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1Instituto de Ciencias F́ısicas y Matemáticas, Universidad Austral de Chile, Valdivia, Chile

2Department of Mathematics and Institute of Systems Science, Research and Postgraduate

Support, Durban University of Technology, PO Box 1334, Durban 4000, Republic of South

Africa

3School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal,

Private Bag X54001, Durban 4000, Republic of South Africa

4Department of Mathematics and Statistics, University of Cyprus, Lefkosia 1678, Cyprus

June 6, 2016

Abstract

We consider the one-factor model of commodities for which the parameters of the model depend upon

the stock price or on the time. For that model we study the existence of group-invariant transformations.

When the parameters are constant, the one-factor model is maximally symmetric. That also holds for

the time-dependent problem. However, in the case for which the parameters depend upon the stock price

(space) the one-factor model looses the group invariants. For specific functional forms of the parameters

the model admits other possible Lie algebras. In each case we determine the conditions which the

parameters should satisfy in order for the equation to admit Lie point symmetries. Some applications

are given and we show which should be the precise relation amongst the parameters of the model in

order for the equation to be maximally symmetric. Finally we discuss some modifications of the initial

conditions in the case of the space-dependent model. We do that by using geometric techniques.
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1 Introduction

Three models which study the stochastic behaviour of the prices of commodities that take into account

several aspects of possible influences on the prices were proposed by E Schwartz [1] in the late nineties. In
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the simplest model (the so-called one-factor model) Schwartz assumed that the logarithm of the spot price

followed a mean-reversion process of Ornstein–Uhlenbeck type. The one-factor model is expressed by the

following (1 + 1) evolution equation

1

2
σ2S2F,SS + κ (µ− λ− log S)SF,S − F,t = 0, (1)

where κ > 0 measures the degree of mean reversion to the long-run mean log price, λ is the market price of

risk, σ is the standard deviation of the return on the stock, S is the stock price, µ is the drift rate of S and

t is the time. F is the current value of the futures contract which depends upon the parameters t, S,, i.e.,

F = F (t, S).

Generally κ, λ, σ and µ are assumed to be constants. In such a case the closed-form solution of equation

(1) which satisfies the initial condition

F (0, S) = S (2)

was given in [1]. It is

lnF (t, S) = e−κt lnS +
(

1− e−κt
)

a∗ +
σ2

4κ

(

1− e−2κt
)

(3)

with a∗ = µ− λ− 1
2
σ2

κ
.

It has been shown that the closed-form solution (3) follows from the application of Lie point symmetries.

In particular it has been shown that equation (1) is of maximal symmetry, which means that it is invariant

under the same group of invariance transformations (of dimension 5+1+∞) as that of the Black-Scholes and

the Heat Conduction Equation [2]. The detailed analysis for the Lie symmetries of the three models, which

were proposed by Schwartz, and the generalisation to the n-factor model can be found in [3]. Other Financial

models which have been studied with the use of group invariants can be found in [4, 5, 6, 7, 8, 9, 10, 11, 12]

and references therein.

Solution (3) is that which arises from the application of the invariant functions of the Lie symmetry

vector

Xsol = eκtS∂S + F∂F (4)

and also leaves the initial condition invariant.

In a realistic World parameters are not constants, but vary in time and depend upon the stock price,

that is, the parameters have time and “space” dependence [13, 14], where as space we mean the stock

price parameters as an analogue to Physics. In this work we are interested in the case for which the

parameters κ, λ, σ and µ are space dependent, ie, are functions of S. We study the Lie point symmetries

of the space-dependent equation (1). As we see in that case, when σ,S 6= 0, there does not exist any Lie

point symmetry which satisfies the initial condition (2). The Lie symmetry analysis of the time-dependent

Black-Scholes-Merton equations was carried out recently in [15], it has been shown that the autonomous,

and the nonautonomous Black-Scholes-Merton equation are invariant under the same group of invariant

transformations, and they are maximal symmetric. The plan of the paper is as follows.

