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INTRODUCTION
The need to manage water resources in 
arid and semi-arid regions has always been 
of high importance to water managers 
and decision-makers, especially in this 
era of increased climate variability. Water 
resources engineers and other stakeholders 
have developed various approaches to man-
aging the relatively little amount of water 
in these regions in order to ensure constant 
availability of water for domestic, indus-
trial, ecological and agricultural purposes. 
Streamflow remains a fundamental compo-
nent of the water cycle and a major source 
of freshwater availability for human, animal, 
plant and natural ecosystems (Makkeasorn et 
al 2008). Therefore, prediction of streamflow 
both on a short-term and long-term basis is 
of crucial importance to water managers as 
it forms the basis upon which their decisions 
are made. While short-term predictions are 
made to provide signals about flood dangers 
and drought, long-term predictions help in 
providing information for long-term water 
supply strategies (Kisi & Cigizoglu 2007). 
Such information is needed, for example, 
when making decisions on the location and 
sizing of reservoirs on a river.

Numerous researchers have applied vari-
ous approaches to predicting streamflow 
– from the use of traditional auto-regressive
(AR) models (Jayawardena & Lai 1994; Wang 
et al 2009; Wu et al 2009), to the use of con-
ceptual, process-based and physically-based 
models (also referred to as the “knowledge 
driven models”) (Limbrick et al 2000; Butts 
et al 2004; Chiew 2006; Jiang et al 2007; 
Leander & Buishand 2007), to the data-
driven models (DDMs) (Cannon & Whitfield 
2002; Maity & Kashid 2010; Zakaria & 
Shabri 2012; Galelli & Castelletti 2013; 
Kasiviswanathan & Sudheer 2013). In recent 
years, the application of DDMs have gained 
more popularity due to their good perfor-
mance when applied to complex hydrological 
modelling problems. DDMs are models 
that give representation of system state 
variables such as input, and internal and 
output variables, while characterising the 
nature of hydrological processes within the 
system. They do this by taking into account 
only a few assumptions about the physics of 
the system being modelled. DDMs are now 
being considered as an approach that could 
complement or replace the knowledge-driven 
models (Solomatine & Ostfeld 2008; Londhe 
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This paper presents an investigation into the efficacy of two data-driven modelling techniques 
in predicting streamflow response to local meteorological variables on a long-term basis and 
under limited availability of datasets. Genetic programming (GP), an evolutionary algorithm 
approach and differential evolution (DE)-trained artificial neural networks (ANNs) were applied 
for flow prediction in the upper uMkhomazi River, South Africa. Historical records of streamflow, 
rainfall and temperature for a 19-year period (1994–2012) were used for model design, and 
also in the selection of predictor variables into the input vector space of the model. In both 
approaches, individual monthly predictive models were developed for each month of the year 
using a one-year lead time. The performances of the predictive models were evaluated using 
three standard model evaluation criteria, namely mean absolute percentage error (MAPE), root 
mean-square error (RMSE) and coefficient of determination (R2). Results showed better predictive 
performance by the GP models (MAPE: 3.64%; RMSE: 0.52: R2: 0.99) during the validation phase 
when compared to the ANNs (MAPE: 93.99%; RMSE: 11.17; R2: 0.35). Generally, the GP models 
were found to be superior to the ANNs, as they showed better performance based on the three 
evaluation measures, and were found capable of giving a good representation of non-linear 
hydro-meteorological variations despite the use of minimal datasets.
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& Charhate 2010). A major reason is that 
results from the latter have been found to 
exhibit higher-degree uncertainties in their 
structural makeup and parameterisations 
when compared to DDMs (Poulin et al 
2011; Il-Won et al 2012; Montanari & Di 
Baldassarre 2013). Hence, the use of DDMs 
is seen as a promising technique for solving 
these sensitivity and uncertainty issues, as 
well as other hydrological modelling-related 
problems.

The genetic programming (GP) approach 
is a prominent DDM that has proven appli-
cability to hydrological modelling. GP is a 
member of the evolutionary algorithm (EA) 
family and has been applied in a wide range 
of science-related and engineering analyses. 
GP has performed well in various water-
related studies, such as sediment transport 
modelling, streamflow prediction, rainfall-
runoff modelling, ecological modelling, 
uncertainty assessment studies, etc (Liong 
et al 2002; Muttil & Lee 2005; Ni et al 2010; 
Garg 2011; Selle & Muttil 2011; Sirdari et al 
2011; Kisi et al 2012).

