 1.43 0.88 0.60 0.50 
0 1.88 1.51 0.93 0.63 0.53 

-0.4 2.03 1.64 1.01 0.67 0.53 
-1 2.19 1.78 1.09 0.73 0.62 
-2 2.40 1.96 1.18 0.79 0.67 

 
The corresponding results for an active piezo 

V = 1000 V are given in figure 6.  Tables 2 to 5 show a 
decrease in the natural frequency as the tip mass load ratio 
increases, and an increase in natural frequency as the axial 
load ratio transitions from compressive (positive) to tensile 
(negative) load.  When a voltage V = 1000 V is applied 
along the piezo electric layer we note a general decrease in 
the natural frequencies as demonstrated in table 3. 

From tables 2 and 3 there is a decrease of approximately 
48% in frequency for varying tip mass ratios at k = 0.8 and 
approximately 1.25% for axial load ratio k = -2.  It is noted 
from the data in tables 2 and 3 that the piezo electric 
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actuators lose their effectiveness as the axial load increases 
in tension. 

 

 
Figure 5: Fundamental frequency vs axial load and tip mass 

for d = 0 and V = 0 V. 

Table 3: First frequency of a beam with a tip mass and 
rotary inertia (d = 0) at V = 1000 V. 

Axial load 
ratio k η = 0 η = 0.1 η = 1 η = 5 η = 10 

0.8 0.66 0.52 0.33 0.22 0.19 
0.4 1.53 1.21 0.75 0.51 0.33 
0.2 1.68 1.33 0.83 0.56 0.47 
0 1.79 1.43 0.88 0.60 0.50 

-0.4 1.97 1.58 0.97 0.65 0.55 
-1 2.15 1.74 1.06 0.71 0.6 
-2 2.37 1.92 1.16 0.78 0.66 

 

 
Figure 6: Fundamental frequency vs axial load and tip mass 

for d = 0 and V = 1000 V. 

The results for a cantilever with an extended tip mass, 
where the centre of gravity of the mass is located at a 
distance d = L from the tip of the cantilever are given in 
table 4 and figure 7 which show the contour plots of the 
frequencies with respect to axial load ratio and the tip mass 
ratio with zero input voltage. The lowest frequency occurs 
when η = 10 and k = 0.8, and the largest frequency at η = 0 
and k = -2. 

     The corresponding results for V = 1000 V are given 
in table 5 and figure 8, and a comparison of the lowest 
frequencies for V = 0 V (figure 7) and V = 1000 V (figure8) 
indicates a 49% decrease in the frequencies when 
V = 1000 V. However, this difference is only 1% for varying 
mass load ratio and the axial load ratio is k = -2. 

Table 4: First frequency of a beam with a tip mass and 
rotary inertia (d = L/1) at V = 0 V. 

Axial load 
ratio k η = 0 η = 0.1 η = 1 η = 5 η = 10 

0.8 1.25 0.85 0.50 0.34 0.28 
0.4 1.66 1.12 0.66 0.44 0.37 
0.2 1.78 1.20 0.70 0.47 0.40 
0 1.88 1.26 0.74 0.50 0.42 

-0.4 2.03 1.37 0.80 0.53 0.45 
-1 2.19 1.48 0.86 0.58 0.49 
-2 2.40 1.62 0.94 0.63 0.53 

 

 
Figure 7: Fundamental frequency vs axial load and tip mass 

for d = L and V = 0 V. 

In tables 2 and 4 the natural frequencies are identical for 
η = 0 as expected, and this also applies to tables 3 and 5.  If 
the tip mass is zero, the magnitude of the distance d from 
the tip of the beam is immaterial.  When η > 0 the distance d 
from the tip of the beam must be taken into account and the 
natural frequencies for d = 0 are smaller than the natural 
frequencies for d = L and as a result of the rotary inertia of 
the tip mass. 

Table 5: First frequency of a beam with a tip mass and 
rotary inertia (d = L/1) at V = 1000 V. 

Axial load 
ratio k η = 0 η = 0.1 η = 1 η = 5 η = 10 

0.8 0.66 0.44 0.26 0.18 0.15 
0.4 1.53 1.02 0.6 0.4 0.34 
0.2 1.68 1.12 0.66 0.44 0.37 
0 1.79 1.20 0.7 0.47 0.40 

-0.4 1.97 1.32 0.77 0.51 0.43 
-1 2.15 1.44 0.84 0.56 0.47 
-2 2.37 1.59 0.92 0.62 0.52 

 

0.8

0.2

-0.4
-2

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2
2.25

2.5

0.0 0.1 1.0 5.0 10.0

k

R

η 

0.8

0.2

-0.4
-2

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2
2.25

2.5

0 0.1 1 5 10

k

R

η 

0.8

0.2

-0.4
-2

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2
2.25

2.5

0 0.1 1 5 10

k

R

η

R & D Journal of the South African Institution of Mechanical Engineering 2015, 31, 60-65 
http://www.saimeche.org.za (open access) © SAIMechE All rights reserved. 

63 

http://www.saimeche.org.za/


Vibration of a Cantilever Beam with Extended Tip Mass and Axial Load Subject to 
Piezoelectric Control 

 

 
Figure 8: Fundamental frequency vs axial load and tip mass 

for d = L and V = 1000 V. 