The Lie point symmetries of differential equations are presented in Section 2. In addition we prove

a theorem which relates the Lie point symmetries of space-dependent linear evolution equations with the

Homothetic Algebra of the underlying space which defines the Laplace operator. In Section 3 we use these

results in order to study the existence of Lie symmetries of for the space-dependent one-factor model (1) and
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we show that the space-dependent problem is not necessarily maximally symmetric. The generic symmetry

vector and the constraint conditions are given and we prove a corollary in with the space-dependent linear

evolution equation is always maximally symmetric when we demand that there exist at least one symmetry

of the form (4) which satisfies the Schwartz condition (2). Furthermore in section 4 we consider the time-

dependence problem and we show that the model is always maximally symmetric. Finally in section 5 we

discuss our results and we draw our conclusions. AppendixA completes our analysis.

2 Preliminaries

Below we give the basic definitions and properties of Lie point symmetries for differential equations and also

two theorems for linear evolution equations.

2.1 Point symmetries of differential equations

By definition a Lie point symmetry, X, of a differential equation

Θ
(

xk, u, u,i, u,ij
)

= 0,

where the xk are the independent variables, u = u
(

xk
)

is the dependent variable and

u,i =
∂u

∂xi

is the generator of a one-parameter point transformation under which the differential equation Θ is invariant.

Let
(

xi, u
)

→
(

x̄i
(

xk, u, ε
)

, ū
(

xk, u, ε
))

be a one-parameter point transformation of the independent and

dependent variables with the generator of infinitesimal transformations being

X = ξi
(

xk, u
)

∂i + η
(

xk, u
)

∂u. (5)

The differential equation Θ can be seen as a geometric object on the jet space J = J
(

xk, u, u,i, u,ij
)

.

Therefore we say that Θ is invariant under the one-parameter point transformation with generator, X , if

[16]

LX[2]Θ = 0. (6)

or equivalently

LX[2]Θ = λΘ , modΘ = 0, (7)

where X [2] is the second prolongation of X in the space J . It is given by the formula

X [2] = X + ηi∂u,i
+ ηij∂u,ij

, (8)

where ηi = Di (η) − Ψ,kDi

(

ξk
)

, ηij = Dj (ηi) − ukiDjξ
k and Di is the operator of total differentiation, ie,

Di =
∂
∂xi + u,i

∂
∂u

+ u,ij
∂

∂u,j
+ ... [16]. Moreover, if condition (6) is satisfied (equivalently condition (7)), the

vector field X is called a Lie point symmetry of the differential equation Θ.
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2.2 Symmetries of linear evolution equations

A geometric method which relates the Lie and the Noether point symmetries of a class of second-order

differential equations has been proposed in [18, 19]. Specifically, the point symmetries of second-order

partial differential equations are related with the elements of the conformal algebra of the underlying space

which defines the Laplace operator.

Similarly, for the Lie symmetries of the second-order partial differential equation,

∆u− Cαu,β − u,t = 0, (9)

where

∆ =
1
√

|g|
∂

∂xα

(

√

|g|gαβ ∂

∂xβ

)

is the Laplace operator, gαβ = g
(

xβ
)

is a nondegenerate tensor (we call it a metric tensor) and Cα =

Cα
(

xβ
)

, the following theorem arises1.

Theorem 1 The Lie point symmetries of (9) are generated by the Homothetic Group of the metric tensor

gαβ , GH which defines the Laplace operator ∆. The general form of the Lie symmetry vector is

XL =

(

c1 + 2ψI

∫

T I (t) dt

)

+
(

T I (t)Y αI
(

xβ
))

∂α +
(

a
(

xβ , t
)

u+ b
(

xβ , t
)

+ c2u
)

∂u, (10)

where ψI is the homothetic factor of Y aI , ψI = 0 for the Killing vector (KV, ψI = 1 for Homothetic vector

(HV), a
(

xβ , t
)

and b
(

xβ , t
)

are solutions of (10), Y αI
(

xβ
)

is a KV/HV of gαβ and the following condition

holds, namely,

T ILYI
Cα − T I,tYIα − 2a,α = 0. (11)

Note that I = 1, 2, ..., dimGH .