Another extensively used data-driven 
modelling technique is artificial neural 
networks (ANN). ANN is inspired by 
neuroscience and uses its adaptive learning 
feature to solve problems in domains with 
little or no prior knowledge of the system 
being modelled. Over the last two decades, 
ANN has been successfully applied to 
various fields of water resources, including 
function approximation, classification and 
forecasting studies (Coulibaly et al 2001; 
Moradkhani et al 2004; Cigizoglu 2005; 
Dibike & Coulibaly 2006; Kisi & Cigizoglu 
2007; Heng & Suetsugi 2013). With the 
incorporation of ANNs, ensembles of 
models are being built to form modular 
or hybrid models in order to increase the 
confidence level of predictive assessment 
studies and to reduce model uncertainty 
(Abrahart et al 2012).

However, in order to achieve accurate and 
reliable predictions in hydrological studies, 
large datasets are often required for the 
purpose of model training (Babovic & Keijzer 
2002). These huge numbers of datasets are 
limited to certain regions and are often 
unavailable in some areas, especially in 
developing countries (Ni et al 2012).

The main objective of this study is 
to develop models capable of long-term 
streamflow prediction in response to non-
linear fluctuations of meteorological vari-
ables in the upper uMkhomazi River. The 
potentials of the GP and ANN approach in 
providing models, using the few available 
datasets, were subjected to test and their 
performances evaluated comparatively so 
as to determine the suitable approach for 

streamflow prediction in the study area. 
This study is unique, as comparative studies 
between two evolutionary-inspired tech-
niques (GP and a DE-trained ANN) are very 
uncommon, especially when employed under 
limited availability of datasets.

STUDY AREA AND DATASETS
The upper uMkhomazi River is located 
within the province of KwaZulu-Natal in 
South Africa, and is the third largest river in 
the province. The river is of high importance 
due to its role as a major source of water 
supply to the densely populated urban 
areas of Durban and Pietermaritzburg. The 
uMkhomazi River is approximately 160 km 
long and is elevated at about 3 300 m above 
sea level. The river derives its source from 
the upper Drakensberg Mountains and 
discharges into the Indian Ocean, drain-
ing an area of 4 400 km2. The climate is 
characterised by wet summers which occur 
between November and March, and dry win-
ters which extend over the months of June 
to September. Mean annual precipitation 
varies between 700 to 1 200 mm year-1, with 
highly intra- and inter-seasonal streamflows 
estimated to produce an average annual yield 
of 568 million m3 (Flugel & Marker 2003).

Past records of mean streamflow on 
a monthly basis were obtained from the 
Department of Water Affairs (DWA). 
Nineteen-year data from gauging station 
U1H005 (uMkhomazi River @ Lot 93 1821) 
with geographical coordinates between 
29΄ 44΄ 37.3΄ south longitudes and 
29΄ 54΄ 17.8΄ east latitudes were applied in 
this study (Figure 1). The South African 
Weather Service (SAWS) provided the corre-
sponding climatic data from three independ-
ent weather data stations (Pietermaritzburg, 
Shaleburn and Giant’s Castle) located within 
the study area.

METHODOLOGY

Genetic programming
Genetic programming (GP) (Koza 1992) is a 
population-based search which is inspired 
by the Darwinian principle of natural selec-
tion (survival of the fittest). GP is a member 
of the evolutionary algorithm (EA) family 
which performs its operations by genetically 
breeding a population of computer programs 
to solve problems. GP initialises by randomly 
generating programs that are perceived 
to be candidate solutions to the problem. 
Programs are then chosen from the pool, 
and evaluated based on a “fitness function” 
which describes how well they solve the 
given problem. The selected best programs 
are then transformed into a new generation 
of computer programs using genetic opera-
tors which apply slight modifications to the 
structure of the selected programs to achieve 
better solutions/programs. These succes-
sive iterations continue until a termination 
criterion is met. The program returned at 
the end of the run is finally chosen as the 
best program and the model that best solves 
the given problem. The principal operators 
employed in GP are:
1. Selection: Parent programs are chosen

probabilistically based on their fitness
values for the purpose of reproduction.

2. Crossover: A modification to the
structure of the parent programs which
involves swapping some sections to pro-
duce offspring programs.

3. Mutation: The creation of an offspring
program by randomly altering a struc-
tural member or node of a selected parent
program.