6 Conclusions 
The effects of piezoelectric layers acting as actuators on the 
frequencies of a cantilever beam with a tip mass and subject 
to an axial load are studied. The piezoelectric composite 
beam is made of two actuator layers of equal thickness 
bonded to the top and bottom surfaces of the host beam. The 
control is specified as displacement feedback control with 
the deflection of the free end of the beam providing the 
feedback. The effect of the vibration control is investigated 
in the presence of rotary inertias of the tip mass. Also 
included in the computations are compressive or tensile 
external axial loads which can accentuate or nullify the 
piezo control. The mechanical effect of the activated 
piezoelectric layers is observed to be a boundary moment at 
the free end of the beam, which results in modifying the 
natural frequencies of the beam.  

The solution for the actively controlled cantilever beam 
is obtained analytically by expanding the deflection in terms 
of its eigenfunctions and solving the resulting characteristic 
equation numerically. The results are given in the form of 
three dimensional plots in terms of the fundamental 
frequencies,   magnitude of the tip mass and the axial load. 
In the numerical examples, the maximum applied voltage is 
specified as 1000V per 1mm thickness of the piezo layers.  
It is observed that the piezo actuators are more effective in 
modifying the fundamental frequency when the axial load is 
compressive.  It is noted that the actuation becomes less 
effective as the tip mass increases. Another observation is 
the piezo layer become less effective as the moment arm of 
the tip mass becomes larger.  

In this case a moment arm is introduced and the analysis 
also takes rotary inertia into consideration.  The effect of 
rotary inertia is to lower the frequencies.  A concentrated 
mass yields higher natural frequencies compared to those of 
an extended mass with inertia.  Both the concentrated and 
extended mass have the effect of lowering of the natural 
frequencies.  

The first mode is the fundamental mode and the most 
important in the analysis of the system.  The vibrations on 
the piezo electric beam are affected by piezo actuation most 
significantly in the fundamental mode.  The second modes 

are affected minimally and the reductions in the natural 
frequencies in the higher modes are considered negligible. 
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Appendix 
The values of Ain, i = 1,…,4 appearing in equation (23) are 
given below: 

𝜌𝜌1𝑛𝑛 = 𝑃𝑃1𝑛𝑛 cosh(𝑝𝑝1𝐿𝐿) − 𝑃𝑃2𝑛𝑛 cos𝑝𝑝2𝐿𝐿 + 𝑅𝑅1𝑛𝑛 �
𝑝𝑝1
𝑝𝑝2

sin 𝑝𝑝2𝐿𝐿 +

sinh(𝑝𝑝1𝐿𝐿)�  

𝜌𝜌2𝑛𝑛 = 𝑝𝑝1
𝑝𝑝2
𝑃𝑃2𝑛𝑛 sin 𝑝𝑝2𝐿𝐿 − 𝑃𝑃1𝑛𝑛 sinh 𝑝𝑝1𝐿𝐿 + 𝑅𝑅1𝑛𝑛(cos 𝑝𝑝2𝐿𝐿 −

cosh(𝑝𝑝1𝐿𝐿))  
𝜌𝜌3𝑛𝑛 = 𝑅𝑅2𝑛𝑛𝑝𝑝2 sin𝑝𝑝2𝐿𝐿 − 𝑅𝑅3𝑛𝑛 sinh(𝑝𝑝1𝐿𝐿) + 𝑎𝑎𝑛𝑛4𝑑𝑑(cos 𝑝𝑝2𝐿𝐿 −
cosh(𝑝𝑝1𝐿𝐿))  
𝜌𝜌4𝑛𝑛 = 𝑝𝑝1

𝑝𝑝2
𝑅𝑅2𝑛𝑛𝑝𝑝2 cos 𝑝𝑝2𝐿𝐿 + 𝑅𝑅4𝑛𝑛 cosh(𝑝𝑝1𝐿𝐿) +

𝑎𝑎𝑛𝑛4𝑑𝑑 �
𝑝𝑝1
𝑝𝑝2

sin𝑝𝑝2𝐿𝐿 − sinh(𝑝𝑝1𝐿𝐿)�  

where 
𝑃𝑃1 = 𝑎𝑎𝑛𝑛4𝑑𝑑𝑑𝑑 + 𝐶𝐶𝐴𝐴 − 𝑝𝑝12,  
𝑃𝑃2 = 𝑎𝑎𝑛𝑛4𝑑𝑑𝑑𝑑 + 𝐶𝐶𝐴𝐴 + 𝑝𝑝22,  
𝑅𝑅1 = 𝑎𝑎𝑛𝑛4𝑝𝑝1𝑑𝑑(𝑑𝑑2 + 𝐿𝐿2),  
𝑅𝑅2 = 𝑎𝑎𝑛𝑛4𝑑𝑑𝑑𝑑 + 𝑝𝑝22 − 𝛽𝛽2,  
𝑅𝑅3 = 𝑎𝑎𝑛𝑛4𝑑𝑑𝑑𝑑𝑝𝑝1 + 𝑝𝑝12 − 𝛽𝛽2𝑝𝑝2,  
𝑅𝑅4 = −𝑎𝑎𝑛𝑛4𝑑𝑑𝑑𝑑𝑝𝑝1 + 𝑝𝑝13 + 𝛽𝛽2𝑝𝑝2. 
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