Another important result for the (1 + 1) linear evolution equation of the form of (9) is the following

theorem which gives the dimension of the possible admitted algebra.

Theorem 2 The one-dimensional linear evolution equation can admits 0, 1, 3 and 5 Lie point symmetries

plus the homogenous and the infinity symmetries2 [17].

However, as equation (9) is time independent, it admits always the autonomous symmetry ∂t. In the

following we apply theorems 1 and 2 in order to study the Lie symmetries of the space-dependent one-factor

model.

3 Space dependence of the one-factor model

The space-dependent one-factor model of commodity pricing is defined by the equation

1

2
σ (S)

2
S2F,SS + κ (S) (µ (S)− λ (S)− logS)SF,S − F,t = 0. (12)

1For the proof see Appendix A.
2In the following the homogeneous and the infinity symmetries we call them trivial symmetries.
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The parameters, σ, κ, µ and λ, depend upon the stock price, S. In order to simplify equation (12) we

perform the coordinate transformation S = ex, that is, equation (12) becomes

1

2
σ2 (x)F,xx +

(

κ (x) (µ (x)− λ (x)− x)− 1

2
σ2 (x)

)

F,x − F,t = 0 (13)

or

∆F +

(

κ (µ− λ− x)− 1

2
σ2 − 1

2
σσ,x

)

F,x − F,t = 0, (14)

where ∆ is the Laplace operator in the one-dimensional space with fundamental line element

dx2 =
2

σ2 (x)
dx2 (15)

and admits a two-dimensional homothetic algebra. The gradient KV is K1 = σ (x) ∂x and the gradient HV

is H2 = σ (x)
∫

1
σ(x)dx with homothetic factor ψH = 1.

Equation (14) is of the form of (9) where now

Cx (x) = −
(

κ (µ− λ− x)− 1

2
σ2 − 1

2
σσ,x

)

(16)

and

Cx (x) = −2
(

κ (µ− λ− x)− 1
2σ

2 − 1
2σσ,x

)

σ2 (x)
. (17)

Without performing any symmetry analysis we observe that, when Cx (x) = 0, (14) is in the form of the

heat conduction equation and it is maximally symmetric, ie, it admits 5 + 1 +∞ symmetries. In the case

for which σ,x 6= 0 from (16) we have that

σ2 (x) =

(

4

∫

e2xK (x) dx+ c1

)

e−2x, (18)

where K (x) = κ (x) (µ (x) − λ (x)− x). However, this is only a particular case whereas new cases can arise

from the symmetry analysis.

3.1 Symmetry analysis

Let YI (x) , I = 1, 2 be the two HVs of the space (15) with homothetic factors ψI . As (14) is autonomous

and linear, it admits the Lie symmetries ∂t, F∂F , b (t, x) ∂F , where b (t, x) is a solution of (14), Therefore

from theorem 1 we have that the possible additional Lie symmetry vector is

X =

(

2ψI

∫

T I (t) dt

)

+ T I (t)YI∂x + (a (x, t)F ) ∂F (19)

for which the following conditions hold

T1LY1Cx + T2LY2Cx − T1,tY1 − T2,tY2 − 2a,x = 0 and (20)

∆a− Cxa,x − a,t = 0. (21)

We study two cases: A) a (t, x) = 0 and B) a (t, x) 6= 0.
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3.1.1 Case A

Let a (t, x) = 0. Then (21) is satisfied. Hence from (20) we have the system

LYI
Cx −mYI = 0, (22)

where TI,t = mT , ie, TI (t) = T01e
mt. This means that from any vector field YI we have only one symmetry.