The GP representation consists of numerical 
constants and variables generally referred to 
as “terminals”, T, and arithmetic, relational 
and trigonometric operations which are 
internal nodes called “functions”, F. The 

Figure 1 Location of the uMkhomazi River and gauging stations around the catchment
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selected terminals and functions constitute 
the primitive set of the GP algorithm. The 
five major preparatory steps that should be 
adopted before applying GP to a problem 
involve (i) selecting the set of terminals, 
(ii) selecting the set of primitive functions, 
(iii) determining the fitness function, 
(iv) determining the parameters for control-
ling the run, and (v) defining the criterion 
for terminating the run (Maity & Kashid 
2009). The reader is referred to Koza (1992), 
Babovic & Keijzer (2000) and Poli et al (2008) 
for more in-depth discussion on GP.

Artificial neural networks (ANNs)
ANN is a computational intelligence (CI) 
method inspired by the neurological process-
ing ability of the human brain. ANN models 
consist of a pool of simple processing units 
called neurons which communicate by send-
ing signals to one another over a large num-
ber of weighted connections (Kröse & van 
der Smagt 1996). The operating principles of 
ANNs is based on parallel distributed infor-
mation processing that is capable of storing 
experiential knowledge gained through the 
process of learning, and making it available 
for future use (Elshorbagy et al 2010). The 
processing units function by receiving inputs 
from external sources or other neurons 
in the network, and computing output 
signals which is transmitted to other units. 
These processing units are found in layers 
commonly categorised as input, hidden or 
output layers. The use of an activation func-
tion in the hidden node of ANNs helps in 
transforming the non-linearity in the inputs 
into a linear space. The commonly used 
activation functions are sigmoidal functions 
such as the logistic and hyperbolic tangent 
functions (Maier & Dandy 2000). The major 
network topologies that characterise the 
architecture of ANNs are the feed-forward 
neural networks (FFNN) and re-current 
neural networks (RNN); with multilayer 
perceptron (MLP), radial basis function 
(RBF) networks, Kohonen’s self-organising 
feature maps (SOFM) and Elman-type RNN 
as the most popular ANNs (Coulibaly & 
Evora 2007; Jha 2007). Numerous specialised 
learning algorithms have been employed 
for the purpose of training and subjecting 
ANNs to adaptive learning. The earliest and 
most popular method that has been used 
to train ANNs is the back propagation (BP) 
algorithm. However, in recent times research 
has produced improved algorithms for ANN. 
These include methods based on gradient 
descent like quick propagation (QP) and the 
Levenberg-Marquardt (LM) algorithm, and 
heuristic methods such as genetic algorithm 
(GA) and differential evolution (DE). Hence, 
the ability of ANNs to assimilate complex 

and non-linear input-output interactions 
makes it suitable for predictive studies in the 
field of water resources.

Selection of input variables
The modelling strategy employed in this 
study was to subject the two approaches (GP 
and ANN) to the same set of datasets to 
avoid any form of bias. Hence, the same set 
of input variables were used for both models. 
However, the choice of input variables was 
dependent on the few available datasets. 
Although there are several processes that 
influence streamflow generation in river 
hydrology, such as precipitation, tempera-
ture, evaporation, soil moisture, vegetation 
cover, land use, etc (Loucks & van Beek 
2005; Raghunath 2007), only the available 
datasets of rainfall and temperature were 
used alongside that of streamflow for input 
variable selection. The streamflow, rainfall 
and temperature data made available by 
the DWA and SAWS cover a 19-year period 
(1994–2012). The rainfall and temperature 
datasets were collected from three inde-
pendent weather stations located within 
the study area. Results of serial correlation 
analysis show high correlation between the 
values of streamflow for the past three years 
and that of any pre-selected year. The results, 
however, revealed that streamflow for the 
pre-selected year had close relationship 
with rainfall and temperature values of the 
preceding year across the three independent 
weather stations. The datasets were split 
randomly into two subsets, with two thirds 
of the datasets used for model training and 
the remaining third for validation. The 
random splitting was done in a manner in 
which the validation datasets were within 
the range of the training datasets, thereby 
making the datasets representative of the 
same population.

MODEL DEVELOPMENT
Both the GP and ANN models that were 
investigated for long-term streamflow 
prediction in this study were developed by 
adopting a monthly approach. It has been 
found that the use of individual monthly 
models in high-lead-time prediction pro-
duces better predictions when compared to 
the adoption of a single model, which often 
produces poor predictions (Sivapragasam et 
al 2011). Hence, a total of twelve individual 
monthly models (one for each month of the 
year) were developed using both modelling 
approaches. The input spaces of the GP and 
ANN models were populated with a total of 
nine input variables. These input variables 
comprised streamflow values for a given 
month in the last three years (Qt, Qt–1, Qt–2), 

rainfall values from the three independent 
weather stations for the same month in 

the preceding year (R1t, R2t, R3t) and their 
corresponding temperature values (T1t, T2t, 
T3t). Weather stations 1, 2 and 3 represent 
Pietermaritzburg (PMB), Shaleburn, and 
Giant’s Castle weather stations respectively.

The approach employed for long-term 
streamflow prediction in this study was 
to adopt a one-year lead time. Therefore, 
the streamflow being modelled for a given 
month in the next year (Qt+1) is designated as 
the target output. The mathematical repre
sentation of the one-year lead time model 
adopted can be expressed as:

Qt+1 = �f (Qt, Qt–1, Qt–2, R1t, R2t, R3t, T1t,  
T2t, T3t)� (1)

GP models
The GP predictive models for long-term 
streamflow prediction in this study were 
developed using an objective function – to 
minimise the mean-square error that can 
be obtained between the predicted and the 
observed values of streamflow. The mean-
squared error function which measures the 
fitness of evolved programs is calculated by 
taking the average of the squared raw errors 
over the values in the training dataset. This 
can be expressed mathematically as:

F = Min
 

n
∑
i=1

 
(Qoi

 – Qpi
)2

n
� (2)

Qo and Qp are observed and predicted values 
of streamflow respectively, n is the number 
of data points, and i is the counter from 1 to 
the number of data points.

The ability of GP to screen and prioritise 
input variables during its run contributes 
to the fitness of the evolved programs, thus 
ensuring the accuracy of its predictions. This 
is achieved by expressing the contribution 
of each input variable as a function of its 
frequency of occurrence. The primitive set of 
the GP was supplied with arithmetic, com-
parison, logistic and trigonometric functions 
in order to capture details of the relationship 
between the input variables and the target 
output. A distributed population structure, 
which involves the subdivision of the popula-
tion space into multiple subpopulation or 
demes, was employed in this study. This 
subdivision allows for occasional migration 
of individuals among demes for exchange of 
genetic material, in order to achieve evolu-
tion of the entire population, quicken the 
evolution process and also to prevent prema-
ture convergence.

The implementation of GP in this study 
was done by using a program-based GP tool 
called Discipulus (Francone 2011). Discipulus 



Journal of the South African Institution of Civil Engineering  •  Volume 57  Number 3  September 201512

is a linear genetic programming (LGP) soft-
ware that evolves models in the form of com-
puter programs based on the least sum of 
squared errors. The goodness-of-fit is mea-
sured using R-square and F-score statistics 
against observed values of the training and 
validation datasets. The default parameter 
settings recommended by Francone (2011) 
were used to control the GP run (Table 1). 
Francone (2011) states that the default set-
tings for a Discipulus project work quite well 
for most projects, and that Discipulus auto-
matically sets, randomises, and optimises the 
GP parameters for project runs.

The GP algorithm for each computa-
tion was run on an Intel Core i7 PC with 
3.40 GHz and 4 GB RAM. The maximum 
size of each evolved program was restricted 
to 512, initialising with 80 instructions 
per program. This was done to prevent 
the phenomenon of bloating, which means 
over-growing of programs without limits and 
without any improvement in the fitness of 
the population (Bleuler et al 2001).

ANN models
The multi-layer feed-forward neural network 
(FFNN), one of the most widely used net-
work architecture in hydrological modelling 
systems, was employed for the purpose 
of comparison. The architectural design 
of the FFNN models developed comprise 
three layers – one input, one hidden and 
an output layer (Figure 2). The input layer 
consists of nine input nodes representing 
the nine selected input variables, while the 
output node consists of only one neuron 
(target output). The optimal architecture of 
each individual model was determined by 
incrementally varying the number of hidden 

layer nodes from 2 to 10 using a single (one) 
stepping approach.