Hence from Theorem 2 condition (22) should hold for I = 1 and I = 2. In this case the space-dependent

one-factor model admits 3 + 1 +∞ Lie point symmetries.

3.1.2 Case B

Consider that a (t, x) 6= 0. From (20) we have that

a (t, x) = −1

2

∫

(T1LY1Cx + T2LY2Cx − T1,tY1 − T2,tY2) dx+ f (t) (23)

and then (21) gives

0 =
1

2
σ2 (T1LY1Cx + T2LY2Cx − T1,tY1 − T2,tY2,x),x + Cx (T1LY1Cx + T2LY2Cx − T1,tY1 − T2,tY2) +

−
∫

(T1,tLY1Cx + T2,tLY2Cx − T1,ttY1 − T2,ttY2) dx+ 2f (t) . (24)

Consider the case for which T1 6= T2. Recall that for the space (15), YI,x = 2ψI , that is, from (24) we

have the conditions

0 =
1

2
σ2 (LY1Cx),x + CxLY1Cx −

T1,t

T1

(

1

2

∫

LY1Cxdx+ CxY1 + 2ψ1

)

+

+
1

2

T1,tt

T1

∫

Y1dx+ 2f1,t and (25)

0 =
1

2
σ2 (LY2Cx),x + CxLY2Cx −

T2,t

T2

(

1

2

∫

LY2Cxdx+ CxY2 + 2ψ2

)

+

+
1

2

T2,tt

T2

∫

Y2dx+ 2f2,t, (26)

where f (t) = f1 (t) + f2 (t). We continue with the subcases:

Subcase B1 Let TI,tt = T 0
I TI,t , TI,t 6= 0, that is, TI (t) = T 1

I + T 2
I e
T 0
I t. In this case the symmetry

conditions are:

0 =

(

1

2
σ2 (LYI

Cx),x + CxLYI
Cx

)

− TI,t

TI

(

1

2

∫

LYI
Cx + CxYI + 2ψI +

1

2

∫

YIdx

)

+ 2fI,t. (27)

Hence we have the following system

1

2
σ2 (LYI

Cx),x + CxLYI
Cx = c (28)

1

2

∫

LYI
Cx + CxYI + 2ψI +

1

2

∫

YIdx = m (29)

2fI,t −m
TI,t

TI
+ c = 0. (30)
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If system (28)-(30) holds for I = 1 or I = 2, then equation (14) admits 3 + 1 +∞ Lie symmetries and

in the case for which conditions (28)-(30) hold, ie, admits 5 + 1+∞ Lie symmetries which is the maximum

for a (1 + 1) evolution equation.

Subcase B2 In the second subcase we consider that TI,tt 6= TI,t.

Hence, if B2.a) TI,tt = 0, then from (25) and (26) it follows that

1

2

∫

LYI
Cxdx+ CxYI + 2ψI = 0 (31)

1

2
σ2 (LYI

Cx),x + CxLYI
Cx = c and (32)

2fI,t + c = 0, (33)

where from Theorem 2 these conditions must hold for I = 1 and I = 2 and equation (14) is maximally

symmetric.

B2.b) Let T,tt 6= 0. Then it follows that

1

2

∫

LYI
Cxdx+ CxYI + 2ψI = 0, (34)

1

2
σ2 (LYI

Cx),x + CxLYI
Cx +

1

2
m

∫

YIdx = c and (35)

TI,tt

TI
= mI , 2fI,c + c−mI = 0. (36)

These conditions hold for I = 1 or I = 2. If these conditions hold for both I = 1 and 2, then equation (14)

is maximally symmetric.

We collect the results in the following theorem.

Theorem 3 The autonomous (1+1) linear equation (14), apart from the symmetry of autonomy, the linear

symmetry and the infinity symmetry, can admit:

A) The two Lie symmetries XI = 2ψI

m
emt∂t + emtYI∂I , where YI is a HV of the one-dimensional flat

space with I = ‘1, 2 if and only if condition (22) holds for I = 1 and I = 2.