The ANN was trained using a differential 
evolution (DE) algorithm. A total run of 
10 000 generations was adopted for optimal 
training after a number of trial runs. The 
population size, NP, crossover constant, CR, 
and mutation scale factor, F, were used to 
control amplification of differential variation 
during the run. Following the suggestion 
of Price and Storn (2013), NP, CR and F 
were set at “D multiplied by 10”, 0.9 and 
0.4 respectively, (where D is the number of 
weights and biases in the selected architec-
ture). In the hidden layer of the FFNN, a 
logistic sigmoidal-type activation function 
of between 0 and 1 was used to scale the 
inputs in the range 0.1–0.9. A linear activa-
tion function was, however, employed in the 
output layer.

Performance evaluation
The performance of the models developed in 
this study was evaluated using three stand-
ard statistical measures, namely mean abso-
lute percent error (MAPE), root mean-square 
error (RMSE) and coefficient of determina-
tion (R2). The three performance evaluation 
criteria can be computed using the following 
mathematical expressions:
1.	 The mean absolute percent error (MAPE): 

indicates a better model as its value 
approaches zero.

MAPE = 
1

n 

n
∑
i=1 

Qp – Qo

Qo

 × 100� (3)

2.	 Root mean-square error (RMSE): 
indicates a better model as its value 
approaches zero.

RMSE = 
 

n
∑
i=1 

(Qo – Qp)2

n
� (4)

3.	 Coefficient of determination (R2): 
indicates a better model as its value 
approaches 1.

R2 = 
∑(Qo – Qo )(Qp – Qp )

∑(Qo – Qo )2 ∑(Qp – Qp )2

2

� (5)

Qo and Qp represent observed and predicted 
streamflows respectively, Qo  and Qp  repre-
sent their corresponding mean values, n is the 
number of data points, and i is the counter 
from one to the number of data points. 
Considering that the maximum number of 
lags needed to predict the next year’s flow is 
three, the 19-year datasets constituted 16 data 
points for each monthly model. Lower values 
of MAPE and RMSE would indicate better 
predictive accuracy of the model, while higher 
values of R2 (close to 1.0) would indicate bet-
ter predictive accuracy of the models.

RESULTS AND DISCUSSIONS
The performance evaluation results of the 
two DDM approaches (GP and ANN) on 
long-term streamflow prediction in the 
upper uMkhomazi River are presented in 
Tables 2a and 2b, for the training and valida-
tion datasets respectively. It can be observed 
from Table 2a that both the GP and ANN 
models provided very competitive perfor-
mances during the training phase, with the 
ANN models having a slight edge over the 
GP models. The maximum values of MAPE 
and RMSE recorded by the ANN models 
were 5.31% and 0.72 respectively, while their 
corresponding values in the GP models were 
computed to be 11.15% and 1.50. However, in 
both approaches, R-squared values showed 
a high correlation between observed and 
predicted streamflows. The R-squared values 
ranged between 0.9918–1.0000 in the ANN 
models, and 0.9891–0.9994 in the GP models.

Table 1 �Summary of parameter settings used 
to control the GP algorithm run

Parameters Value

Program size Initial 80, 
maximum 512 

Mutation frequency 95%

Crossover frequency 50%

Block mutation rate 30%

Instruction mutation rate 30%

Instruction data mutation rate 40%

Population size 500

Maximum number of run 300

Maximum number of 
generations since start of run 10 000

Homologous crossover 95%

Number of demes 10

Migration rate 1%

Figure 2 Architecture of the three-layer feed-forward neural network (FFNN)
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It can also be noted in both approaches 
that low flows, which occur during the 
months of May to July, produced smaller 
error estimates compared to the high flows 
which occur between December and March, 
with February as an exception.

On the other hand, the GP models 
performed considerably better than the 
ANN models during validation, as the ANN 
models produced higher errors. The errors 
produced in the GP models during validation 
were better converged towards zero and are 
estimated to be 0.6%–7.6% and 0.03–1.38 for 
MAPE and RMSE respectively. Also, all the 
GP models maintained the highly positive 

correlations recorded during training, with 
R-squared estimates of 0.9740–0.9999 during 
validation. It may be inferred that the ability 
of the GP approach to screen and prioritise 
input variables contributed to the fitness of 
its models (Makkeasorn et al 2008).