B1) The two or four Lie symmetries

XI = 2ψI

∫

TI (t) dt ∂t + TI (t)YI + α (t, x)F∂F (37)

if conditions (28)-(30) hold for I = 1 or 2, and I = 1 and 2, respectively, where TI (t) = T 1
I + T 2

I e
T 0
I t and

a (t, x) = −1

2

∫

(TILYI
Cx − TI,tY1) dx+ fI (t) . (38)

B2.a) The four Lie symmetries (37) if conditions (31)–(33) hold for I = 1 and 2, where TI = TI0 + TI1t

and a (t, x) is given by (38).

B2.b) The two or four Lie symmetries (37) if and only if conditions (34)–(36) hold for I = 1 or 2, and

I = 1 and 2, respectively, where TI,tt = mIT.
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Furthermore, we comment that theorem (3) holds for all linear autonomous equations of the form of (9).

Here we discuss the relation among the Lie symmetries and the initial condition (2). In the case of

constant parameters, ie, in equation (1) the Lie symmetry vector (4) is the linear combination among the

linear symmetry F∂F and the symmetry which is generated by the KV of the underlying space, which is

K1 = σ0∂x, for σ (x) = σ0. However, for a general function, σ (S), in order for the symmetry which is

generated by the KV K1 to satisfy the initial condition σ (S) = σ0 or the initial condition has to change.

Consider now that Y 1 = K1 and satisfies the conditions

LK1Cx = 0 , CxY1 = 0. (39)

Then from theorem 3, B2.a, we have that σ (x) is given by (18) and at the same time Y 2 = H generates two

Lie point symmetries for equation (14). The Lie point symmetries are

Xt = ∂t, XF = F∂F , X1 = σ (x) ∂x, X2 = tσ (x) ∂x − σ (x)F∂F ,

X3 = 2t∂t + σ (x)

∫

1

σ (x)
dx ∂xand

X4 = t2∂t + tσ (x)

∫

1

σ (x)
dx ∂x −

(

1

2
t+

(
∫

1

σ (x)
dx

)2
)

F∂F

plus the autonomous and trivial symmetries. The symmetry vector field X1 is the KV of the one-dimensional

space. Therefore, if we wish the field X̄ = X1 + µXF to satisfy an initial condition such as F (0, x) = g (x),

then it should be X1 (g (x)) = g (x) which gives g (x) = e

∫

σ(x)dx. From this we can see that, when

σ (x) = σ0, we have the initial condition (2).

Let κ, λ and µ be constants. Hence from (18) we have that

σ2 (x) = 2κ ((µ− λ) − x) + κ+ c1e
−2x, (40)

where for c1 = 0 we have

ln g (x) = ∓κ (2 (µ− λ− x) + 1)

3
σ (41)

and the solution for position σ (x) > 0

lnF (t, x) =
µ

2

(

µκt− 2
√

2 (µ− λ− x) + 1
)

. (42)

Let now σ (x) = x and consider that the KV K1 = x∂x generates a Lie point symmetry of equation (14)

from Case A of theorem 3. Then from condition (22) we have that

xCx,x − Cx +mx = 0, (43)

that is,

Cx = −m lnx+ c1x. (44)

However, in that case, equation (14) is maximally symmetric and admits 5+1+∞ Lie point symmetries.

Consider reduction with the Lie symmetry X̄ = emtx∂x + F∂F which keeps invariant the initial condition

F (0, x) =
1

x
. (45)
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The application of X̄ in (14) gives

F (t, x) = xexp(−mt) exp

(

− 1

4m
e−2mt − c1

m
e−mt

)

, m 6= 0 (46)

F (t, x) = x exp

((

c1 +
1

2

)

t

)

, m = 0. (47)

As another application of theorem 3 we select σ (x) = ex. Then the KV K1 is K1 = ex∂x. Let this

generate a Lie point symmetry for equation (14) from the case A of theorem 3, that is, conditions (22) give

Cx = −m+ c1e
−x, (48)

where now we can see that equation (14) is maximally symmetric and admits 5 + 1 +∞ point symmetries.

Consider the Lie symmetry X̄ = emt+x∂x + F∂F , which leaves invariant the modified initial condition

F (0, x) = x. The invariant solution which follows is

ln (F, x) = −e
−mt

4m

(

4me−x − 4c+ e−mt
)

.

We observe that, when K1 generates a Lie point symmetry for equation (14), the functional form of Cx,

which includes κ (x) , λ (x) and µ (x) has a specific form, such that equation (14) is maximally symmetric

and equivalent with the Black-Scholes and the Heat equations. In general, for unknown function σ (x), from

theorem 1 we have the following corollary.

Corollary 4 When the KV of the underlying space which defines the Laplace operator in equation (14)

generates a Lie point symmetry, the functional form of Cx is

Cx (x) = σ (x)

∫

m

σ (x)
dx+ cσ (x) (49)

and equation (14) is maximally symmetric. The symmetry vectors, among the autonomous, the homogeneous

and the infinity symmetries, are:

Z1 = emtK1 , Z2 = e−mt
(

K1 +m

∫

dx

σ (x)
F∂F

)

(50)

Z3 = e2mt (∂t +H) (51)

Z4 = e−2mt

(

∂t −H −m

(

2m

(
∫

dx

σ (x)

)2

− 1

)

F∂F

)

(52)

for m 6= 0, c = 0,

Z1 = emtK1 , Z
2 = e−mt

(

K1 +

(

m

∫

dx

σ (x)
+ c

)

F∂F

)

(53)

Z3 = e2mt
(

∂t +H + cK1
)

(54)

Z4 = e−2mt

(

∂t −H − cK1 +

(

2m2

(
∫

dx

σ (x)

)2

+ 4mc

(
∫

dx

σ (x)

)

+ 2c2 −m

)

F∂F

)

(55)

for m 6= 0, c 6= 0, and

Z1 = K1 , Z2 = tK1 −
(
∫

dx

σ (x)
F − t

)

F∂F (56)
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Z3 = 2t∂t +H + ctK1 (57)

Z4 = t2∂t +H +
t

2c
K1 −

(

1

2

∫

dx

σ (x)

2

+
1

2c

∫

dx

σ (x)
− ct

∫

dx

σ (x)
+
c2

2
t2
)

F∂F (58)

for m = 0, c 6= 0, where K1 = σ (x) ∂x and H = σ (x)
∫

dx
σ(x)∂x are the elements of the Homothetic algebra

of the underlying space.

We note that corollary 4 holds for all autonomous linear 1+1 evolution equations. In the following section

we discuss the group invariants of the time-dependent problem.

4 Time-dependent one-factor model

When the parameters σ, κ, λ of equation (1) depend upon time, the one-factor model can be written as

1

2
σ2(t)(Fxx − Fx) + (p(t)− xq(t))Fx − Ft = 0, (59)

where

p (t) = q (t) (µ (t)− λ (t)) , q (t) = κ (t) .

Without loss of generality we can select σ (t) = 1. By analysing the determining equations as provided

by the Sym package [20, 21, 22] we find that the general form of the Lie symmetry vector is

X = a(t)∂t +

[

b(t) +
a′x

2

]

∂x

+

[

f(t) +
1

4

(

4xbq + x(1 − 2p)a′2qa′ − 4x(b′ + ap′)

−x2(−2aq′ + a′′)
)]

F∂F , (60)

where functions a (t) , b (t) , f (t) are given by the system of ordinary differential equations,

0 = −bq + 2bpq − a′

4
+ pa′2a′ + qa′ +

+b′ − 2pb′ − 2f ′ + ap′ − 2app′ + aq′ − a′′

2
, (61)