However, the error estimates in the 
DE-ANN models increased marginally, yield-
ing higher MAPE and RMSE values while 
generating lower R-square values. Although 
the DE-ANN learning process was satisfac-
tory, the generalisation was poor. The poor 
generalisation may be attributed to the use 
of small datasets (Zhang et al 2010), and also 
to the non-existence of an approach that 

could prevent over-training. Furthermore, 
it was noticed that the optimisation of the 
network architecture, as determined using the 
DE-algorithm, resulted in a slow convergence 
rate, and hence increased computational 
time. This can be understood better from 
Table 3, which presents the optimal network 
architecture of the individual ANN models 
as returned at the end of each run. It was 
observed during the runs that the training 
speed becomes slower as the number of 
hidden layer nodes increases. This implies 
that increase in the number of synaptic con-
nections between units imposes a greater 
number of weights on the network. This is in 
line with the submission of Karthikeyan et al 
(2013) that the number of hidden layer nodes 
influence computational time, and conse-
quently, that ANNs require an ample period 
of time for continuous training in order to 
achieve better convergence when used on 
small datasets. Some researchers (Ilonen 
et al 2003; Ghaffari et al 2006; Corzo & 
Solomatine 2007) have, however, opined that 
the idea of increasing the computational time 
should not be seen as a guarantee to achieving 
better generalisation, as this effort may yield 
no practical improvement in the results.

In contrast, GP exhibited better generali-
sation ability at a faster learning rate, a prod-
uct of its ability to distribute the population 
into demes (Brameier & Banzhaf 2001). The 
distribution of the population into demes 
allowed for occasional migration of individu-
als between sub-populations for exchange 
of genetic materials, thereby leading to the 
occurrence of parallel evolution. This evolu-
tion further minimised the chances of the 
GP algorithm converging to local optima, 
and also ensured faster convergence.

Table 2(a) �Comparison of MAPE, RMSE and R2 values between GP and ANN models during training

Training phase

Month
MAPE RMSE R2

GP ANN GP ANN GP ANN

January 3.9401 1.2865 1.4968 0.6778 0.9964 0.9992

February 0.9966 0.4008 0.4974 0.2689 0.9994 0.9997

March 3.6570 3.1207 1.2469 1.1404 0.9982 0.9989

April 5.6798 3.4220 1.0710 0.7181 0.9891 0.9949

May 2.6864 0.6667 0.1982 0.0694 0.9970 0.9991

June 1.1854 1.4E-08 0.0607 7.8E-10 0.9986 1.0000

July 1.2691 0.2050 0.0558 0.0150 0.9985 1.0000

August 4.2479 4.1465 0.1047 0.1799 0.9972 0.9918

September 11.1474 5.3100 0.0607 0.2615 0.9988 0.9984

October 3.1860 4.2952 0.1607 0.4268 0.9994 0.9953

November 4.2854 2.2617 0.4855 0.2183 0.9975 0.9995

December 6.0007 1.1E-10 0.8642 3.6E-11 0.9972 1.0000

Average 4.0235 2.0929 0.5252 0.3313 0.9973 0.9981

Table 2(b) �Comparison of MAPE, RMSE and R2 values between GP and ANN models during validation

Validation phase

Month MAPE RMSE R2

GP ANN GP ANN GP ANN

January 3.4179 65.4074 1.3535 29.1835 0.9969 0.0992

February 3.0490 22.7069 1.0126 18.3385 0.9923 0.9651

March 4.3077 35.3504 1.3797 20.2504 0.9932 0.3559

April 6.1725 21.9832 1.1868 6.3037 0.9741 0.5174

May 1.8900 57.2785 0.1245 3.8866 0.9954 0.2272

June 0.5932 40.5837 0.0325 1.6614 0.9990 0.6659

July 0.7575 87.6803 0.0257 2.5899 0.9999 0.5788

August 7.5730 58.1474 0.3401 3.9421 0.9881 0.0080

September 5.1472 100.6726 0.1983 1.8091 0.9740 0.2979

October 6.1092 125.0948 0.2653 3.3390 0.9905 0.0959

November 2.1735 255.0309 0.2918 24.8077 0.9978 0.1231

December 2.4802 89.3958 0.5242 16.0652 0.9978 0.0917

Average 3.6392 93.9918 0.5612 11.1708 0.9916 0.3486

Table 3 �Network architecture showing optimal 
number of hidden layer nodes in the 
ANN models

Month Optimal network 
architecture

January 9-10-1

February 9-7-1

March 9-10-1

April 9-7-1

May 9-10-1

June 9-5-1

July 9-7-1

August 9-8-1

September 9-7-1

October 9-9-1

November 9-10-1

December 9-4-1
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Figure 3 Observed and predicted streamflows during training
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Figure 4 Observed and predicted streamflows during validation
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Figures 3 and 4 present plots of observed 
values against predicted values as simulated 
by the two approaches for both training and 
validation phases. The plots clearly reveal 
remarkable performance of the GP models 
during both training and validation, unlike the 
ANN models which were not able to replicate 
the performances recorded during the training 
phase, as a result of some under- or over-
estimation of observed values. Despite ensur-
ing that the validation datasets were within the 
range of the training datasets, the differences 
between observed and predicted streamflows 
during the months with high flows were more 
pronounced during validation.