0 = −2bq2 − 3

2
qa′ + 3pqa′ + 2aqp′ +

+3a′p′ − aq′ − 2bq′ + 2apq′ + 2b′′ + 2ap′′ (62)

and

0 = −2q2a′ − 2aqq′ − 2a′q′ − aq′′ +
a′′′

2

in addition to the infinite number of solution symmetries. Consequently the algebra is {sl(2,ℜ)⊕sW3} ⊕s
∞A1 so that it is related to the classical Heat Equation by means of a point transformation. In the following

we discuss our results.
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5 Conclusions

In the models of financial mathematics the parameters of the models are assumed to be constants. However,

in real problems these parameters can depend upon the stock prices and upon time. In this work we

considered the one-factor model of Schwartz and we studied the Lie symmetries in the case for which the

parameters of the problem are space-dependent. In terms of Lie symmetries, the one-factor model it is

maximally symmetric and it is equivalent with the Heat equation, but in the case where the parameters

are space dependent, that is not necessary true, and we show that the model can admit 1, 3 or 5 Lie

point symmetries (except the trivial ones). To perform this analysis we studied the Lie symmetries of

the autonomous linear evolution equation and we found that there exist a unique relation among the Lie

symmetries and the collineations of the underlying geometry, where as geometry we define the “space” of

the second derivatives. However, for a specific relation among the parameters of the model the system is

always maximally symmetric. In particular, that holds when σ (x) is an arbitrary function and
(

κ (µ− λ− x) − 1

2
σ2 − 1

2
σσ,x

)

= σ

∫

m

σ
dx+ cσ, (63)

where m, c are constants. In that case, the correspoding symmetry (4) becomes Z̄ = emtσ (x) ∂x + F∂x.

Consider that σ (x) = 1 + εex−x0, and (63) holds. Then the application of the Lie symmetry Z̄ in (14)

gives the solution

lnF (t, x) = −e−mt ln
(

1 + εex−x0
)

+ e−mt (x− x0) +
c

m
e−mt − 1

4m
e−2mt, (64)

where in the limit ε→ 0, solution (64) becomes

lnF (t, x) = e−mt (x− x0) +
c

m
e−mt − 1

4m
e−2mt (65)

which can compared with solution (3).

Consider now that σ (x) is periodic around the line σ0 = 1. Let σ (x) = 1+ε sin (ωx) that and (63) holds.

Hence the solution of the space-dependent one-factor model (14) which follows from the Lie symmetry Z̄ is

lnF (t, x) =
2e−mt√
1 + ε2

i arctan

(

tan
(

x
2

)

+ ε√
1− ε2

)

+
c

m
e−mt − 1

4m
e−2mt (66)

which is a periodic function of the stock price x. For ε << 1 the Taylor expansion of the static solution

(66) around the point ε = 0, is

lnF (t0, x) ≃ ix+ ε cosx+O
(

ε2
)

. (67)

In Figure 1 we give the static evolution of the solutions, (65) and (66), for various values of the constant

ε.

On the other hand, in Section 4 we studied the case for which the parameters of the one-factor model

are time-dependent and we showed that the model is always maximally symmetric and equivalent with the

Heat Equation, that is, the time-depedence does not change the admitted group invariants of the one-factor

model (1).

A more general consideration will be to extend this analysis to the two-factor and three-factor models

and also to study the cases for which the parameters are dependent upon the stock price and upon the time,

ie, the parameters are space and time dependent. This work is in progress.
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Figure 1: Evolution of the static solution (64) (left figures) and solution (66) (right. figure) for various values

of the constant ε. Solid line is for ε = 0.1, dash dash line is for ε = 0.1, and the dash dot line is for ε = 0.01.