The poor performance of the ANN 
models during validation is considered to be 
due to the problem of over-parameterisation 
and over-fitting, which is typical of ANNs 
(Bhattacharya et al 2001), especially when 
subjected to small numbers of datasets. 
This further indicates that the use of ANNs 
is problem-specific and data-dependent 
(Bhattacharya et al 2001), and that high 
difficulty exists in modelling hydrologic pro-
cesses with limited datasets (Ni et al 2010).

On the contrary, the GP models in most 
cases simulated the streamflows closely and 
achieved better convergence than they did 
during training. Both the low and high flows 
were substantially reproduced by the GP 
models, including the spikes that character-
ised the streamflows in some months. This 
further affirms the ability of GP in capturing 
normal events, as pointed out in Londhe & 
Charhate’s (2010) river flow predictive study. 
Also, the overfitting problems often associ-
ated with the ANNs were greatly minimised 
in the GP models, the reason being that 
GP ranks its potential candidate solutions 
(program models) in terms of their fitness, 
and often discard those with poor fitness. 
The ability of the Discipulus GP model to 
produce better solutions via the combination 
of the best single program models into team 
models (Francone 2011), also ensured the 
predictive accuracy of the GP models.

The consistency of the GP approach in 
simulating the hydro-climatological pro-
cesses in the study area is evident, as the GP 
models were able to accurately capture the 
rainfall-temperature-streamflow relationship 
in each month of the year. The results agree 
with those in similar studies (Makkeasorn 
et al 2008; Guven 2009; Londhe & Charhate 
2010), in which GP-derived models have also 
been found to showcase better predictive 
accuracy than the ANNs.

CONCLUSIONS
In this study, two data-driven modelling 
techniques, namely genetic programming 

(GP) and artificial neural networks (ANN), 
were employed comparatively for long-term 
streamflow prediction. Results clearly showed 
the efficacy of the GP approach in giving a 
better representation of complex and non-
linear input-output relationships, despite the 
use of limited datasets. The GP models devel-
oped obtained better performance as average 
values of mean absolute percent error (MAPE) 
= 4.02% and 3.64%; root mean-square error 
(RMSE) = 0.53 and 0.56, and R2 = 0.9973 and 
0.9916 during training and validation respec-
tively. However, the corresponding values of 
MAPE, RMSE and R2 in the ANN models 
were estimated to be 2.09% and 93.99%; 0.33 
and 11.17, and 0.9981 and 0.3486 respectively. 
Though the use of ANNs remains a flexible 
approach known for its prominent feature of 
capturing non-linearity inherent in hydro-
logical systems modelling, this study clearly 
showed that the large number of datasets 
required to achieve accurate and reliable 
results serve as a major drawback to its use, 
especially in areas where the availability of 
datasets is limited. Over-training could also 
have been a problem. The convergence rate 
of the DE-trained ANNs was found to be 
slower, requiring a considerable amount of 
time for model training. A potential solution 
in this regard is the hybridisation of learning 
algorithms, which is a combination of two 
or more learning algorithms for ANNs to 
achieve better adaptive learning.

In contrast to ANNs, the GP models 
trained faster and achieved better conver-
gence, thereby producing close agreement 
between observed and predicted values, 
with highly positive correlations during 
both training and validation. Generally 
it can be concluded from this study that 
genetic programming can be employed for 
long-term streamflow prediction in the 
upper uMkhomazi River despite the limited 
availability of datasets. The monthly models 
developed can be deployed as predictive tools 
for the purpose of planning and management 
of water resources within the uMkhomazi 
region. In addition, this study further dem-
onstrates GP as a powerful predictive tool 
in hydrologic modelling studies, which can 
be considered as an alternative approach to 
the ANNs, especially in data-sparse regions. 
Future work will focus on the conjunctive 
use of GP and other evolutionary computa-
tion techniques, such as screening and 
optimisation tools, for improving the perfor-
mance of ANNs.
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