Finally we remark how useful are the methods which are applied in Physics and especially in General

Relativity for the study of space-dependent problems in financial mathematics. The reason for this is that

from the second derivatives a (pseudo)Riemannian manifold can be defined. This makes the use of the

methods of General Relativity and Differential Geometry essential.
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A Proof of Theorem 1

In [18] it has been shown that for a second-order PDE of the form,

Aij
(

xk
)

u,ij −Bk(x)uk = 0, (68)

the Lie symmetries are generated by the conformal algebra of the tensor Aij . Specifically the Lie symmetry

conditions for equation (68) are

Aij(aiju+ bij)− (a,iu+ b,i)B
i = 0, (69)

Aijξk,ij − 2Aika,i + aBk − ξk,iB
i + ξiBk,i − λBk = 0 and (70)

LξiA
ij = (λ− a)Aij , (71)

where

η = a(xi)u+ b(xi) , ξk = ξk(xi). (72)
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By comparison of equations (9) and (68) we have that xi = (xα, t) , Aij = gαβ
(

xβ
)

, ie, Att = Ait = 0

and

Bt = 1 , Bα = Γα + Cα, (73)

where Γα = Γαβγg
βγ . Therefore the symmetry vector X for equation (9) has the form

X = ξt (t) ∂t + ξα
(

t, xβ
)

∂α + (a(xα, t)u + b(xa, t)) ∂u. (74)

We continue with the solution of the symmetry conditions.

When we replace Aij = gαβ
(

xβ
)

in (71), it follows that Lξαgαβ = (α− λ) gαβ which means that

ξα = T I (t)Y αI
(

xβ
)

, where Y αI is a CKV of the metric, gαβ , with conformal factor ψI , ie, ψI = 1
n
Y α;α and

α− λ = 2T IψI . Furthermore, from (70) the following system follows (recall that Bt,i = 0 and ξt,β = 0 )

gijξα,ij − 2giαa,i + aBα − ξα,iB
i + ξiBα,i − λBα = 0 and (75)

(a− λ)Bt − ξt,tB
t = 0. (76)

Moreover we observe that ψ
(

xk
)

= ψI , where ψI is a constant; that is, Y αI
(

xβ
)

is a KV/HV of gαβ . Finally

for the function, ξt (t) , it holds that ξt (t) = 2ψI
∫

T I (t) dt.

The symmetry condition (75) gives

gβγξα,βγ − ξα,γΓ
γ + ξγΓα,γ − ξα,γC

γ + ξγCα,γ − 2gβαa,β + (a− λ) Γα + (a− λ)Cα − ξα,t = 0. (77)

It is well known that

gβγξα,βγ + ξγΓα,γ − ξα,γΓ
γ + (a− λ) Γα = gβγ

(

LξαΓ
α
βγ

)

(78)

and, as ξα is a HV of gαβ ,
(

LξαΓ
α
βγ

)

= 0 holds. Therefore (77) becomes

T I
(

LY α
I
Cα + 2ψIC

α
)

− T I,tY
α
I − 2gβαa,β = 0. (79)

However, because gαγLξC
α = δβγLξCβ − 2ψCγ , condition (79) can be written as

T ILYI
Ca − T I,tYIα − 2a,β = 0. (80)

Finally from condition (69) we have the system

∆a− Cαa,a − a,t = 0 and (81)

∆bαβ − Cαb,a − b,t = 0 (82)

which means that a
(

xk, t
)

and b
(

xk, t
)

are solutions of (9). We continue with the study of some special

cases:

Case I: Let T I (t) = 0. Then from (11) a,β = 0 which means that α = a (t). However, from (81) we have

that α (t) = a0 which gives the linear symmetry a0u∂u. In that case from the form of ξt the autonomous

symmetry ∂t arises.

Case II: For T I (t) 6= 0 the generic symmetry vector is

X = 2ψI

∫

T I (t) ∂t + T IY αI ∂α +
(

a
(

xβ , t
))

u∂u, (83)

where conditions (80) and (81) hold.
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